
HAL Id: hal-04346059
https://hal.science/hal-04346059v1

Submitted on 14 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Joint placement, routing and dimensioning at the
network edge for energy minimization

Maxime Elkael, Andrea Araldo, Salvatore d’Oro, Hind Castel-Taleb,
Massinissa Ait Aba, Badii Jouaber

To cite this version:
Maxime Elkael, Andrea Araldo, Salvatore d’Oro, Hind Castel-Taleb, Massinissa Ait Aba, et al.. Joint
placement, routing and dimensioning at the network edge for energy minimization. IEEE Global
Communications Conference (IEEE Globecom), IEEE, Dec 2023, Kuala Lumpur (Malaysia), France.
�10.1109/GLOBECOM54140.2023.10437799�. �hal-04346059�

https://hal.science/hal-04346059v1
https://hal.archives-ouvertes.fr

Joint placement, routing and dimensioning at the
network edge for energy minimization

Maxime Elkael∗, Andrea Araldo∗, Salvatore D’Oro‡, Hind Castel-Taleb∗, Massinissa Ait Aba†, Badii Jouaber∗

∗Institut Polytechnique de Paris, Telecom Sud-Paris, SAMOVAR {name.surname}@telecom-sudparis.eu
†Davidson Consulting, France {name.surname}@davidson.com

‡Northeastern University, Boston, MA, U.S.A. {n.surname}@northeastern.edu

Abstract—Thanks to resource virtualization, Physical Network
Operators (PNOs) can share their 5G network to multiple Mobile
Virtual Network Operators (MVNOs) which can leverage the
shared physical infrastructure to deploy their services up to the
edge. This allows much more flexibility with respect to the previous
generation of cellular networks: MVNO software components
can be placed at different locations, can be allocated a certain
amount of virtual resources (e.g., bandwidth, CPU cycles), and
be reachable via different paths. To the best of our knowledge,
strategies to minimize energy consumption while satisfying Service
Level Agreements (SLAs) between the PNO and the MVNOs are
still largely missing, particularly if it is required to take the non-
linearity of delays into account. To fill this gap, we formulate the
problem of joint placement of software components, routing of
user requests and resource dimensioning. SLAs are represented in
terms of latency and reliability constraints. Via Column Genera-
tion, we obtain exact solutions in real-sized networks. Our numer-
ical results show that we can save up to 50% energy in networks
with up to 30 nodes compared to the state-of-the-art algorithms,
which are focused on placement or resource minimization.

I. INTRODUCTION

Motivated by the increasing demand for low-latency and
high-throughput services and applications, 5G and beyond cel-
lular networks are transitioning from rigid hardware-based ar-
chitectures to virtualized and cloud-based deployments. These
new architectures decouple network functions from the hard-
ware where they execute, thus abstracting network services
from the infrastructure. This substantial shift is resulting in
cellular networks that (i) are easier to maintain, monitor and
reprogram; and (ii) can effectively deliver the necessary per-
formance requested by advanced services such as Augmented
and Virtual Reality (AR/VR), high-definition video streaming,
autonomous driving and tactile gaming.

An important enabler of this new trend is network slicing.
Via network slicing, a physical network operator (PNO) can
virtualize and share its physical infrastructure among multi-
ple mobile virtual network operators (MVNOs). Specifically,
the PNO provides each MVNO with a slice of computing
and networking resources that are sufficient to meet Service
Level Agreements (SLAs) negotiated between the PNO and
the MVNOs. On the other hand, it has been reported that the
network Operational Expenditure (OPEX) represent 25% of the
total costs of operators, of which 90% is energy bills [1].

This work was supported by Agence Nationale pour la Recherche through the AIDY-
F2N project, grant number ANR-19-LCV2-0012 and is based upon work partially sup-
ported by the U.S. National Science Foundation under grant CNS-1925601

Hence, in this work, we answer the following questions:
How should a PNO jointly decide (i) placement of services,
(ii) routing and (iii) allocation of computational resources
to each slice? And, how to take those decisions to minimize
energy consumption, while satisfying SLAs? Despite their tight
inter-dependency, decisions (i), (ii) and (iii) have never been
optimized jointly due to high complexity. To the best of our
knowledge we are the first to formalize and solve optimally a
mathematical program which takes the three aforementioned
decisions jointly. Leveraging appropriate inter-relations be-
tween computational resources and network paths and applying
column generation (CG), we are able to find exact solutions
for real-sized networks. Thanks to our joint approach, we get
rid of restrictive assumptions used in previous work which
either consider that all the resources to allocate are known a
priori (e.g., by allocating a fixed amount of CPU to match
the a-priori known demand) [2]–[6], or formalize the routing
problem as a multi-commodity flow problem and assume that
the “destination node” is fixed and determined a-priori [7], [8].

We differentiate ourselves from the above works in the
following aspects. First, the amount of resources to be allocated
to each slice is for us an optimization variable, which gives us
the opportunity to meet SLA requirements at a finer grain (e.g.,
allocating more CPUs resources to execute services faster).
Second, we fully leverage the flexibility of virtualized networks
and let the PNO decide the placement of software components,
as well as which nodes to activate/deactivate to minimize
energy consumption. Moreover, while latency constraints are
usually expressed in terms of mean delay [2] [9], we model
SLAs by considering a maximum latency threshold and the
corresponding level of reliability, i.e., the minimum fraction of
time where the threshold must be met.

By jointly deciding placement, routing and computational
resource allocation policies, and by accurately modeling SLAs,
we provide each slice with the precise amount of resources
needed to satisfy SLAs. This allows minimizing energy and
reducing the risk of over- and under-provisioning.

The rest of the paper is organized as follows. Section II
surveys related work, while in Section III we lay out our model
and assumptions. In Section IV, we formulate the problem
of joint edge service placement, routing and computational
resource dimensioning to minimize power consumption as a
Non-Linear Mixed Integer Program (NLMIP). Then, in Section
V we transform the NLMIP problem into a more tractable

Mixed Integer Linear Program (MILP) and describe our exact
algorithm. In Section VI, we evaluate our solution and compare
it with other approaches in the literature. Section VII concludes
the paper with final remarks. We only give here sketch of the
proofs. Full proofs can be found in our extended draft [10].

II. RELATED WORK

Edge service placement is a widely studied problem in the
literature. Most works in this field do not take the path between
the service and its clients into account, and only a small fraction
of those consider both energy and latency when placing edge
services latency [6], [11]–[14]. Another set of works, to which
the present article belongs, focuses on flow-based models that
take paths into account. To our knowledge, a large part of these
works solves the so-called Virtual Network Embedding (VNE)
problem [3], [15]. In VNE, a virtual graph has to be placed on
the physical network. Each of the nodes has a certain amount
of available computing resources (e.g., CPU), while edges have
a certain amount of bandwidth, which are both reserved upon
placing services. Various aspects such as SLA [16] or energy [5]
have been studied. The most common objective is to minimize
resource consumption (measured in terms of CPU and band-
width) [15], [17]. Various techniques have been studied such as
metaheuristics [18], [19], Reinforcement Learning [3], [4], [20]
or integer linear programming [15], [21].

The work on VNE closest to ours is [22], where the authors
consider both energy cost and latency constraints. However, as
most works considering latency in VNE [2], [16], latency is
calculated only based on paths and not on the reserved CPU.
In fact, to our knowledge, VNE works do not consider dynamic
scaling of CPU to meet the SLA.

Another work which seeks to place services and paths jointly,
but does not belong to the VNE literature, is [23]. Similar to
us, it models the problem as a flow problem. However, again,
SLA constraints are not considered. To our knowledge, the
only other work considering both propagation and processing
delays while optimizing the energy is [24]. However, in this
work, the processing delays are modeled as constants, which
does not take their stochastic nature into account, while it is
this precise aspect which makes it hard to meet 5G’s stringent
SLAs. The problem of allocating resources while considering
paths is also investigated by other works in the context of
classic multicommodity-flow (MCF) problems [25] or OSPF
weight optimization [26], [27]. In general, MCF is formulated
as a resource minimization problem [28]. Another common
objective is load balancing [8], [29], but it is of less interest
for energy as it leads to using many nodes to distribute load.

Overall, while the aspects we treat have received significant
attention, our literature review shows that jointly allocating
paths and resources while minimizing energy and satisfying
SLAs is largely unexplored. Moreover, we also notice that
our review does not suggest a good off-the-shelf candidate
to perform a fair numerical comparison. Indeed, Salaht et.
al. [30] pointed out that “the service placement problem has
been highly discussed in the literature [. . .] Based on different
application descriptions, network assumptions, and expected

a
100 GFLOPS

R1

R2

c

d

80 GFLOPS

120 GFLOPS

100mbps
4ms

80mbps
4ms

130mbps
1ms

100mbps
12ms

100mbps
10ms

140mbps
6ms

200mbps
16ms

140mbps
12ms

Slice A
Flow 1

Slice B
Flow 1

Slice A
Flow 2

Router Computing node Ingress nodes

Request arrivals Reserved path Software component

Figure 1: Example edge network (placement not optimized).
outcomes, these solutions are generally difficult to compare
with each other.”

III. SYSTEM MODEL AND ASSUMPTIONS

We consider the system depicted in Figure 1. The network is
owned by a Physical Network Operator (PNO) and is modeled
as a graph G(V , E). Nodes V can be of three types: ingress
nodes, computing nodes and routers. Ingress nodes are entry
points of the network (e.g., base stations (BS)) where traffic
from a set of Mobile Virtual Network Operators (MVNOs)
arrives. Computing nodes can host edge and cloud services
to perform computation tasks (e.g., computer vision, video
transcoding), and routers steer traffic throughout the network.

Each node v ∈ V of the graph is equipped with a capacity
CPUv of CPU resources. Computing nodes can host services
and the PNO can allocate portion of such CPU resources to
execute such services. Router and ingress nodes do not host any
service and only execute networking functionalities, thus they
can be modeled as nodes with 0 CPU capacity, i.e., CPUv = 0.

Nodes are connected via links, which are represented by the
edges E = V × V of the graph. For each link (v, u) ∈ E
connecting nodes v and u, we assume a maximum bandwidth
capacity BWv,u. Each link (v, u) ∈ E is characterized by its
propagation delay Dv,u. Let us define a path P ⊆ E as a
sequence of links connecting distinct nodes of the graph. The
propagation delay on a path P is

Dprop(P) =
∑

(v,u)∈P

Dv,u. (1)

We consider a set M of MVNOs willing to leverage the
physical infrastructure to deploy and offer a variety of services
(e.g., AR/VR, video streaming and autonomous driving) to
their customers. Services offered by MVNOs have different
performance requirements.

To ensure isolation, the PNO allocates a dedicated slice
r ∈ R to each MVNO, where R being the set of all slices.
If the same MVNO is allocated multiple slices, we will model
them as virtually separate MVNOs. For simplicity, we assume
each MVNO only runs one software component. We define
software components as virtualized programs which are run on
the computational nodes and can serve requests for the users of
the slice they belong to.

For any given network slice r, the corresponding MVNO
specifies a SLA as follows:

• A maximum tolerable latency value Dr (in ms).

• A reliability level SLr indicating the minimum fraction of
requests that should be satisfied within Dr. For example,
if Dr = 2ms, SLr = 0.95, the MVNO requires 95% of
its subscribers’ requests to be served within 2ms.

• OPSr, the number of floating point operations to perform
by software component of slice r. OPSr is a random
variable and we assume the MVNO communicates the
parameters describing its probability distribution.

• Br ⊂ V : base stations from which service requests arrive.
Since each slice request r can include base stations located at

geographically different locations, we decompose the slice into
a set Kr of |Br| flows, one for each base station. Figure 1 shows
an example with two slices. Slice A has two flows, Slice B has
one flow. A flow k ∈ Kr is defined by the following elements:

• The ingress/source node, sk ∈ V
• The inter-arrival time distribution ATk of user requests.
• The set Tk ⊂ V of candidate computing nodes that can

produce feasible solutions for flow k and can thus host
services for k. Let Pk be the set of candidate paths with
starting node sk and any destination tk ∈ Tk. These are all
the loopless paths which have a propagation delay lower
that Dr.

• The amount of bandwidth BW d
k requested.

Let us denote with K =
⋃
r
Kr the set of all flows requested

by MVNOs. We assume that each flow k ∈ Kr is assigned a
single SLA corresponding to slice r and defined as the tuple
(Dr, SLr). Since flows k ∈ Kr belong to the same slice r,
the SLA of r applies to all Kr. Therefore, we set Dk = Dr,
SLk = SLr and OPSk = OPSr for all k ∈ Kr.

The PNO aims to (i) serve all flows k ∈ K while satisfying
the SLA requirements (which we consider to be constraints);
and (ii) use the least amount of energy (which is the objective
function). This is done by jointly placing the software compo-
nents, allocating CPU to them, and deciding which path to use
for routing requests from the BS to the software component.

We now introduce our assumptions.
Assumption 1. Each flow k is routed between its source sk and
its chosen destination tk ∈ Tk on a single path.

This assumption is justified by considering that using multi-
ple routes for a single flow can introduce jitter, which may be
undesirable for services with tight latency constraints such as
the ones we consider in this paper.
Assumption 2. We assume that OPSk is exponentially dis-
tributed. Decision variable cpuk is the amount of CPU that the
PNO decides to allocate to the software component of flow k,
expressed in floating point operations per second (FLOPS).

The time necessary to process a service request of flow k
(e.g., the time spent by the software component of that flow
to process the instructions in the request) is exponentially
distributed with mean E(OPSk)/cpuk.

The next proposition naturally follows.
Proposition 1. The service time of the request is exponentially
distributed with mean E[OPSk]/cpuk. Therefore, the software
component of each flow k can be modeled as a G/M/1 queue

where ATk is the arrival process and µk = cpuk/E[OPSk] is
the mean service rate.

Assumption 3. Queuing delay on links is negligible, and the
total delay for flow k using path P ∈ Pk to reach destination
node tk is

Dk
tot(P, µk) = 2 ·Dprop(P) +Dwait(µk, ATk), (2)

where Dwait(µk, ATk) is a random variable representing the
waiting time of any request at the software component Prop. 1)
and Dprop(P) is the propagation delay (1).

This assumption, common in recent works [2], [3], [15], is
reasonable since we consider that the PNO reserves to each flow
the amount of bandwidth demanded by the respective MVNO
on the entire route. We assume MVNOs request a sufficient
amount of bandwidth, so that large queuing times on such links
are unlikely to happen.

Assumption 4 (Constant Energy for Network processing). The
energy consumed for routing is constant regardless of the BW.

This assumption has been demonstrated experimentally for
routers [31] and for dedicated network cards [32] [33].

We are now ready to derive the energy model of the system,
which will then be used to formulate the optimization problem.

First of all, our model is based on the fact that it has
empirically shown that the energy consumption of a server is
an affine function of the cpu utilization [34]. We note this affine
power function for node v as

pow(v) = c(v) · l(v) + e(v),

where e(v) is the power consumed when node v is idle (the y-
intercept of pow(v)), c(v) is the slope, and l(v) = E[load(v)]
is the average utilization of the node (which will be computed
later).1 We assume c(v) and e(v) are known for each type of
node, hence in the remaining we focus on calculating the load.

Recall each software component can be modeled as a G/M/1
queue (see Proposition 1). Hence, the average throughput of
the queue modeling software component of flow k is:

E[throughput(k)] = µk · (1− Pk
idle) = E[ATk]

−1

because in G/M/1 queues we have 1 − Pk
idle = E[ATk]

−1

µk
[35]

(as long as the queue is stable e.g. E[ATk]
−1 ≤ µk). From

Assumption 2, we derive the average amount of cpu consumed
by the software component:

cpuavg = E[throughput(k)] · E[OPSk] (3)

from which we can derive expected the percentage of CPU
utilization l(k, v) induced by a single software component:

l(k, v) =
cpuavg

CPUv
=

E[ATk]
−1 · E[OPSk]

CPUv
(4)

Finally, since the queues are independent, the expected load on
a node v hosting a set S of software components is:

l(v) = E[load(v)] =
∑
k∈S

l(k, v) (5)

1We note the power is easily converted into an energy measured in watt-hour

IV. PROBLEM FORMULATION

The problem of placing all slices’ flows while minimizing en-
ergy consumption and respecting SLAs has decision variables
x = {a(v), l(v) ∀v ∈ V, fk(P), µk(P), cpuk(P) ∀k ∈
1 . . .K, P ∈ Pk}. fk(P) variables indicate whether path
P is used by commodity k, hence it decides for the routing,
while µk(P) and cpuk(P) decide respectively for the service
rate and amount of CPU of commodity k, e.g. they determine
dimensionning. They also decide placement as if they are equal
to 0 it implies the software component is not placed on the node.

Note that the quantities cpuk and µk have been replaced
with their counterparts, i.e., cpuk(P), µk(P). Indeed, those
quantities depend on the path P we select to route flow k,
as if path P is shorter (in terms of delay), we can afford to
have a lower service rate µk(P) by giving less cpuk(P) to
the software component of flow k. Moreover, cpuk(P) and
l(k, v) can be calculated from µk(P) using (4) and Prop. 1. We
also denote by δu,v(P), ϕv(P), ωv(P) the indicator functions
which respectively indicate if (u, v) is in path P , if v is the last
node of P and if v is part of path P . δu,v(P), ϕv(P), ωv(P)
are input parameters of the problem.

min
x

∑
v∈V

a(v) · e(v) +
∑
v∈V

l(v) · c(v) (6)

s.t.
∑

1≤k≤K

∑
P∈Pk

fk(P) · BW
d
k · δu,v(P) ≤ BWu,v ∀(u, v) ∈ E (7)

∑
P∈Pk

fk(P) = 1 ∀k ∈ 1...K (8)

∑
1≤k≤K

∑
∀P∈Pk

fk(P) · ϕv(P) · cpuk(P) ≤ CPUv ∀v ∈ V (9)

a(v) ≥
1

K

∑
1≤k≤K

∑
P∈Pk

fk(P) · ωv(P) ∀v ∈ V (10)

l(v) =
∑

1≤k≤K

∑
∀P∈Pk

fk(P) · ϕv(P) · l(k, v) ∀v ∈ V (11)

µk(P) ∈
{
x|x ∈ R, P(Dk

tot(P, x) ≤ Dk) ≥ SLk

}
(12)

∀k ∈ 1 . . . K, P ∈ Pk

fk(P) ∈ {0, 1} ∀fk(P) (13)

a(v) ∈ {0, 1} ∀v ∈ V (14)

l(v) ≥ 0 ∀v ∈ V (15)
The objective (6) of the PNO is to minimize energy consump-

tion, by turning off nodes (setting a(v) = 0) and reducing their
dynamic energy l(v).Constraints (7) prevents from using more
bandwidth than what is available. Constraints (8) ensure we
select exactly one path per flow k among those in the candidate
set Pk. Constraints (9) enforce CPU capacities. Constraints
(10) ensure that any node that is used by a path of software
component is turned on.

Constraints (11) correspond to (5). Finally, Constraints (12)
are non-linear and enforce that given a chosen path and a re-
quest arrival distribution, the service rate µk(P) is high enough
to accommodate the SLA constraints.

In order to potentially accommodate software components
of many flows in single nodes (which allows to turn more
nodes off and save energy), Constraints (9) suggest to have
cpuk as small as possible for any flow k. However, we cannot
reduce cpuk too much, otherwise Dwait(µk, ATk) , and thus
Dk

tot(P, µk) (Eq. (2)), would excessively increase and violate
the SLA (12). Therefore, ∀k ∈ 1 . . .K, P ∈ Pk, we can replace

Construct INLP Calculate cpuk(P) values Construct ILP Solve with column generation

Figure 2: Block diagram of the exact solution algorithm
(12) with the optimal value of cpuk

µk(P) = min
x

{
x|x ∈ R,P(Dk

tot(P, x) ≤ Dk) ≥ SLk

}
(16)

V. SOLUTION

A. Simplification to a MILP

The goal of this section is to demonstrate that we can
simplify the non linear problem(6)-(15) and cast it as a MILP
while maintaining optimality. Theorem 1 is instrumental to
demonstrate our claim.
Theorem 1. If the requests from a flow k have general inde-
pendent inter-arrival times, given a path P ∈ Pk, the optimal
service rates (16) can be computed in polynomial time.

Sketch of Proof. Equation (16) suggests that we need to com-
pute the minimum valid amount of CPU to satisfy SLA con-
straints. This minimum CPU value is a strictly increasing
function of the propagation delay of the path considered (in-
tuitively, the longer the path, the faster we need to process flow
requests into software components to compensate for higher
path latency). Finding the smallest satisfactory service rate then
comes down to solving a root-finding problem with a unique
root (the uniqueness is a property of the delay distribution of
G/M/1 queues), which can be pre-computed using a bisection
algorithm in polynomial time.

Thanks to Theorem 1, we can pre-compute all values of
cpuk(P) and take them as input of the following MILP, thus
removing the non-linear constraints (12) in which the decision
variables are x′ = {a(v), l(v) ∀v ∈ V, fk(P) ∀k ∈
1 . . .K, P ∈ Pk}.

min
x′

∑
v∈V

a(v) · e(v) +
∑
v∈V

l(v) (17)

s.t. (7), (8), (9), (10), (11)

B. Making the MILP more tractable

An issue with this formulation is that once we relax it into
a linear program (LP), both variables a(v) and fk(P) become
fractional, and we would have to branch [36] on both variables
to find an integer solution. Our early experiments have shown
this makes even small problems unsolvable in a reasonable
amount of time. Therefore, we introduce a the following set of
constraints which ensures that we only have to branch on fk(P)

a(v) ≥ fk(P) · ωv(P),∀v ∈ V, k = 1...K, P ∈ Pk. (18)

These constraints state that if any binary variable fk(P), tied to
path P , which uses node v, is equal to 1, variable a(v) has to
be 1. Otherwise if no path uses v, a(v) will be set to its lowest
possible value (e.g. 0) due to the objective function.

C. Column Generation-based solution

We first solve the LP relaxation of ILP eq. (17) (augmented
with constraints 18, as it will later be embedded in a branch-
and-bound procedure to solve the full problem. It could be

tempting to solve LP using generic techniques (e.g., the simplex
algorithm). However, at worst we have one variable fk(P) per
loopless path P between each source and destination of each
flow k. It is well known [37] that the number of paths in a graph
is exponential in its number of nodes, making it impossible to
enumerate those variables and solve the LP relaxation explicitly
in reasonable time. Instead, we resort to column generation
(CG) [36, §10.2]. By using CG we only consider a sequence of
Reduced Master Problems (RMPs): RMP(0), RMP(1), etc. Each
RMP comprises only a subset of the variables of the full LP and
“excludes” all the others, implicitly forcing them to 0. In our
case, we start with RMP(0) in which we exclude all variables
fk(P),∀k ∈ {1, . . . ,K}, P ∈ Pk. Then, at every iteration i,
we select one variable fk(P

(i)) among the ones excluded in
RMP(i) and we add it to RMP(i+1), i.e., variable fk(P

∗
(i)) can

take non-zero values in RMP(i+1). At the i-th iteration of CG,
variable fk(P

∗
(i)) we choose to add is the one with the smallest

“reduced cost”. The reduced cost of each variable fk(P) mea-
sures how much the objective function would change if fk(P)
was to be increased of an infinitesimal amount. Intuitively, if the
reduced cost is positive, increasing the variable will increase the
objective function, and if it is negative, it will decrease it. Hence
by always adding variables with negative reduced cost at each
step, optimality is guaranteed [36].

In the usual LP setting that uses the simplex method (and not
CG), all variables are included in the problem and computing
reduced costs of any single variable for each intermediate
solution is straightforward (see [36], §9) and done in constant
time. However, doing so for exponentially many variables like
our problem requires is intractable. CG allows to skip this long
computation and just find the variable with minimum reduced
cost over the set of all excluded variables. Such a problem is
called “pricing” and is usually solved by first proving that it
is equivalent to another problem, much easier to solve. A key
effort of this work is to find such an equivalent—yet easier—
problem, which is summarized in the following theorem.
Theorem 2. The pricing problem is equivalent to a bi-objective
shortest path problem (BOSPP) with forbidden paths, which
can be solved efficiently (e.g. [38]).

Sketch of Proof. The first step of our proof is to decompose the
reduced cost of fk(P) into the sum of 3 terms. The former is
constant regardless of k and P , the second depends on dual
variables associated with edges of P , and the third depends on
the CPU consumed if P was to be used. Since the higher the
propagation delay Dprop(P) on a path P , the higher the CPU
to be consumed to compensate for high Dprop(P), it follows
that minimizing this third term can be done by using the path
with shortest delay. On the other hand, minimizing the second
objective (which depends on dual variables) can be done by
assigning the dual variables associated to edges as weights
on such edges and finding the shortest path. Since these two
objectives can be conflicting, we solve the pricing problem by
computing the whole Pareto frontier for this problem and then
finding the path with the smallest reduced cost among them.
Finally, we prove that Equations (18) do not modify the reduced

Construct RMP with subset of variables

Solve RMP optimally

Find most promising variable by solving BOSPP

Include new variable into RMP

STOP

If rc of variable is negative

If rc of variable is non-negative

Figure 3: Block diagram of the pricing algorithm
Graph SLAs Min BW Max BW Min OPSk Max OPSk Min Dk Max Dk

Abilene [0.87,0.9,0.95] 10 30 150 200 600 1000
Agis [0.87,0.9,0.95] 20 40 150 200 1400 1800

INS IXC [0.87,0.9,0.95] 20 40 150 200 1400 1800

Table I: Random generation parameters.
costs of the excluded variables. This is however not the case
for the included variables. For this reason, computing the bi-
objective shortest paths while forbidding all path associated
with variables that have already been included ensures the
Pareto-frontier contains the path with minimum reduced cost,
e.g. the solution to the pricing problem.

Now that we have a solution to the LP relaxation (summa-
rized up in Fig. 3), we can embed it in a branch-and-bound
procedure. We choose to use the same branching rule as in [7].

VI. PERFORMANCE EVALUATION AND COMPARISON

We compare our approach Energy Minimization Optimiza-
tion (EMO) to two state-of-the-art strategies. The first one is
the MCF CG algorithm from [7]. Since MCF CG minimizes
resource utilization, we call it Resource Minimization Opti-
mization (RMO) here. Note that we modify the original pricing
problem of [7] to take SLA and CPU capacity constraints into
account.The second compared approach is UEPSO [18], a
VNE algorithm. Since VNE consists in placing a virtual graph
onto a physical graph, we transform an instance of our problem
into a VNE instance by transforming the set of flows into a
virtual requests graph made of disjoint edges (one per flow).
Since VNE assumes fixed CPU demands, we set the CPU de-
mands equal to the lowest possible value, obtained by assuming
that the path chosen has 0 propagation delay. Hence, UEPSO
is evaluated in idealized conditions. We consider three graphs
from the TopologyZoo dataset [39], namely Abilene, Agis and
INS IXC Services, with 11, 24 and 30 nodes, respectively. We
randomly generate 30 slices per graph. Each slice has a single
flow. Note that after respectively 27, 21 and 11 slices SLA and
capacity constraints become infeasible. Simulation details are
summarized in Table I. We implement our solution in Julia2,
using the HiGHS solver for the LP solution (branching and CG
are done in plain Julia). The algorithms run for a max. of 1 hour.

Figures 5 and 6 show that resource and energy minimization
are contradicting objectives. In order to save energy, we may
need to consume more resources. Indeed, EMO saves up to
50% of energy, when load is high (many slices), via using
more resources than RMO. This counter-intuitive result can be
explained by the fact that RMO tends to use shortest paths,
which yields to a lower propagation delay and hence a lower
CPU consumption. It also tends to select paths with fewer
hops, hence consuming less bandwidth. On the other hand,
minimizing energy consumption yields to taking slightly longer
paths when possible, which might generate more resource
consumption, but enable sharing of active nodes: the selected
paths will share as many nodes as possible, so as to turn as

2the code is available at https://github.com/melkael/mcf-energy

a

R1

R2
c

d

4ms

4ms
1ms

12ms

10ms

6ms

16ms

12ms

Slice A
Flow 1

Slice B
Flow 1

Slice A
Flow 2

Figure 4: Ex. more energy efficient placement (compared to Fig. 1):
Flow 1 of Slice B now does not activate R2.

many nodes off and consume less energy. An example of such
a case is depicted in Figure 4, in which compared to Figure
1, Flow 1 of Slice B uses a longer path which enables to turn
router R2 off. Those benefits come at the cost of runtime,
as EMO is computationally harder to solve than RMO (Fig.
7). We relate this difficulty to the aforementioned difference
between the two solutions: it is much harder to find the best
way to share paths than to find a solution which, at its core,
uses a large amount of the shortest paths. For example, on
Agis, EMO times out for 11 slices, while the other results
indicate the problem is feasible for up to 21 slices. On the other
hand, for INS IXC Services, RMO obtains feasible solutions
near-instantaneously while EMO often reaches the time-limit.
Finally, we note that for all instances and metrics, UEPSO is
much worse than both approaches. This is unsurprising since it
only decides placement of software components and routing.
This confirms the importance of jointly deciding placement,
routing and resource dimensioning.

Figure 5: Energy consumption

Figure 6: Resources consumption

Figure 7: Runtime
VII. CONCLUSION

In this study, we introduced a novel model for addressing
edge service placement under stringent performance demands.
Our approach considers processing and propagation delays,
offering infrastructure owners the flexibility to adjust CPU
allocation per service to meet strict SLAs. We developed
a precise solution that minimizes energy consumption while
ensuring service requirements are met, crucial for effective
5G network slicing. Our findings highlight the potential for

significant energy savings, up to 50% compared to a classic re-
source minimization approach, by strategically managing CPU
allocation and service placement. Future work aims to enhance
the solution’s speed by incorporating strengthened inequalities
and heuristic methods based on selected paths.

REFERENCES

[1] GSMA, “5G Energy efficiency: Green is the new black.”
[2] Esteves et al., “Heuristic for edge-enabled network slicing optimization

using the “power of two choices”,” in CNSM 2020.
[3] Elkael et al., “Monkey Business: Reinforcement learning meets neighbor-

hood search for Virtual Network Embedding,” Computer Networks, 2022.
[4] Haeri et al., “VNE via Monte Carlo tree search,” Trans. on Cyb. 2017.
[5] Botero et al., “Energy efficient VNE,” ComLetters 2012.
[6] Li and Wang, “An energy-aware edge server placement algorithm in

mobile edge computing,” in EDGE 2018.
[7] Barnhart et al., “Using branch-and-price-and-cut to solve origin-

destination integer MCF problems,” Operations Research 2000.
[8] Duhamel and Mahey, “Multicommodity flow problems with a bounded

number of paths: A flow deviation approach,” Networks 2007.
[9] Huang et al., “Dimensioning resources of network slices for energy-

performance trade-off,” in ISCC 2022.
[10] “Extended draft,” https://www.researchgate.net/publication/370489892.
[11] Sharghivand et al., “An edge computing matching framework with guar-

anteed quality of service,” Trans. on Cloud Computing 2020.
[12] Yadav et al., “Energy-latency tradeoff for dynamic computation offload-

ing in vehicular fog computing,” IEEE Trans. on Vehicular Tech. 2020.
[13] Badri et al., “Energy-aware application placement in mobile edge com-

puting: A stochastic optimization approach,” Trans. Par. & Dis. Sys. 2019.
[14] Zhang et al., “Cost efficient scheduling for delay-sensitive tasks in edge

computing system,” in 2018 SCC.
[15] Chowdhury et al., “Vineyard: Virtual network embedding algorithms with

coordinated node and link mapping,” ToN 2011.
[16] Han et al., “A new VNE framework based on QoS satisfaction and

network reconfiguration for fiber-wireless access network,” in 2016 ICC.
[17] Fischer et al., “Virtual network embedding: A survey,” IEEE CST 2013.
[18] Zhang et al., “A unified enhanced particle swarm optimization-based

virtual network embedding algorithm,” Inter. Journal of Com. Sys. 2013.
[19] ——, “VNE based on modified genetic algorithm,” P2P Net. 2019.
[20] Elkael et al., “Improved monte carlo tree search for VNE,” in LCN 2021.
[21] A. Aba et al., “A two-stage algorithm for the VNE,” in LCN 2021.
[22] Hejja and Hesselbach, “Online power aware coordinated virtual network

embedding with 5G delay constraint,” JNCA 2018.
[23] Fang et al., “Optimising data placement and traffic routing for energy

saving in backbone networks,” Trans. on Emerging Telco. Tech. 2014.
[24] Chen et al., “Optimal network slicing for service-oriented networks with

flexible routing and guaranteed e2e latency,” TNSM 2021.
[25] Ahuja et al., “Network flows,” 1988.
[26] Fortz and Thorup, “Internet traffic engineering by optimizing OSPF

weights,” in INFOCOM 2000.
[27] Dang et al., “Monte Carlo Search Algorithms for Network Traffic Engi-

neering,” in ECML PKDD 2021.
[28] Kennington and Shalaby, “An effective subgradient procedure for mini-

mal cost multicommodity flow problems,” Management Science 1977.
[29] Raghavan and Tompson, “Randomized rounding: a technique for prov-

ably good algorithms and algorithmic proofs,” Combinatorica 1987.
[30] Salaht et al., “An overview of service placement problem in fog and edge

computing,” ACM CSUR 2020.
[31] A. Adelin et al., “On the impact of monitoring router energy consumption

for greening the internet,” in 2010 ICGC.
[32] Sivaraman et al., “Profiling per-packet and per-byte energy consumption

in the netfpga gigabit router,” in 2011 INFOCOM WKSHPS.
[33] Lu et al., “Serverswitch: a programmable and high performance platform

for data center networks.” in NSDI 2011.
[34] Fan et al., “Power provisioning for a warehouse-sized computer,”

SIGARCH 2007.
[35] Asmussen, Applied probability and queues. Springer, 2003, vol. 2.
[36] Dantzig et al., ”Linear programming: Theory and extensions”, 2003.
[37] Berge, The theory of graphs. Courier Corporation, 2001.
[38] Elkael et al., “An exact algorithm to solve multiobjective, multi-

constrained shortest path problems with forbidden paths.”
[39] Knight et al., “The internet topology zoo,” JSAC 2011.

