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1Lawrence Livermore National Laboratory, P.O. Box 808, L-414, Livermore, California 94551, USA
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(Dated: May 15, 2015)

We provide the first unified ab initio description of the 6Li ground state and elastic scattering of
deuterium (d) on 4He (α) using two- and three-nucleon forces from chiral effective field theory. We
analyze the influence of the three-nucleon force and reveal the role of continuum degrees of freedom
in shaping the low-lying spectrum of 6Li. The calculation reproduces the empirical binding energy
of 6Li, yielding an asymptotic D- to S-state ratio of the 6Li wave function in d + α configuration
of −0.027 in agreement with a determination from 6Li-4He elastic scattering, but overestimates the
excitation energy of the 3+ state by 350 keV. The bulk of the computed differential cross section is
in good agreement with data. These results endorse the application of the present approach to the
evaluation of the 2H(α, γ)6Li radiative capture, responsible for the Big-Bang nucleosynthesis of 6Li.

PACS numbers: 21.60.De, 24.10.Cn, 25.45.-z, 27.20.+n

Introduction. Lithium-6 (6Li) is a weakly-bound sta-
ble nucleus that breaks into an 4He (or α particle) and a
deuteron (d) at the excitation energy of 1.4743 MeV [1].
Until now out of reach of ab initio (i.e., from first prin-
ciples) techniques, a complete unified treatment of the
bound and continuum properties of this system is desir-
able to further our understanding of the fundamental in-
teractions among nucleons, but also to inform the evalua-
tion of low-energy cross sections relevant to applications.
Notable examples are the 2H(α, γ)6Li radiative capture
(responsible for the Big-Bang nucleosynthesis of 6Li [2–
6]) and the 2H(α, d)4He cross section used in the charac-
terization of deuteron concentrations in thin films [7–9].
Contrary to the lighter nuclei, the structure of the 6Li
ground state (g.s.) – namely the amount of D-state com-
ponent in its d + α configuration – is still uncertain [1].
Well known experimentally, the low-lying resonances of
6Li have been shown to present significant sensitivity to
three-nucleon (3N) interactions in ab initio calculations
that treated them as bound states [10–13]. However, this
approximation is well justified only for the narrow 3+ first
excited state, and no information about the widths was
provided. At the same time, the only ab initio study of d-
4He scattering [14] was based on a nucleon-nucleon (NN)
Hamiltonian and did not take into account the swelling
of the α particle due to the interaction with the deuteron.

As demonstrated in a study of the unbound 7He nu-
cleus, the ab initio no-core shell model with continuum
(NCSMC) [15] is an efficient many-body approach to nu-
clear bound and scattering states alike. Initially devel-
oped to compute nucleon-nucleus collisions starting from
a two-body Hamiltonian, this technique has been later
extended to include 3N forces and successfully applied
to make predictions of elastic scattering and recoil of
protons off 4He [16] and to study continuum and 3N -
force effects on the energy levels of 9Be [17]. We have
now developed the NCSMC formalism to describe more

challenging deuterium-nucleus collisions, and as a first
application, we present in this Letter a study of the 6Li
ground state and d-4He elastic scattering using NN+3N
forces from chiral effective field theory [18, 19].
Approach. We cast the microscopic ansatz for the 6Li

wave function in the form of a generalized cluster expan-
sion

|ΨJπT 〉=
∑

λ

cλ|6LiλJπT 〉+
∑

∫

ν

dr r2
γν(r)

r
Aν |ΦJπT

νr 〉 , (1)

where J, π and T are respectively total angular momen-
tum, parity and isospin, |6LiλJπT 〉 represent square-
integrable energy eigenstates of the 6Li system, and

|ΦJπT
νr 〉=

[

(

|4HeλαJ
πα

α Tα〉|2HλdJ
πd

d Td〉
)(sT )

Yℓ(r̂α,d)
](JπT )

× δ(r − rα,d)

rrα,d
(2)

are continuous basis states built from a 4He and a 2H nu-
clei whose centers of mass are separated by the relative
coordinate ~rα,d, and that are moving in a 2s+1ℓJ partial
wave of relative motion. The translationally-invariant
compound, target and projectile states (with energy la-
bels λ, λα and λd, respectively) are all obtained by means
of the no-core shell model (NCSM) [20, 21] using a basis
of many-body harmonic oscillator (HO) wave functions
with frequency ~Ω and up to Nmax HO quanta above
the lowest energy configuration. The index ν collects the
quantum numbers {4HeλαJ

πα

α Tα;
2HλdJ

πd

d Td; sℓ} asso-
ciated with the continuous basis states of Eq. (2), and
the operator (with Pi,j exchanging particles i and j)

Aν =
1√
15

(

1−
4

∑

i=1

6
∑

j=5

Pi,j +

4
∑

i<j=1

Pi,5Pj,6

)

,

ensures its full antisymmetrization. Expansion (1) is fur-
ther orthonormalized to account for the overcompleteness
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FIG. 1. (Color online) Computed d-4He S- and D-wave phase
shifts at Nmax = 8 and ~Ω = 20 MeV, obtained with fifteen
square-integrable 6Li eigenstates and up to seven 2H pseu-
dostates in each of the 3S1−

3D1,
3D2 and 3D3−

3G3 channels.
The two-body part of the SRG-evolved N3LO NN potential
(NN-only) with Λ = 2.0 fm−1 was used.

of the basis [15]. Finally, the unknown discrete coeffi-
cients, cλ, and continuous amplitudes of relative motion,
γν(r), are obtained by solving the six-body Schrödinger
equation in the Hilbert space spanned by the basis states
|6LiλJπT 〉 and Aν |ΦJπT

νr 〉 [15]. The bound state and
the elements of the scattering matrix are then obtained
from matching the orthogonalized expansion (1) with the
known asymptotic behavior of the wave function using an
extension of the microscopic R-matrix theory [22, 23].

The deuteron is only bound by 2.224 MeV. For relative
kinetic energies (Ekin) above this threshold, the d-4He
scattering problem is of a three-body nature (until the
breakup of the tightly bound 4He, that is). Below, the
virtual scattering to the energetically closed 4He+p+n

channels accounts for the distortion of the projectile.
Here we address this by discretizing the continuum of
2H in the 3S1−3D1,

3D2 and 3D3−3G3 channels identi-
fied in our earlier study of Ref. [14]. At the same time,
the first fifteen (all energetically relevant positive- and
negative-parity states up to J=3) square-integrable six-
body eigenstates of 6Li also contribute to the descrip-
tion of the deuteron distortion. More importantly, they
address the swelling of the α particle, of which we can
(computationally) afford to include only the g.s. This was
demonstrated in Ref. [16], where proton-4He scattering
phase shifts were shown to be rather insensitive to the
inclusion of 4He excitations, once 5Li square-integrable
states were added to the description. The typical conver-
gence behavior of our computed d-4He phase shifts with
respect to the number of deuteron pseudostates (or d⋆,
with Ed⋆>0) included in Eq. (2) is shown in Fig. 1. Sta-
ble results are found with as little as three pseudostates
per channel, less than half than in the more limited study
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FIG. 2. (Color online) S-, 3P0- and D-wave d-4He phase shifts
computed with the NN-only, NN+3N-ind and NN+3N
Hamiltonians (lines) compared to those of the R-matrix anal-
yses of [27, 28] (symbols). More details in the text.

of Ref. [14], lacking the coupling of square-integrable 6Li
eigenstates. Nonetheless, above the 2H breakup thresh-
old, our approach is approximated and a rigorous treat-
ment would require the more complicated task of includ-
ing three-cluster basis states [24] in the ansazt of Eq. (1).

The treatment of 3N forces within the NCSMC for-
malism to compute deuteron-nucleus collisions involves
major technical and computational challenges. The first
is the derivation and calculation of the matrix elements
between the continuous basis states of Eq. (2) of seven
independent 3N -force terms, five of which involve op-
erations on three to four nucleons of the target, e.g.
〈ΦJπT

ν′r′ |P3,5P4,6V
3N
123 |ΦJπT

νr 〉, with V 3N
123 the 3N interac-

tion among particles 1, 2 and 3. To calculate these con-
tributions, we need the three- and four-nucleon densi-
ties of the target [25]. An additional difficulty is rep-
resented by the exorbitant number of input 3N -force
matrix elements (see Fig. 1 of Ref. [26]), which we in-
clude up to a maximum three-nucleon HO model space
of seventeen major shells. The 〈6LiλJπT |V 3N

346 |ΦJπT
νr 〉 and

〈6LiλJπT |V 3N
456 |ΦJπT

νr 〉 couplings between discrete and
continuous states are comparatively less demanding.

Results. We adopt an Hamiltonian based on the chi-
ral N3LO NN interaction of Ref. [29] and N2LO 3N force
of Ref. [30], constrained to provide an accurate descrip-
tion of the A=2 and 3 [31] systems. These interactions
are additionally softened by means of a unitary trans-
formation that decouples high- and low-momentum com-
ponents, working within the similarity renormalization
group (SRG) method [26, 32–35]. To minimize the oc-
currence of induced four-nucleon forces, we work with the
SRG resolution scale Λ = 2.0 fm−1 [25, 34, 35]. All calcu-
lations are carried out including the first fifteen Jπ ≤ 3±
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Ground-State Properties NCSM (10) NCSM (12) NCSM (∞) [37] NCSMC (10) Experiment

E6Li [MeV] −30.84 −31.52 −32.19(1) −32.01 −31.994 [1, 40]

C0 [fm−1/2] − − − 2.695 2.91(9) [39] 2.93(15) [38]

C2 [fm−1/2] − − − −0.074 −0.077(18) [39]

C2/C0 − − − −0.027 −0.025(6)(10) [39] 0.0003(9) [41]

Eα+Ed [MeV] −30.52 −30.58 −30.61(4) −30.52 −30.520

TABLE I. Absolute 6Li g.s. energy, S- (C0) and D-wave (C2) asymptotic normalization constants and their ratio using the
NN + 3N Hamiltonian compared to experiment. Also shown is the sum of 4He and 2H g.s. energies, Eα+Ed. Indicated in
parenthesis is the Nmax value of the respective calculation.

(of which two 1+ and 2+, and one 3+) discrete eigenstates
of the 6Li system and continuous d-4He(g.s.) states with
up to seven deuteron pseudostates in the 3S1−3D1,

3D2

and 3D3−3G3 channels. Similar to our earlier study per-
formed with a softerNN interaction but in a model space
spanned only by the continuous basis states of Eq. (2)
[14], we approach convergence for the HO expansions at
Nmax=10(11) for positive (negative) parity channels. We
adopt the HO frequency of 20 MeV around which the 6Li
g.s. energy calculated within the square-integrable basis
of the NCSM becomes nearly insensitive to ~Ω [13].

In Fig. 2 we compare our computed d-4He S-, 3P0- and
D-wave phase shifts with those of the R-matrix analyses
of Refs. [27, 28]. The results based on the two-body part
of the SRG-transformed NN force (NN -only) resemble
those of Ref. [14]. Once the SRG unitary equivalence
is restored via the induced 3N force (NN+3N -ind), the
resonance centroids are systematically shifted to higher
energies. By contrast, the agreement with data is much
improved when the initial chiral 3N force is also included
(NN+3N). In particular, the splitting between the 3D3

and 3D2 partial waves is comparable to experiment.

In Fig. 3, the resonance centroids and widths ex-
tracted [36] from the phase shifts of Fig. 2 (shown on
the right) are compared with experiment as well as with
more traditional approximated energy levels (shown on
the left) obtained within the NCSM by treating the 6Li
excited states as bound states. In terms of excitation en-
ergies relative to the g.s., in both calculations (i.e., with
or without continuum effects) the chiral 3N force affects
mainly the splitting between the 3+ and 2+ states, and to
a lesser extent the position of the first excited state. Sen-
sitivity to the chiral 3N force is also seen in the widths of
the NCSMC resonances, which tend to become narrower
(in closer agreement with experiment) when this force is
present in the initial Hamiltonian. Overall, the closest
agreement with the observed spectrum is obtained with
the NN+3N Hamiltonian working within the NCSMC,
i.e. by including the continuum degrees of freedom. In-
cidentally, we note that the NN -only Hamiltonian (not
shown in Fig. 3) yields g.s. and 3+ energies (with respect
to the computed d+4He threshold) close to the NN+3N
results, e.g. −1.62 and 1.24 MeV, respectively, within

the NCSMC. However, the splitting between 2+ and 3+

is smaller. Compared to the best (Nmax = 12) NCSM
values, all resonances are shifted to lower energies com-
mensurately with their distance from the breakup thresh-
old. For the 3+, which is a narrow resonance, the effect
is not sufficient to correct for the slight overestimation in
excitation energy already observed in the NCSM calcula-
tion. This and the ensuing underestimation of the split-
ting between the 2+ and 3+ states point to remaining
deficiencies in the adopted 3N force model, particularly
concerning the strength of the spin-orbit interaction.

The inclusion of the d+4He states of Eq. (2) results
also in additional binding for the 1+ ground state. This
stems from a more efficient description of the clusteriza-
tion of 6Li into d+α at long distances, which is harder to
describe within a finite HO model space, or – more sim-
ply – from the increased size of the many-body model
space. Indeed, as shown in Fig. 3 and in Table I for
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the absolute value of the 6Li g.s. energy, extrapolating to
Nmax → ∞ [37] brings the NCSM results in good agree-
ment with the NCSMC, for bound states and narrow
resonances. However, only with the latter the wave func-
tions present the correct asymptotic, which for the g.s.
are Whittaker functions. This is essential for the extrac-
tion of the asymptotic normalization constants and a fu-
ture description of the 2H(α, γ)6Li radiative capture [5].
The obtained asymptotic D- to S-state ratio is not com-
patible with the near zero value of Ref. [41], but rather
is in good agreement with the determination of Ref. [39],
stemming from an analysis of 6Li+4He elastic scattering.
Next, in Figs. 4(a) and 4(b), respectively, we compare

the 2H(α, d)4He deuteron elastic recoil and 4He(d, d)4He
deuteron elastic scattering differential cross sections com-
puted using the NN+3N Hamiltonian to the measured
energy distributions of Refs. [7–9, 42–45]. Aside from
the position of the 3+ resonance, the calculations are in
fair agreement with experiment, particularly in the low-
energy region of interest for the Big-Bang nucleosynthe-
sis of 6Li, where we reproduce the data of Besenbacher et
al. [42] and Quillet et al. [8]. The 500 keV region below
the resonance in Fig. 4(a) is also important for material
science, where the elastic recoil of deuterium knocked by
incident α particles is used to analyze the presence of 2H.
At higher energies, near the 2+ and 1+ resonances, the
computed cross section at the center-of-mass scattering
angle of θd = 164◦ reproduces the data of Galonsky et

al. [44] and Mani et al. [45], while we find slight disagree-
ment with the data of Ref. [9] in the elastic recoil con-
figuration at the laboratory angle of ϕd = 30◦. At even
higher energies, the calculated cross section of Fig. 4(b)
lies above the measured one. This is likely related to
the fact that the 1+2 state is too broad. The overall
good agreement with experiment is also corroborated by
Fig. 4(c), presenting 4He(d, d)4He angular distributions

in the 2.93 ≤ Ed ≤ 12.0 MeV interval of incident ener-
gies. In particular, the theoretical curves reproduce the
data at 2.93 and 6.96 MeV, while some deviations are vis-
ible at the two higher energies, in line with our previous
discussion. Nevertheless, in general the present results
with 3N forces provide a much more realistic descrip-
tion of the scattering process than our earlier study of
Ref. [14]. Finally, we expect that an Nmax = 12(13) cal-
culation (currently out of reach) would not significantly
change the present picture, particularly concerning the
narrow 3+ resonance. Indeed, much as in the case of the
g.s. energy, here the NCSMC centroid is in good agree-
ment with the NCSM extrapolated value, 0.99(9) MeV.
Conclusions. We presented the first application of

the ab initio NCSMC formalism to the description of
deuteron-nucleus dynamics. We illustrated the role of
the chiral 3N force and continuous degrees of freedom in
determining the bound-state properties of 6Li and d-4He
elastic scattering observables. The computed g.s. energy
is in excellent agreement with experiment, and our d+α

asymptotic normalization constants support a non-zero
negative ratio of D- to S-state components for 6Li. We
used deuterium backscattering and recoil cross section
data of interests to ion beam spectroscopy to validate our
scattering calculations and found good agreement in par-
ticular at low energy. The overestimation by about 350
keV of the position of the 3+ resonance is an indication of
remaining deficiencies of the Hamiltonian employed here.
This work sets the stage for the first ab initio study of the
2H(α, γ)6Li radiative capture, and is a stepping stone in
the calculation of the deuterium-tritium fusion with the
chiral NN + 3N Hamiltonian, currently in progress.
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A. Guglielmetti, C. Gustavino, G. Gyürky, M. Junker,
A. Lemut, M. Marta, C. Mazzocchi, P. Prati, C. Rossi
Alvarez, D. A. Scott, E. Somorjai, O. Straniero, and
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