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Coupling Variable Selection and Anomaly Detection: Record-

Based Approach 

 

Michel Kamel1*, Anis Hoayek1, Mireille Batton-Hubert1 

 

Abstract 

The proliferation of interconnected devices is rapidly expanding globally, and, as a result, 

telecommunication operators are responsible for managing intricate and expansive networks. 

Consequently, there is a need for advanced and efficient systems to aid network engineers in 

maintaining these networks. Devices, which can also be referred to as network elements, 

continuously transmit essential performance data known as key performance indicators. By 

utilizing data derived from these metrics and implementing intelligent anomaly detection 

models, the devices can assist in determining the optimal production maintenance schedule for 

the network. As anomaly detection models deal with extreme events, this study proposes a 

method of reducing dimensions by focusing on the behavior of the tails of underlying variables, 

rather than the entire distribution. In addition to that, an anomaly scoring system, also based on 

records theory, is proposed, which has several advantages over current state-of-the-art models. 

The effectiveness of this approach is demonstrated by implementing it on a real-world dataset.   

I. Introduction 

 

Identifying anomalies in a time series refers to identifying observations that differ from the 

typical pattern of the other observations. Such anomalies are uncommon and significant as they 

can have an impact on the underlying system that generates the time series. It is crucial to 

quickly and accurately detect these abnormal behaviors to ensure the proper functioning of the 

upstream system (Chandola et al., 2009). Anomaly detection is a research topic that is 

encountered in various fields such as industry (Zhou et al., 2020), cybersecurity (Rashid et al., 

2022), healthcare (Sabic et al., 2021), environment (Vangipuram et al., 2020), and 

telecommunication (Kamel et al., 2023; Ali et al., 2020). 

Various research areas, including machine learning (ML) (Alvi et al., 2022), statistical learning 

(Sha et al., 2015), game theory (Huang et al., 2019), and graph theory (Akoglu et al., 2015) 

have contributed to the development of current state-of-the-art anomaly detection algorithms 

and models. 

The literature has addressed several questions and challenges related to anomaly detection. One 

such challenge is the ability to generate abnormality scores in an unsupervised context, where 

auto-encoder (AE) neural network models are the most widely used approach. Another 

challenge is detecting abnormal behavior without making any assumptions about the 

probabilistic distribution of the underlying random variables, which is addressed by using 

random-forest–based models. However, there are still many challenges that cannot be tackled 

by traditional anomaly detection models and require innovative approaches. 
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This paper aims to address several research gaps in anomaly detection. First, it proposes a 

dimension reduction method that is adapted to abnormal and extreme events for dealing with 

large datasets. This method uses records theory (see Sections II and III for details) which is a 

branch of extreme value theory to develop a variable selection methodology that focuses on the 

behavior of the tails of the underlying variables rather than the whole distribution, as in classical 

dimension reduction methods like principal component analysis and AE. Second, the paper uses 

records theory to propose an abnormality scoring system that can be used in one or 

multidimensional datasets. This system generates a density distribution of the scores and uses 

a grid search process to minimize classification errors and set a threshold value for the 

underlying variables above which an observation is considered abnormal. This threshold can 

be communicated to subject matter experts (SMEs), and, to the best of the authors’ knowledge, 

this is the first algorithm to propose an anomaly threshold for each considered variable. Third, 

the proposed anomaly detection algorithm is adapted to online learning modes and is optimized 

in terms of computational complexity, despite being coupled with a variable selection method. 

Finally, the proposed approach provides initial information about the root cause of a detected 

anomaly. 

In summary, the main objective of this paper is to develop a comprehensive methodology that 

enables users to detect anomalies in time series data while addressing the challenges associated 

with this task. 

The proposed method is primarily designed to detect abnormal behavior in different elements 

of a telecommunication network. These network elements generate numerous key performance 

indicators (KPIs), and the sheer number of features that describe the performance of the 

different services provided is enormous, making manual analysis of these observations 

challenging, if not impossible. In addition, the ability to identify irregularities in real time with 

minimal delays requires the utilization of sophisticated correlation analysis and extensive data 

mining techniques to reveal concealed patterns and associations within the generated data. 

The rest of this paper is structured as follows. Section II provides an introduction to records 

theory. Section III presents the mathematical formalization of the most popular models in 

records theory and how they are adapted to the current context. Section IV describes the use of 

records theory for variable selection. Section V shows how records theory is used to generate 

abnormality scores in one and multidimensional datasets. Section VI demonstrates some real-

world applications. Finally, Section VII concludes the paper. 

 

II. Records, an Introduction 

 

The study of records in a time series as a field of extreme value theory can be traced back to 

Chandler’s work in 1952. Since then, there have been numerous developments in this field, 

including the works of Arnold, Nevzorov, and their collaborators during the 1980s and 1990s. 

Initially, researchers focused on the classic case in records theory, which assumes that the 

random variables (RV) are independent and identically distributed (IID). However, this case 

did not fully capture the complexity of multiple datasets, so researchers began to explore cases 

where the observations are independent but not identically distributed. Eventually, they even 

considered the most general case where neither the independence assumption nor the 

assumption of identical distribution holds. 

Data are found in the form of records across various fields that use statistics, such as sports 

(Yang, 1975), climate change (Wergen and Krug, 2010; Wergen, 2013), risk assessment of 

diseases (Khraibani et al., 2015), financial markets (Hoayek et al., 2018), and satellite imagery 

(Jabbour et al., 2021). 



It is worth noting that there is a greater interest in records when they are the only available 

values in a particular time series. Since records are a part of popular culture, they are usually 

kept in easily accessible places, such as the Guinness World Records. 

In simpler terms, a record is a result in a given series of events that exceeds anything seen 

before. Therefore, a new record is always something remarkable and attracts attention, whether 

it is associated with positive or negative news. 

Our research applies records theory to solve two challenges related to anomaly detection in an 

industrial context. The first challenge is to reduce the dimensionality when dealing with a large 

number of time series to detect abnormal behavior. The second challenge is to develop an 

innovative ML model that efficiently and accurately detects anomalies using the principles of 

records theory, which aims to model extreme values. 

 

III. Mathematical Formalization 

 

We start by considering the probability space (Ω,ℱ, ℙ). Here, 𝑋 denotes a real RV with a 

cumulative distribution function (CDF) 𝐹(∙) and a density function 𝑓(∙). We assume that the 

space (Ω, ℱ, ℙ) has good properties to define an infinite sequence {𝑋𝑡, 𝑡 ≥ 1} of IID RVs, which 

are independent copies of 𝑋. When the index 𝑡 represents time, then we are dealing with a time 

series having an IID underlying distribution. An observation 𝑋𝑡 is considered an upper record 

at time 𝑡  if it is higher than all previous observations, that is, 𝑋𝑡 > max(𝑋1, … , 𝑋𝑡−1). In this 

paper, we focus on upper records, but lower records can be defined similarly, by multiplying 

the time series by “–1”. As time progresses, another important sequence of RVs can be defined: 

the sequence of record values {𝑅𝑛, 𝑛 ≥ 1} and the sequence of occurrence time of records 

{𝐿𝑛, 𝑛 ≥ 1}. In other words, 𝐿𝑛 is the occurrence time of the 𝑛𝑡ℎ record, which is 𝑅𝑛 = 𝑋𝐿𝑛. 

In most applications of records theory, the available data consists of a sequence of pairs 
{(𝑅𝑛, 𝐿𝑛), 𝑛 = 1,… ,𝑁𝑇}, where 𝑇 represents the current time (i.e., length of the time series) 

and 𝑁𝑇 is the total number of records in {𝑋𝑡, 𝑡 = 1,… , 𝑇}.  
In addition to the previously defined sequences, one can also define the sequence of record 

indicators {𝛿𝑡, 𝑡 = 1,… , 𝑇}, where: 

𝛿𝑡 = {
1 if 𝑋𝑡 is a record
0           otherwise

.          (1) 

Note that 𝛿1 = 1 because the first observation is always a record, which is called a trivial record. 

We will demonstrate later, in this section, that based solely on the sequence of record indicators, 

we can extract significant information about the overall behavior of the records in a time series. 

Note that it is straightforward to remark that: 

𝑁𝑇 =∑𝛿𝑡

𝑇

𝑡=1

. 

The stochastic properties of sequences of record values have been widely studied in the case 

where 𝑋𝑡 are IID RVs (Arnold et al., 2011; Nevzorov, 2001). Many of these properties are 

distribution-free, meaning that they do not depend on the choice of the underlying distribution 

of the observations. The most important results in the IID context are: 

First, ∀𝑡 ≥ 1, 𝛿𝑡 are mutually independent and follow a Bernoulli distribution with parameter 

𝑃𝑡 =
1

𝑡
, which is called the record rate at time 𝑡. In other words, ℙ[𝛿𝑡 = 1] =

1

𝑡
, which is the 

probability of observing a record at time 𝑡, and 𝔼[𝛿𝑡] =
1

𝑡
. It is worth noting that: 

lim
𝑡→+∞

𝑃𝑡 = 0.          (2) 

Therefore, one can conclude that records are more likely to appear among the first observations. 

In addition, the expected number of records until time 𝑇 is given by: 



𝔼[𝑁𝑇] = ∑𝔼[𝛿𝑡]

𝑇

𝑡=1

, 

             = ∑
1

𝑡

𝑇

𝑡=1

.           (3) 

Moreover, Arnold et al. (2011) found that records tend to become more spread out over time a 

𝑡 or 𝑛 increases. However, this was not always the case in practice. For example, advancements 

in technology are causing sports records to occur more frequently than what is expected under 

the IID assumption. As a result, more complex models have been developed to better predict 

records beyond the classical IID case. These models can be grouped into two families based on 

their level of complexity, which we will discuss in the next two subsections. 

 

A. Independent but Not Identically Distributed Observations 

 

First, consider the case where underlying observations are independent but not identically 

distributed. In this context, two common models are used: 

  

 Linear drift model (LDM), introduced by Ballerini and Resnick in 1985, formalized by: 

𝑋𝑡 = 𝑌𝑡 + 𝜃𝑡,          (4) 
 where 𝑌𝑡, 𝑡 ≥ 1 is a sequence of IID RVs and 𝜃 > 0 is a parameter that needs to be 

 estimated. 

 

 Yang record model, initially introduced by Yang (1975) and later developed by 

Nevzorov (1988). This model is considered more suitable for the independent but not 

identically distributed context and in most cases, it is more generalized than the LDM. 

The Yang model can be represented by the following formula: 

𝑋𝑡~𝐹(∙)
𝜌𝑡 ,           (5) 

where 𝜌𝑡(𝑡 ≥ 1) are real constants ≥ 1 and 𝐹(∙)  is a CDF of a particular underlying 

distribution. In this paper, we will focus on a specific parametrization of the Yang 

model, in which 𝜌𝑡 = 𝛾𝑡, with 𝛾   being a parameter that needs to be estimated and is ≥
1. This formalization is interesting because it has the structure of a proportional hazard 

model, which is commonly used in survival analysis to model various datasets (Hoayek 

et al., 2017). In addition, each 𝑋𝑡 represents the maximum value obtained from 𝜌𝑡 
observations that are generated simultaneously and independently at time 𝑡 from the 

same underlying RV 𝑌 of CDF 𝐹(∙) . Then, 

𝑋𝑡 = max(𝑦1, 𝑦2, … , 𝑦𝜌𝑡).          (6) 

Based on the fact that the underlying RV 𝑌 is independent, it can be demonstrated that 

the record rate at time 𝑡 is expressed as follows: 

𝑃𝑡 = ℙ[𝛿𝑡 = 1] =
𝜌𝑡

∑ 𝜌𝑘
𝑡
𝑘=1

, 

𝑃𝑡 =
𝛾𝑡

∑ 𝛾𝑘𝑡
𝑘=1

=
𝛾𝑡(𝛾 − 1)

𝛾(𝛾𝑡 − 1)
.          (7) 

In this case 𝑃𝑡 will be denoted as 𝑃𝑡(𝛾). 
Thus, 

lim
𝑡→+∞

𝑃𝑡(𝛾) = lim
𝑡→+∞

(𝛾 − 1)

𝛾 (1 − 1 𝛾𝑡⁄ )
=
𝛾 − 1

𝛾
.          (8) 



Therefore, in the Yang model, the probability of having new records in the long term 

does not decrease. As a result, a time series exhibiting this type of behavior can be 

considered more volatile and unstable compared to the classical IID case. 

Despite its usefulness in various applications, the Yang model cannot be utilized in 

practice without first estimating the parameter 𝛾. To do this, Hoayek et al. (2017) 

proposed an estimation method based on maximizing the following Log-Likelihood 

function that was constructed using solely the observed sequence of indicators: 

Log 𝐿(𝛾) =Logℙ[𝛿1, … , 𝛿𝑇; 𝛾].          (10) 
            Then, by solving, 

d Log 𝐿(𝛾)

d𝛾
= 0,           (11) 

we get our estimator which is denoted by 𝛾. In addition, also based on the work of 

Hoayek et al. (2017), one can show the asymptotic behavior of 𝛾 which is also 

distribution-free: 
(𝛾 − 𝛾)

√𝐼𝑇
−1(𝛾)

⟶ 𝑁(0,1),          (12) 

Here, 𝐼𝑇
−1(𝛾) represents the Fisher information associated with the previous likelihood. 

Therefore, by understanding the asymptotic behavior of our estimator, we can conduct 

further inferential analysis such as constructing confidence intervals for a given 

asymptotic risk of error level 𝛼. 

Additionally, in the same context, Nevzorov (1988) demonstrated that record indicators 

are mutually independent, regardless of the choice of the underlying distribution 𝑌. 

Thus, it can be concluded that the stochastic process {𝛿𝑡}𝑡≥1 is a Bernoulli process with 

parameter 𝑃𝑡. Using this property, we can obtain the expression of the expected value 

and variance of the number of records: 

𝔼[𝑁𝑇] = ∑𝔼[𝛿𝑡]

𝑇

𝑡=1

=∑𝑃𝑡

𝑇

𝑡=1

,          (13) 

 𝕍[𝑁𝑇] = ∑𝕍[𝛿𝑡]

𝑇

𝑡=1

=∑𝑃𝑡

𝑇

𝑡=1

(1 − 𝑃𝑡) = 𝔼[𝑁𝑇] −∑𝑃𝑡
2

𝑇

𝑡=1

.          (14) 

 

B. Dependent and Not Identically Distributed Observations 

 

Another level of complexity arises when we consider the scenario where underlying 

observations are dependent and not identically distributed. In this context, the most prevalent 

record model is the discrete-time random walk model (DTRW) introduced by Majumdar and 

Ziff (2008). The underlying observations in this model can be formalized as follows: 

𝑋𝑡 = 𝑋𝑡−1 + 𝜂𝑡 ,          (15) 
where the increments 𝜂𝑡 are drawn from a continuous distribution in an IID way. 

In the context of DTRW, the record rate at time 𝑡 can be expressed as: 

𝑃𝑡 = ℙ[𝛿𝑡 = 1] = (
2𝑡

𝑡
) 2−2𝑡.          (16) 

Majumdar and Ziff (2008) demonstrated that 𝑃𝑡 asymptotically approaches zero in the DTRW 

model, though at a slower rate than it does for the IID case. Therefore, it can be concluded that 

in terms of long-term record probability, the DTRW model lies somewhere between the 

classical IID model and the Yang model. Additionally, it is worth noting that the majority of 

the results on DTRW are distribution-free. 

 



Figure I provides a comprehensive overview of the behavior of record rates for different record 

models. Note that in Figure I, without any loss of generality, the parameter 𝛾 of the Yang model 

is assumed to be equal to 1.2. 

 
Figure I: Record rates for different record models for a time series of length 100.  

 

C. Record Model Selection 

 

Selecting the appropriate model to explain the record behavior of a time series involves 

performing a sequence of statistical tests. 

  

Before considering non-IID models, we begin by testing whether the underlying observations 

of the time series in question are generated from an IID sequence. We do this by considering 

the null hypothesis: 

𝐻0: Records are generated from an IID underlying sequence of observations. 
To perform this first test, we use the fact that under 𝐻0, Arnold et al. (2011) showed that: 

𝒩𝑇 =
𝑁𝑇 − log 𝑇

√log 𝑇
⟶ Standard Gaussian Distribution 𝑁(0,1).          (17) 

Therefore, 𝒩𝑇 can be viewed as the statistic used in the test. In practice, if  𝒩𝑇 > 𝑞1−𝛼, where 

𝑞1−𝛼 is the (1 − 𝛼)𝑡ℎ quantile of 𝑁(0,1), then the IID model is rejected, and we should consider 

one of the models outside the classical case. 

 

The next step is to establish a statistical test for the Yang model. Assuming the Yang model 

hypothesis, we create an RV referred to as the inter-record time (i.e., the time between two 

consecutive records), which is defined as: 

Δ𝐿𝑛 = 𝐿𝑛+1 − 𝐿𝑛, 𝑛 ≥ 1.          (18) 

Hoayek et al. (2017) showed that in a Yang model Δ𝐿𝑛 follow a geometric distribution 

asymptotically. Therefore, we can use this result to construct a goodness of fit test for the Yang 

model. The null hypothesis for this test is that the inter-record time observations fit a geometric 



distribution. To conduct this test, we can adapt Pearson’s chi-square test to the context of record 

models (for details see Hoayek et al., 2017). If Pearson’s test rejects the geometric distribution, 

it is not appropriate to use the Yang model, and we should consider moving to a higher level of 

complexity where observations are dependent and not identically distributed. A common 

method to test the dependency between underlying observations is to use the Ljung–Box test 

(1978). 

 

IV. Variable Selection Based on Record Behavior 

 

We will apply the methodology outlined in the previous section to create a variable selection 

tool for detecting anomalies. Most anomaly detection algorithms are designed to identify 

abnormal behavior, and users often aim to avoid the problem of dimensionality that can lead to 

increased computational costs, especially during the training phase. 

To address this issue, various classical solutions have been proposed, such as linear and non-

linear dimension reduction methods like principal component analysis and AEs, as well as 

variable selection methods like genetic algorithms. However, all of these methods consider the 

entire multidimensional distribution behavior of the underlying variables to determine how 

dimension reduction should be performed. This approach may not be suitable for certain 

application contexts, particularly when the focus is on the tails distribution behavior of the 

variables, as in the fields of anomaly detection and extreme event detection. Therefore, the 

proposed method is innovative and specifically adapted for the anomaly detection case. The 

method primarily focuses on the behavior of extreme events, especially upper records, to 

determine which variables should be selected. By prioritizing the features that are critical during 

anomaly detection, the dimension of the decision space is reduced, and the application of any 

algorithm becomes faster and less computationally complex. This is particularly important for 

online detection purposes. 

 

In practice, we will use a collection of time series, known as KPIs, to evaluate the quality of 

services provided by a virtual telecommunication network. These KPIs will be used to identify 

abnormal behavior for each element of the network.  

However, before applying any of the anomaly detection algorithms, we will assess each KPI 

separately and assign a priority level to each of them based on the following rules: 

a. KPIs with high priority: when record behavior related to the underlying distribution of 

the KPI follows the Yang model. In this case, the probability of observing a new record 

on a long-term basis is constant, and extreme abnormal behavior is always likely to 

occur at any time. Therefore, such KPIs are considered risky in the context of anomaly 

detection. 

b. KPIs with medium priority: when the DTRW model is accepted as a description of 

record behavior. In this case, record rates converge to zero in the long term, but at a 

slower rate than in the classical record IID model (see Figure I). Such records are 

considered to have medium risk and may have a significant impact on abnormal 

behavior. 

c. KPIs with low priority: when records fit the classical IDD case. In such cases, record 

rates converge rapidly to zero, and abnormal behavior is observed very rarely on a long-

term basis. Such KPIs are considered to have low risk and can be removed from later 

global abnormal behavior analysis. 

 

To track the changes in the behavior of KPIs over time, we will apply the priority classification 

rules on sliding windows of fixed length ′𝑘′ with a step size ′𝑠′. This will allow us to monitor 

the KPIs’ behavior over time and make any necessary adjustments to their priority levels. After 



assessing each window, a final decision on the priority level of the KPI will be made by 

aggregating the results of all the windows, using a rule determined by SMEs. 

In practical terms, the entire time series is examined for each KPI and then broken down into 

sliding windows. Using the information gathered from each window, we carry out the following 

steps: 

 Step 0: If the KPI shows concerning high values, do not change the time series 

observations 𝑋𝑡
𝑤 , 𝑡 = 1, … , 𝑁 = 𝑘, where 𝑋𝑡

𝑤 denotes the observation of the considered 

KPI at time 𝑡 in window 𝑤. Otherwise, transform the time series by considering −𝑋𝑡
𝑤 

instead of 𝑋𝑡
𝑤. In both cases, focus on the upper records for analysis. 

 Step 1: From the time series obtained at the end of Step 0, extract record observations 
(𝑅𝑛, 𝐿𝑛) and calculate the values of record indicators RV 𝛿𝑡 and the number of records 

𝑁𝑇. 

 Step 2: Test for an IID behavior based on the statistic of Eq. (17). If the behavior is 

classical, assign a low priority to the window. Otherwise, proceed to Step 3. 

 Step 3: Calculate the values of the inter-record times RV Δ𝐿𝑛and use them to perform 

the goodness of fit test for the Yang model. If the Yang model is reasonable, assign a 

high priority to the considered window. Otherwise, consider that we are in the context 

of the DTRW model and assign a medium priority to the considered window.  

 Step 5: Repeat Steps 1 to 3 for all sliding windows and assign priority decisions for each 

window. 

 Step 6: Aggregate the results for all windows using a rule established by SMEs and 

assign the resultant priority to the corresponding KPI. For example, consider the highest 

priority assigned across all windows as the KPI priority.   

 

V. Anomaly Scoring System Based on Records Distribution 

 

A. One Dimensional Abnormality Score 

 

It is crucial to create a scoring system based on records to detect anomalies in a random variable 

that exhibits extreme behavior and abnormal events.  

Suppose {𝑋𝑡, 𝑡 ≥ 1} is a time series that represents the behavior of a specific KPI over time 

with real values. ∀𝑡 ≥ 1, we denote: 

 

Λ𝑡 = {𝑅𝑛, 𝑛 ≥ 1 such that 𝑅𝑛 is the 𝑛
𝑡ℎ record of the series {𝑋𝑖, 1 ≤ 𝑖 < 𝑡}}, 

Λ𝑡
∗ = {𝑅𝑛 ∈ Λ𝑡 such that 𝑅𝑛 ≥ 𝑋𝑡}, 
𝒟𝑡 = {𝑅𝑛 − 𝑋𝑡, such that 𝑅𝑛 ∈ Λ𝑡

∗}, 
𝒟𝑡̅̅ ̅ = Arithmetic average of the elements of 𝒟𝑡.  
 

Now for each observation 𝑋𝑡, 𝑡 ≥ 1 the corresponding abnormality score is given by: 

 

𝒮𝑡 =

{
 

 
1, if 𝑋𝑡 is a record

1

(1 +
CardΛ𝑡

∗

CardΛ𝑡
)
× (

1

1 + 𝒟𝑡̅̅ ̅
) , Otherwise . 

  

Where Card(∙) gives the number of elements in a given set. 

Assuming that the time series {𝑋𝑡, 𝑡 ≥ 1} has been standardized to have values between 0 and 

1, and transformed so that high values indicate abnormal behavior, the 𝒮𝑡 will fall between 
1

4
 



and 1. This score is calculated based on upper records only. Whenever 𝑋𝑡 reaches its maximum 

(i.e, 𝑋𝑡 = 1), it is considered a new record. 

On the other hand, when 𝒮𝑡 is closer to 1, it indicates a higher risk of abnormal behavior. Each 

component of 𝒮𝑡 focuses on an aspect of abnormality in the underlying time series based on 

records:  

 
1

(1+
CardΛ𝑡

∗

CardΛ𝑡
)
: This component is closer to 1 when almost all the records taking place before 𝑡 

are lower than 𝑋𝑡. Therefore, in this case, even if 𝑋𝑡 is not a record, it has an impact that is 

comparable to the majority of the previously detected records and should be highlighted as 

a potential anomaly.  

 (
1

1+𝒟𝑡̅̅̅̅
): This component has a complementary role to the previous one. Here, we are 

computing the average distance between the observation 𝑋𝑡 and all previously detected 

records with a value higher than 𝑋𝑡 (elements of Λ𝑡
∗). Thus, for this component, we obtain 

a value close to 1 when the value of 𝑋𝑡 is close to the records of the set Λ𝑡
∗  which is also a 

scenario that should be highlighted in the process of detecting potential abnormal behavior.    

 

While not an exhaustive list, the proposed record-based scoring system offers several 

advantages over classical anomaly detection models: 

1. Unlike popular anomaly detection ML models, there is no risk of overfitting because there 

is no classical training/testing phase in the proposed algorithm. Additionally, the algorithm 

is designed to function as an online anomaly score system, generating a score for each new 

arrival. 

2. The algorithm is distribution-free, meaning there is no need to make assumptions about the 

probability distribution of the underlying random variables in each time series. 

3. The algorithm is parameter-free, requiring no statistical estimation or numerical 

optimization. 

4. The approach has low computational complexity, allowing for fast generation of scores, 

giving SMEs the necessary time to intervene and address any detected anomalies. 

5. Unlike most ML anomaly detection models, the threshold scores and values used to classify 

observations as anomalies are automatically fixed, minimizing the risk of confusion and 

ensuring optimal algorithm performance. This approach also allows for proposing optimal 

threshold values for each KPI, above which the KPI becomes alarming (further clarification 

is provided in the application section). This is the first anomaly score system to generate 

scores and assist with setting optimal scoring thresholds with minimal intervention from 

SMEs. 

Note that, to address the risk of the first records in a time series being declared as anomalies, 

even if their values are not high enough, a practical solution is to run the algorithm on a warm-

up period before initiating the extraction and detection of anomalies.  

 

B. Multidimensional Abnormality Score 

 

To obtain a more comprehensive understanding of abnormal behaviors, it is preferable to 

develop a scoring system that takes into account all available features at a given point in time 

and generates an abnormality score reflecting the interaction between all variables (i.e., KPIs). 

Suppose that we have 𝑙 variables characterizing the status of a system over time, denoted by 

{𝑋𝑡
𝑖, 𝑡 ≥ 1 and i = 1,… , l}. As a first step, we define upper records in a multidimensional 

context using the following two definitions: 

1. ∀𝑡 ≥ 1, an observation 𝑋𝑡
 = (𝑋𝑡

1, … , 𝑋𝑡
𝑙) is considered to be an upper record if it is a 

record on at least one of the underlying dimensions. In other words, if there exists an 



∃𝑖 ∈ {1,… , 𝑙} such that 𝑋𝑡
𝑖 > max

𝑗<𝑡
𝑋𝑗
𝑖. This definition is referred to as the “At Least One-

Based Multidimensional Record” (ALO) in the rest of this paper. It is worth noting that 

this definition of records in a multidimensional context is introduced in Arnold et al. 

(2011; page 266). 

2. ∀𝑡 ≥ 1, the first step is to compute the Euclidian distance from the origin to the 

observation 𝑋𝑡
 = (𝑋𝑡

1, … , 𝑋𝑡
𝑙): 

𝑑𝑡 = √∑(𝑋𝑡
𝑖)
2

𝑙

𝑖=1

 

Then, based on the time series {𝑑𝑡, 𝑡 ≥ 1} instead of {𝑋𝑡, 𝑡 ≥ 1}, the abnormality score 

at time 𝑡 is computed in the same manner as in Subsection V-A. This approach will be 

called the “Distance-Based Multidimensional Record”. However, this approach has a 

weakness in that it transforms the multidimensional data into one distance series, losing 

information about the impact of each underlying variable on the final abnormality score. 

Consequently, this approach cannot interpret the scores on a variable (KPI) level or 

determine the root cause of the anomaly. Since SMEs prefer models that can be used for 

both anomaly scoring and root cause analysis, the ALO approach will be the sole focus 

of the paper going forward. 

 

Once the record series of the underlying multidimensional time series dataset has been collected 

using the ALO approach, the next step is to modify the abnormality score formula proposed in 

Subsection V-A to suit the multinational context. Let {𝑋𝑡, 𝑡 ≥ 1} be the multidimensional time 

series that displays the behavior of 𝑙 KPIs over time. ∀𝑡 ≥ 1, we denote: 

 

Λ𝑡 = {𝑅𝑛 = (𝑅𝑛
1 , … , 𝑅𝑛

𝑙 ), 𝑛 ≥ 1 such that 𝑅𝑛 is the 𝑛
𝑡ℎ record of the series {𝑋𝑖, 1 ≤ 𝑖 < 𝑡}}, 

Λ𝑡
∗ = {𝑅𝑛 ∈ Λ𝑡 such that ∃𝑗 ∈ {1, … , 𝑙} with 𝑅𝑛

𝑗
≥ 𝑋𝑡

𝑗
}, 

Λ𝑡,𝑗
∗ = {𝑅𝑛 ∈ Λ𝑡

∗  such that 𝑅𝑛
𝑗
≥ 𝑋𝑡

𝑗
} with 𝑗 ∈ {1,… , 𝑙}, 

𝒟𝑡,𝑗 = {𝑅𝑛
𝑗
− 𝑋𝑡

𝑗
, such that 𝑅𝑛 ∈ Λ𝑡,𝑗

∗ } with 𝑗 ∈ {1,… , 𝑙}, 

�̅�𝑡,𝑗 = {
0, if 𝒟𝑡,𝑗 = ∅

Arithmetic average of the elements of 𝒟𝑡,𝑗  , Otherwise
, with 𝑗 ∈ {1,… , 𝑙}. 

 

Then, for each observation 𝑋𝑡, 𝑡 ≥ 1 the corresponding abnormality score is given by: 

 

𝒮𝑡 =

{
 

 
1, if 𝑋𝑡 is a record

1

(1 +
Card Λ𝑡

∗

Card Λ𝑡
)
(

1

1 + ∑ �̅�𝑡,𝑗
𝑙
𝑗=1

) , Otherwise . 

 

VI. Real-World Data Application 

 

The data analyzed in this research consists of 18 primary metrics (KPIs) that assess the quality 

of service provided by a virtual telecommunications network cell. These KPIs are consolidated 

hourly, resulting in 955 observations in total, where each observation represents 1 hour of data.  

The KPIs include metrics such as Downlink and Uplink volume of data, Downlink and Uplink 

throughput, network availability, call setup success rate, and dropped call rate. These metrics 



play a vital role in measuring the efficiency and effectiveness of data transmission over the 

network, as well as the overall performance of the cell. 

Analyzing the dataset provides valuable insights into the virtual telecommunication network 

cell's performance and helps identify areas for improvement. For example, a high dropped call 

rate could indicate network congestion or other issues that need to be addressed by 

implementing corrective measures to enhance the quality of service offered to customers. In 

summary, the dataset used in this study presents a comprehensive view of the virtual 

telecommunication network cell's performance, empowering network operators to make 

informed decisions about resource allocation and optimize network performance to enhance the 

user experience. 

To account for the specificities of telecom time series data, the KPI values have been 

standardized to fit within the interval [0,1] and transformed to give higher values a more 

alarming indication of abnormal behavior. Therefore, we are working within a space of 

dimensions [0,1]955×18, with a focus on the upper records for each of the underlying variables. 

It should be noted that when a KPI reaches the upper bound (e.g., KPI = 1), this observation is 

regarded as a new record. 

Before starting anomaly scoring, a feature selection process is undertaken using the 

methodology described in Section IV, where only the high and medium risk KPIs are 

considered, following the Yang and DTRW record models, respectively. Table I shows the 

selected KPIs and their corresponding risk levels in terms of anomaly detection. 

 

KPI Risk Level 

RRC_SR_RATIO High 

E_UTRAN_RRC_Conn_Stp_Failure_due_RRC_timer_expiry_RATIO High 

RACH_Stp_Completion_SR_RATIO Medium 

Total_E_UTRAN_RRC_Conn_Stp_SR_RATIO High 

E_RAB_QCI1_DR_RATIO Medium 

DCR_LTE_RATIO Medium 

LTE_INTER_ENODEB_HOSR_RATIO Medium 

E_UTRAN_tot_HO_SR_inter_eNB_X2_RATIO High 

DL_THROUGHPUT_RATIO High 

E_RAB_DR_RATIO Medium 

Table I: Risk level of the selected KPIs  

 

For each of the chosen KPIs, the one-dimensional abnormality score, developed in Subsection 

V-A, is calculated and the kernel density function of the scores is plotted in Figure II. It is 

evident that the probability density functions are multimodal, and that the abnormality scores 

associated with each of the KPIs can effectively discriminate between observations classified 

as normal and abnormal, using a threshold that can be determined by a simple descriptive 

analysis of the various distributions. Therefore, by establishing these score thresholds, an 

optimal corresponding KPI threshold can be recommended to SMEs to minimize classification 

errors. For example, consider LTE_INTER_ENODEB_HOSR_RATIO. Based on Figure II, the 

recommended abnormality score threshold is 0.7 (i.e., an observation with a score above 0.7 is 

deemed anomalous). A grid search technique is then applied to determine the optimal KPI value 

threshold, which is found to be 0.1131 (i.e., an observation with a KPI value above 0.1131 is 

considered anomalous), with a classification error rate of 5.23%. This is the first time that an 

anomaly detection algorithm has been able to propose a threshold for SMEs to consider, rather 

than the opposite. Results for all KPIs are presented in Table II. 

 

 



 

 

 

 



 

 
Figure II: Kernel density functions of the one-dimensional abnormality scores of each KPI. 

 

KPI 
Score 

Threshold 

KPI 

Value 

Threshold 

Error 

% 

RRC_SR_RATIO 0.69 0.0103 1.47% 

E_UTRAN_RRC_Conn_Stp_Failure_due_RRC_timer_expiry_RATIO 0.85 0.0163 1.26% 

RACH_Stp_Completion_SR_RATIO 0.65 0.2693 2.83% 

Total_E_UTRAN_RRC_Conn_Stp_SR_RATIO 0.69 0.0103 1.47% 

E_RAB_QCI1_DR_RATIO 0.71 0.1492 2.30% 

DCR_LTE_RATIO 0.51 0.0854 0% 

LTE_INTER_ENODEB_HOSR_RATIO 0.7 0.1131 5.23% 

E_UTRAN_tot_HO_SR_inter_eNB_X2_RATIO 0 0.4835 5.13% 

DL_THROUGHPUT_RATIO 0.8 0.4414 0.31% 

E_RAB_DR_RATIO 0.6 0.241 0.21% 

Table II: One-dimensional anomaly score analysis 

 

To assess the relationship between all the KPIs and generate a single anomaly score that 

represents the behavior of all the underlying variables, we will use the ALO method discussed 

in Subsection V-B. The graph in Figure III shows the kernel density function of the abnormality 

scores that were calculated. This distribution is bimodal, making it easy to distinguish between 

anomalies and non-anomalies without the need to estimate a threshold, unlike traditional 

anomaly detection models. Using this method, we identified 4.4% of observations as abnormal. 



 
Figure III: Kernel density functions of the ALO approach abnormality scores of each KPI.  

 

VII. Conclusion 

 

This paper describes the use of records theory to create two methods. The first method reduces 

the number of variables in a time series to focus on those that have a significant impact on 

abnormal behavior. The second method proposes a scoring system for anomaly detection that 

can be applied in one or multiple dimensions. This system can objectively detect anomalies and 

suggest threshold values for KPIs without the need for expert input.  

The suggested anomaly detection scoring system is a simple algorithm that does not rely on any 

specific distribution or parameters. It is designed to be used as an online system for detecting 

anomalies with minimal computational complexity, and it eliminates the risk of overfitting. 

Additionally, the system can automatically estimate the threshold value needed to classify 

observations as anomalies, ensuring optimal performance of the algorithm. Furthermore, the 

algorithm was tested on real-world telecommunications data, and it demonstrated excellent 

performance in detecting anomalies with very low error rates. 

One possible application of this work is to conduct a more in-depth analysis of the anomaly 

scores in order to extract information about the underlying causes of the anomalies. Another 

potential direction is to explore the probabilistic properties of the different anomaly scores 

generated by the system, using records theory as a basis for analysis. This approach could be 

informed by the research conducted by Hoayek and Ducharme in 2017.     
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