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Abstract

We are interested in the problem of classifying commuting and foraging behavior of bats
at a site. To this extent, we use echolocation calls data detected by acoustic sensors during a
night at this site. As the temporal distribution of calls is a relevant indicator of behavior, it
is natural to model the calls sequences by point processes. Given the self-exciting dynamics
observed in foraging behavior, we propose to model the calls sequences of bats by Hawkes
processes. Specifically, we consider that the start time of each call emitted on a site is a jump
of a Hawkes process. For the classification task, we use a suitable procedure that relies on
the empirical risk minimization principle. Then, we assess the performance of the procedure
on synthetic data and also provide a comparison with the random forests algorithm. The
overall methodology is evaluated with a goodness-of-fit test. Finally, we present the obtained
results on a real data set, collected as part of Vigie-Chiro project. The classification results
are convincing and show the relevance of our method.

Keywords Supervised learning, Point process model, Bat monitoring.

1 Introduction

In this paper, we tackle the problem of classifying foraging and commuting behavior of bats at a site
using echolocation calls data recorded by acoustic sensors during a night at this site. The increasing
affordability and storage capacity of acoustic recorders has encouraged the development of Passive
Acoustic Monitoring (P.A.M.) for the study of species behavior. This growing accessibility has
given rise to participatory project such as Vigie-Chiro1 project. Vigie-Chiro is a France-wide
bats acoustic monitoring project. As the calls bats emit are ultrasonic and therefore inaudible

∗The authors are in alphabetic order, except the last one who provides the application context and the data set.
1Website of the project here
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to humans, P.A.M. is a relevant analysis tool to study their call sequences. In addition, the
nocturnal nature of bats makes them ideal subjects for P.A.M. studies, as they are less subject
to anthropogenic disturbance that can add noise to recordings. In the present work, we propose
a supervised method to classify the behavior of a specimen on a site during one night, between a
commuting behavior, meaning that the animal is just passing by the monitored site, and foraging
behavior, meaning that animal is hunting on the site. Being able to compare sites according
to their majority behavior, foraging sites or commuting sites, would open large opportunities in
spatial ecology such as evaluating landscape connectivity and foraging habitat selection.

State of the art. Research shows the temporal distribution of the calls emitted by a bat is
a relevant indicator of its behavior. In particular, the feeding buzz proportion has been used
to detect foraging on a site, for example in [15, 20, 29], where a feeding buzz characterizes the
capture of a prey. Thus, the presence of feeding buzzes is a strong indicator of foraging behavior.
Although a classifier based on the feeding buzzes proportion achieves good classification score [27],
the detection of buzzes require heavy computational resources. Furthermore, some bats, such as
gleaners (e.g.Plecotus auritus or Myotis myotis) rarely emit feeding buzzes, as they often rely on
the acoustic cues emitted by their prey to feed [12] . For these species, it is therefore not possible
to rely on this proxy to classify bat behavior. Finally, it is important to notice that the raw data
recorded on each site (as temperature, wind, etc.) are not sufficient to characterize the behavior of
the bats. It therefore appears that building a classifier based solely on the information contained
in the calls sequences, such as the start time of each calls sequence, represents a major challenge
in this context.

In the literature, conventional metrics for quantifying bat activity involve averaging the number
of pulses emitted in each segment of time over the course of a night [see 9]. The novelty of the
present work is to model the temporal dynamic of bats calls and to take advantage of this modeling
to classify their behavior. Precisely, in the case of foraging behavior, we expect to observe a self-
exciting dynamic. Indeed, the discovery of prey at a site may encourage the surrounding bats to
stay there and continue to forage and thus to emit calls. For this reason, we propose to model the
temporal calls sequence of bats by a special type of point process, namely a Hawkes processes.

Hawkes processes, introduced in [16], are proposed to model events sequence where the occur-
rence of events increase the chances of getting another in the future. Thanks to their intrinsic
ability to model self-exciting dynamics, Hawkes processes are extremely versatile in terms of appli-
cation domains. Although historically applied to model earthquakes in seismology in [17, 22], their
sphere of application has rapidly expanded to many other fields. For instance, in neuroscience
in [26], in mathematical finance in [3], in social network studies in [24], in football [4]. From a
theoretical point of view, numerous statistical methods of inference have been proposed for Hawkes
processes. On can cite recently for example [2, 13, 30, 7] and references there in.

Main contributions. We propose a methodology dedicated to discriminate the majority be-
havior of bats at a site, between foraging and commuting, based on sequence of echolocation calls
data. One of the main improvement of the present paper regarding to the existing literature is
the proposed modeling of the sequence of echolocation calls by a point process. Indeed, rather
to consider some global feature such as mean, we provide a model which is designed to handle
the temporal dependency of the data. The resulting modeling has two appealing properties, it is
interpretable and can be easily implemented for practical purpose. This thinner description of the
sequence echolocation calls data allows us to build an efficient classification procedure tailored to
the proposed model.

More precisely, we model sequences of bats calls as a realization of a linear exponential Hawkes
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processes. According to this model the classes are discriminated by the baseline and the parameter
of the exponential kernel of the Hawkes process. We then adapt, in the binary classification setup,
the classification procedure presented in the seminal work of [11]. This algorithm is a surrogate
risk minimization procedure that is dedicated to the classification of Hawkes processes. A salient
point of our procedure is that we do not only consider the usual misclassification risk to assess
the performance of our methodology, but also a goodness-of-fit test. It allows us to evaluate
both modeling and classification procedure. The goodness-of-fit test relies on the Time-Scaling
Theorem [10] and a Kolmogorov-Smirnov test.

We show that the proposed classification exhibits good performance on synthetic data and
promising results on real data. In particular, we implement our classification procedure on a
labeled data set whose classes, commuting and foraging, are well separated. We then evaluate
the classification performance using a cross-validation scheme and provide a comparison with the
popular random forests algorithm. The percentage of correct classification is around 68.13% which
is better than the one obtained with the random forests procedure. Besides, we emphasize that our
method provides a model for the temporal sequence recorded. This is a key point of our procedure
by comparison with black-box algorithms. Furthermore, the results obtained with the goodness-
of-fit test highlights the relevance of our modeling. Lastly, we apply our classification algorithm
on an unlabeled data set whose classes are much overlapped that leads to a difficult classification
problem. We again evaluate the resulting predictions with the goodness-of-fit and obtain similar
results as for labeled data.

Finally, beyond the classification task, our proposed procedure outputs an index of the foraging
behavior which do not depend on environmental covariates. In particular, we can consider this
index to characterize a monitored site and investigate scale effects. We compare this index of
prediction with covariates that measure the presence of artificial light and water. As expected,
according to our prediction rule, light or water impact the foraging behavior.

Content. This paper is organized as follows. Data are presented in Section 2. The statistical
modeling as well as the classification method that we propose are described in Section 3. The
performance of our procedure is investigated through numerical experiments on synthetic data in
Section 4. In Section 5, we apply our procedure on the real data that motivated this study. Finally,
we draw some perspectives in Section 6.

2 Data

The data set, collected as part of Vigie-Chiro project, is described in Section 2.1 while the modeling
of the data is investigated in Section 2.2. Then, in Section 2.3 we present the construction of the
data sets used to build and perform our classification procedure for dealing with the problem of
classifying commuting and foraging behavior of bats.

2.1 Echolocation call data

The original data set consists of sequences of bats echolocation calls recorded over one or more
nights at 755 different sites in France. More precisely, for each observation, namely each observed
site, we have access to the start and end time of each sequence emitted which may come from
different species. In addition, through additional data processing (developed in [27]), we have
access to the number of feeding buzzes detected on each site. Feeding buzz (see [15] for instance)
is a very specific pattern in which the bat emits a burst of echolocation calls at a very high rate
in an attempt of prey capture. Therefore, The presence of feeding buzzes is a strong indicator
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of foraging behavior at a site. A visual representation of such a pattern is given in Figure 1.
Finally, other environmental covariates are also available, and summarized in Table 1. Note that
the variables Light and Water are used in Section 6 to discuss the predictions of our method.

Figure 1: Sonogram containing a feeding buzz, frequency as a function of time.

Name Description

Nbuzz Number of feeding buzzes detected

Dtot Total duration of all recorded calls

Long Longitude

Lat Latitude

Light Artificial light in a 500 m buffer zone

Water Body of soft water in a 500 m buffer zone

Table 1: Overview of the available covariates

In the following, for a given site, we call an event, denoted T`, the starting time of a recorded
sequence of calls. We refer to a sequence of events several events (T`)`≥1 on a given observation
interval. Finally, we choose to use the denomination sequence of calls for the sequence of events
on one site rather than sequences of starting time of sequences of calls for the sake of simplicity.

Figure 2 displays the histogram of the numbers of events per site as well as their spatial
distribution on the map of France. In particular, it can be seen that the data set contain a wide
variety of sites profiles, making it representative of ecological realities. Note also that an important
part of the sites present a moderate activity.

2.2 Modeling the sequence of calls

In this section, we discuss the modeling of the sequences of calls. The echolocation system leads us
to consider the temporal distribution of the calls with a view to obtain a good characterization of
bat behavior. We propose to model a sequence of calls (T`)`≥1 as a realization of a point process
N . Some justification of our approach are given hereafter.

Figure 3 displays an illustration of the temporal dynamic of a sequence of calls. Four temporal
sequences are represented in this figure on the left part, each line corresponding to one site. Besides,
the autocorrelation as the function of the lag for the same four nights is displayed in Figure 3 on the
right part. Note that the darker the square, the stronger the autocorrelation. In particular, for the
four nights, the autocorrelation is not zero. Furthermore, for the two first nights, it does not vanish
quickly. In view of this observation, for a sequence of calls (T`)`≥1, it suggests that a temporal
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Figure 2: (Bats data set). Histogram of the number of events for each sites (left). Visual repre-
sentation on a map of France: each point on the map represents a site and its color refers to the
number of events in the temporal sequences (right).

dependency between the events T` exists. Therefore, it leads us to consider the observed sequences
of events as realizations of Hawkes processes [16]. Indeed, Hawkes process is a continuous point
process for which the occurrence of random events depends on past events. In particular, the use
of such a model to describe bats behavior seems quite relevant due to the underlying self-exciting
dynamic. Indeed, the discovery of prey at a site, indicated by the emission of echolocation calls,
may encourage surrounding bats to stay there and continue to forage and thus continue to emit
calls. Namely, if there is a prey to catch on a site, it promotes the arrival of other animals. The
proposed modeling is detailed in Section 3.1.
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Figure 3: (Bats data set). Visualization of the temporal dependence for four nights. On the left are
represented the start times of echolocation calls sequences. On the right it is the autocorrelation
as a function of the lag for the same four nights.

2.3 Construction of the data set

In this section, we describe the construction of the data set that we used to perform our classi-
fication procedure. We focus on the Common Pipistrelle (Pipistrellus pipistrellus) since this is a
species that emits buzzes and for which a large amount of data is available. Besides, for each site,
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we choose to only keep the first night of recording to maintain parity between sites. It also ensures
controlled recording quality, since the sensors are installed in good weather conditions whereas
poor conditions (such as rain or wind) may add unwanted noise, in addition to the fact that it
may also disrupt the behavior of the bats, for the other nights. Moreover, only calls in the time
slot from sunset to 1:00 am are kept, since this is the period when bats are more active. Hence, for
each observation, the considered feature is the time series of the start times of each call emitted
on each site.

Then, we build two data sets: a labeled data set which serves as a training set, and an unlabeled
data set that we consider as the test set. More precisely, a part of the observations are labeled
according to the proportion of buzzes detected on the site (see [28]). Thus, to each site is associated
the following index:

I(s) = 3600× Nbuzz(s)

Dtot(s)
(1)

where s ∈ {1, . . . , 755} is a given site, Nbuzz(s) is the number of feeding buzzes detected on this
site, and Dtot(s) the total duration of all recorded calls on the site. When the buzz index I, defined
by Equation (1), is very low (very few buzzes by hour) or very large (clear foraging behavior), this
characterizes easily the two classes (commuting and foraging).

Therefore, for s ∈ {1, . . . , 755}, we consider the following labeling scheme:

• if I (s) < τ1 then commuting is the majority behavior on s;

• if I (s) > τ2 then foraging is the majority behavior on s.

The threshold values are fixed to τ1 = 3 and τ2 = 90. Since our data set is well representative
of ecological realities of behavior (see Figure 4), these threshold values are sufficiently marked
to characterize the two behavior and therefore the training data set is correctly labeled. In the
following, the label 1 refers to the class of foraging sites when I(s) > τ2, and label 0 to the class
of commuting sites for which I(s) < τ1. Performing such a partition induces a quite balanced
distribution of 168 observations for class 0 and 164 sites for class 1. These observations for the
labeled data denoted DLn in the following, with n = 332. The remaining observations, that is to
say the sites for which the index belongs to [τ1, τ2], form the unlabeled data set denoted DUm in the
following with m = 423. Figure 4 displays the distribution of the index distinguishing the labeled
data (and the two classes 0 and 1) and the unlabeled data. The unlabeled data correspond to
the central values of the index (in [τ1, τ2]) which is the zone where the index does not give a clear
characterization of the commuting (class 0) or foraging (class 1) behavior.
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Figure 4: (Bats data set). Visualization of the labeling scheme using feeding buzzes proportion.
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3 Statistical methodology

This section is devoted to the statistical methodology developed for our classification procedure.
The temporal model for the observations is introduced in Section 3.1. The classification method
that relies on our modeling is formally described in Section 3.2. Finally, in Section 3.3, we give
details on goodness-of-fit tests dedicated to assess the performance of our procedure.

3.1 Data modeling with Hawkes processes

In Section 2.2, we have motivated the modeling of the sequence of calls by a Hawkes process [16,
18, 22]. Indeed, in the context of echolocation call data, mainly in the presence of the foraging buzz
pattern, we expect the events times (or jumps times) to be linked and that some events triggered
other event.

Formally, we consider that a sequence of calls (T`)`≥1 is a sequence of events coming from a
Hawkes process. Such point process, denoted N , can be characterized by its conditional intensity,
which gives the probability to have a jump in a small interval after t conditional on the past:

λ(t) := lim
h→0+

P (Nt+h −Nt = 1 | Ft−)

h

where Ft− denoted the information of the past strictly before time t. We focus here on the linear
exponential Hawkes process. In this particular case, the intensity is given for t ≥ 0 by

λ(t) := µ+

∫ t

0
αβe−β(t−s)dNs = µ+

∑
T`<t

αβe−β(t−T`),

where

• sequence (T`)`≥1 are the time jumps of the process;

• parameter µ > 0 is the baseline intensity, driving the dynamic of the process before the
arrival of jumps;

• parameter α ∈ [0, 1) is the arrival intensity, describing the influence of a jump on future
jumps;

• parameter β ≥ 0 is the rate of the decay which controls the arrival intensity and dictates
how fast this influence vanishes w.r.t. the time.

Hence, we assume that the conditional intensity of the underlying process N depends on an un-
known parameter which belongs to the following family of parameters

Θ = {µ > 0, 0 ≤ α < 1, β ≥ 0} .

The condition on α (sub-critical regime) ensures the non explosion of the intensity process (i.e.E[λt]
bounded). Note that the case where α = 0 corresponds to the definition of a Poisson process (see
[10] for instance). The exponential kernel is widely studied, and its choice is mainly motivated by
the recursive writing of the likelihood which serves the purpose of fast computation. Furthermore,
for practical purpose, the resulting model is easily interpretable.

Hereafter, we formally present the statistical framework which consists in a mixture of two
Hawkes models.

7



Mixture model. The observed features are assumed to come from a mixture of Hawkes processes
whose jump times lie on the interval [0, T ], with T > 0. The counting process is denoted (Nt)(0≤t≤T )
and the associated jumps times are T1, . . . , TNT . Let us introduce the label Y which is distributed
according to a Bernoulli distribution with parameter p∗ = P(Y = 1) assumed to be unknown.
Then, conditional on Y , we assume that N has a conditional intensity writing as

λθ∗Y (t) := µ∗Y +

∫ t

0
α∗Y β

∗
Y e
−β∗Y (t−s) dNs = µ∗Y +

∑
T`<t

α∗Y β
∗
Y e
−β∗Y (t−T`), (2)

where θ∗Y = (µ∗Y , α
∗
Y , β

∗
Y ) ∈ Θ is unknown. In particular, the intensity depends now on the label of

the observations. Therefore, a generic observation is the random pair {TT , Y }, where the feature
TT = (T1, . . . , TNT ) are jumps times of a Hawkes process with intensity λθ∗Y . The training data
set DLn :=

{(
T 1
T , Y

1
)
, . . . , (T nT , Y n)

}
consists of independent copies of {TT , Y }. In this supervised

setting, based on the learning sample DLn , our goal is to build an empirical classifier denoted by ĝ.
Hence, from a new observation TT , ĝ(TT ) is a prediction of the label Y .

Bayes classifier. The performance of a predictor ĝ is usually measured through its misclassifi-
cation risk P (ĝ(T ) 6= Y ). In particular, we expect that this risk is closed to the one of the Bayes
classifier g∗ defined as

g∗ ∈ arg min
g

P (g(TT ) 6= Y ) .

In [11], the authors show that g∗ can be characterized as g∗(TT ) = 1{πp∗,θ∗ (TT )≥1/2}, with

πp∗,θ∗(TT ) = P (Y = 1|TT ) =
p∗ exp (F ∗1 (TT ))

p∗ exp (F ∗1 (TT )) + (1− p∗) exp (F ∗0 (TT ))
,

and

F ∗k (TT ) = −
∫ T

0
λθ∗k(s)ds+

∑
T`∈TT

log
(
λθ∗k(T`)

)
.

Hence, the characterization of the Bayes classifier relies on the likelihood of the observations
conditionally to the labels.

3.2 Classification algorithm

In this section, we briefly describe the classification procedure previously proposed in [11] for
the supervised multiclass classification of Hawkes processes. The procedure is here detailed in
the binary classification setup. In the first step of the algorithm, the distribution p∗ of labels is
estimated by its empirical counterpart p̂. In the second step, we build a classifier ĝ that relies on
a surrogate risk minimization [5]. In particular, it involves a score function f̂ that maps a feature
TT onto R. The score function f̂ is defined as the minimizer of the empirical quadratic loss over a
suitable class of functions F̂ defined below, that is

f̂ ∈ argmin
f∈F̂

1

n

n∑
i=1

(
Ui − f(T iT )

)2
, (3)

with Ui = 21{Yi=1} − 1. Conditional on the label, the choice of the class of functions F̂ is based
on the likelihood of the observations and is defined as F̂ = {2π − 1 : π ∈ Π̂} where

Π̂ =

{
πp̂,θ, θ = (θ0, θ1) ∈ Θ2, πp̂,θ (TT ) =

p̂ exp (F1(TT ))

p̂ exp (F1(TT )) + (1− p̂) exp (F0(TT ))

}
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with, for k ∈ {0, 1}

Fk(TT ) := −
∫ T

0
λθk(s)ds+

∑
T`∈TT

log (λθk(T`)) , with λθk(s) = µk +
∑
T`<t

αkβke
−βk(t−T`).

Hence the score function f̂ satisfies f̂ = 2πp̂,θ̂ − 1. Note that πp̂,θ̂(TT ) is then an approximation of
π∗(TT ) = P(Y = 1|TT ). It implies that the score function f̂ can be viewed as an estimator of the
function 2π∗ − 1. Besides, the estimated parameter θ̂ = (θ̂0, θ̂1) provides estimate of parameter
θ∗ = (θ∗0, θ

∗
1). Finally, the resulting classifier ĝ is then naturally defined as

ĝ(TT ) = 1{f̂(TT ))≥0}.

Interestingly, under mild assumptions, the classifier ĝ is consistent (see [11] for more details). This
algorithm is referred in the following as ERM.

3.3 Goodness-of-fit test

One of the main strength of our method is the interpretability of the results. Indeed, beyond the
classification task, our algorithm also provides a model for the behavior of the bats within each
class. More precisely, our procedure provides estimates of the parameters of interests (θ∗0, θ

∗
1). To

assess the quality of our procedure, given these estimates, we can perform a goodness-of-fit test as
follows. The procedure is based on the Time-Rescaling Theorem given in [10]. It mainly implies
that for the compensator of a process N with intensity λ, given for t ≥ 0 by Λ(t) =

∫ t
0 λ(s) ds,

that a.s., the transformed sequence {τl = Λ(Tl)} is a realization of a unit-rate Poisson process if
and only if the original sequence {Tl} is a realization from the point process N . This result can
be applied to provide a goodness-of-fit test, and its proof can be found in [23]. The resulting test
is performed for example in [14], and [6]. Let us explain the procedure. We fix a class k ∈ {0, 1}
and consider the obtained estimates θ̂k. Then, the estimated compensator is

Λ
θ̂k

(t) =

∫ t

0

(
λ
θ̂k

(s)
)
+
ds. (4)

Hence, we want to build the goodness-of-fit test defined by the null hypothesis H0: “the sequence of
observations is a realization of the point process with intensity λ

θ̂k
”. According to Time-Rescaling

Theorem, under H0, the sequence {Λ
θ̂k

(Tl+1) − Λ
θ̂k

(Tl)} are increments of a unit-rate Poisson
process, then are distributed according to an exponential distribution with parameter 1. Therefore
to test H0, we can perform the classical Kolmogorov-Smirnov test. In order to ensure that the
Time-Rescaling Theorem applies, it is important to note that the estimation must be done on a
part of the sample and the goodness-of-fit performed on the remaining data (see [25] for more
details). For each class, we use this goodness-of-fit test to validate the obtained model. This
procedure is described in Section 4.2.

Nevertheless, we are aware of the fact that it is difficult to conclude from one realization
(e.g. one path) whether a point process is a Poisson process, mainly because, as it is explained
in [25], the variations of the points can either be due to non-stationarity or to more complex
dependency structures that cannot be studied on just one repetition. Besides, as the estimation
of the model parameters is done on a sample and the test is realized on another sample, with the
same distribution, it is expected that the rejection rate of H0 is higher than it should.
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4 Numerical experiments

The goal of this section is to investigate the performance of our method. Specifically, we evaluate
both the modeling with Hawkes processes and the classification procedure, using synthetic data.

Our classification procedure, presented in Section 3.2, is referred as ERM in the following. Our
method is implemented with Python. In particular, the optimization of the objective function
given in Equation (3) is carried out by using the Stochastic Gradient Descent (SGD) optimizer of
the torch.optim library.

As a benchmark, we compare the ERM algorithm with the random forests algorithm (named RF).
Introduced in [8], the random forests procedure is a popular method that can be used in a wide
range of applications, including time series prediction. The main issue in our framework to apply
RF is that each observation does not have the same length. For overcoming this problem, a zero-
padding step is performed, which means that each sequence whose length is less than the maximal
length of the data set is zero-filled. Note that we used the function RandomForestClassifier
implemented in the scikit-learn library with default parameters.

The simulation scheme is described in Section 4.1 while the evaluation of the procedure is
presented in Section 4.2. Finally, the obtained results are provided and discussed in Section 4.3.

4.1 Simulation scheme

For the most comprehensive study possible, we consider three scenarios referred to as Scenario
1 to 3. In each scenario, the values of the parameters associated with the two classes are more
or less close, which varies the difficulty of the corresponding classification task. For example, in
Scenario 1, the dynamics materialized by the two classes are very distinct and therefore easy to
dissociate. Note that Scenario 3 corresponds to the case where class 0 describes a Poisson model
(e.g. α0 = 0) whereas class 1 is a Hawkes model. Indeed, it is crucial to notice that the Poisson
model is included in the model and thus the user does not have to choose between Poisson or
Hawkes model in advance. Through this choice of scenarios, we propose to simulate a dynamics
close to those expected in real data. The values of the parameters associated to each scenario are
given in Table 2.

Scenario 1 Scenario 2 Scenario 3

µ0 1.0 1.0 1.0

µ1 1.0 1.0 0.5

α0 0.2 0.4 0.0

α1 0.7 0.5 0.5

β0 3.0 2.5 0.0

β1 1.5 2.0 1.5

Table 2: (Simulated data). The panel of scenarios used to study the performance of the procedure.
In each scenario, the associated set of parameters is displayed for both classes.

To assess the difficulty of the classification task, for each scenario, we derive the evaluation of
the misclassification risk of the Bayes classifier with a data set of size 10000 over 20 repetitions.
The results are further provided in Table 3. We also provide on Figure 5 a graph of the process with
the conditional intensity process through time, for each scenario. In particular, from Figure 5, we
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can see that the conditional intensities functions are quite different w.r.t. the classes in Scenario 1
and Scenario 3. In these scenarios, the classes should be easy to discriminate. This is confirmed
by the Bayes risk, which is respectively evaluated to 0.08 and 0.17. On the contrary, in Scenario 2,
the conditional intensities functions are close, and the classes are overlapped which yields to a
more difficult classification problem. It is confirmed by the Bayes risk, which is equal to 0.38.
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Figure 5: (Simulated data). Visual representation of the three scenarios by plotting for each class
the conditional intensity and the path of the associated Hawkes process.

Concerning synthetic data generation, each path is simulated by cluster process representation
algorithm. Introduced in [18], this method uses the branching properties of the self-exciting Hawkes
process. Given a Hawkes process of baseline term µ and kernel function h (an exponential function
here), the algorithm is the following. First, we simulate the arrivals of the immigrants, as a Poisson
process of intensity function µ. Then for each immigrant arrived in T`, we generate its offsprings
at future times t > T` which follow a Poisson process of intensity h(t−T`). Then, in the next step,
the offsprings become the ancestors, and we continue iterating until there are no more successors.
This algorithm is detailed in [21] for instance.

4.2 Performance evaluation

In this section, we investigate the performance of our procedure. Our methodology is evaluated
according to the goodness-of-fit test presented in Section 3.3. In addition, the classification per-
formance of ERM and RF are assessed by their error rate and compared to the one of the Bayes
classifier.

Hereafter, we present the evaluation scheme that relies on Monte-Carlo repetitions. We fix
ntrain = 300, ntest = 1000, T = 20, p∗ = 0.5. For each scenario described in Table 2, we repeat
independently 20 times the following steps:

1. We simulate the data set Dntrain and Dntest ;

2. From Dntrain , we compute the estimates θ̂0, θ̂1 and build the classifiers ĝERM, ĝRF;

3. Based on Dntest = {(T iT , Y i), i = 1, . . . , ntest},

(a) We evaluate the error rate of the classifiers ERM and RF using

ErrERM =
1

ntest

ntest∑
i=1

1{ĝERM(T iT )6=Y i}
, and ErrRF =

1

ntest

ntest∑
i=1

1{ĝRF(T iT )6=Y i}
;

(b) for each i = 1, . . . , ntest, we apply the goodness-of-fit test on the sequence T iT =(
T il
)
1≤l≤NT

by
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i. Computing the estimated compensator, defined by Equation (4), based respectively
on the true label Yi and the predicted label ĝERM(T iT ):

Λ
θ̂Yi

(T iT ) and Λ
θ̂
ĝERM(T iT )

(T iT )

ii. Considering the test described in Section 3.3, from the increments of Λ
θ̂Yi

(T iT ), we

get its associated p-value pYi ; from Λ
θ̂
ĝERM(T iT )

(T iT ), we obtain pĝERM(T i
T
)

(c) Finally, we consider the mean of the obtained p-values conditionally to the true classes
or predicted classes; more precisely, for k ∈ {0, 1}, let nk =

∑ntest
i=1 1{Y i=k} and n̂k =∑ntest

i=1 1{ĝERM(T iT )=k}
; we compute

p̄k =
1

nk

ntest∑
i=1

pYi1{Yi=k} and ̂̄pk =
1

n̂k

ntest∑
i=1

pĝERM(T i
T
)
1{ĝERM(T iT )=k}

(d) From the p-values, for each k, we also evaluate the acceptance rates for the 5% signifi-
cance level test

Ak =
1

nk

ntest∑
i=1

1{pYi≥0.05}
1{Yi=k} and Âk =

1

n̂k

ntest∑
i=1

1{p
ĝERM(T iT )

≥0.05}1{ĝERM(T iT )=k}
.

From Step 3 of the above procedure, we provide the mean of standard deviations of the obtained
error rates, p-values, and acceptance rates.

Bayes ERM RF

Scenario 1 0.08 (0.00) 0.08 (0.01) 0.09 (0.01)

Scenario 2 0.38 (0.00) 0.40 (0.02) 0.44 (0.02)

Scenario 3 0.17 (0.00) 0.17 (0.01) 0.27 (0.01)

Table 3: (Simulated data). Empirical error Err over 20 Monte-Carlo repetitions for each classifier
in the three scenarios. The standard deviation is provided between parentheses.

p-value p̄ Acceptance Rate A p-value ̂̄p Acceptance Rate Â

Scenario 1
Class 0 0.49 (0.01) 0.94 (0.01) 0.50 (0.02) 0.96 (0.01)

Class 1 0.49 (0.02) 0.95 (0.02) 0.52 (0.02) 0.96 (0.02)

Scenario 2
Class 0 0.46 (0.01) 0.92 (0.01) 0.54 (0.02) 0.97 (0.01)

Class 1 0.48 (0.02) 0.93 (0.02) 0.46 (0.04) 0.91 (0.03)

Scenario 3
Class 0 0.45 (0.03) 0.92 (0.02) 0.46 (0.02) 0.93 (0.02)

Class 1 0.40 (0.02) 0.89 (0.01) 0.43 (0.02) 0.90 (0.02)

Table 4: (Simulated data). Mean p-values and acceptance rate for a 5% significance level test
over 20 Monte-Carlo repetitions in the three scenarios. The standard deviation over repetitions is
displayed.
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4.3 Results

This section is devoted to the discussion of the obtained results provided in Table 3, and 4.
First, from Table 3, we observe that for all scenarios ERM performs as well as the Bayes classifier

and better than RF in terms of error rate. Besides, the standard deviations are small. In particular,
for Scenario 3, the error rate of RF evaluated at 0.3 is much larger than the one of ERM evaluated at
0.17. In this scenario, the difficulty comes from the fact that the class 0 is distributed according to
a Poisson process (α0 = 0) while the class 1 comes from a Hawkes process (α1 > 0). It highlights
that our procedure is also able to detect Poisson dynamics (which corresponds to α0 = 0) which
is not the case for RF.

Secondly, from the results provided in Table 4, we can see that the mean of the p-values
conditionally to the true labels (p̄k)k∈{0,1} are closed to 0.5 and the acceptance rates are closed
to 0.95, especially for Scenario 1. Indeed, under H0 with the true parameters θ∗0, θ∗1, the p-values
of goodness-of-fit test should be distributed according to a uniform distribution on [0, 1]. Since
we apply the goodness-of-fit test with estimated parameters θ̂0, θ̂1, we only expect that those
values are closed to the theoretical ones. We can notice that the p-valuers are also close to 0.5
on Scenario 2 with the estimated label, which should be the most difficult task of classification.
However, we can note that for Scenario 3 those values are slightly biased (approximately 0.4 for
the p-value and 0.89 for the acceptance rate). This could be due to the fact that, in this scenario,
the estimation of the parameter is more difficult. Finally, for Scenario 1 and 3, in Table 4, the
obtained values with the predicted labels are almost the same as with true labels. It assesses the
good performance of our procedure on these scenarios.

5 Application to the data

In this section, we apply the methodology described in Section 3 to the bats data set. First, in
Section 5.1 we assess the performance of our procedure on labeled data. Then, in Section 5.2 we
focus on the unlabeled sample and present the obtained results.

5.1 Classification on labeled data

In this section, we investigate the performance of our methodology on the labeled data set DLn .
In particular, as in Section 4.2 we compare our classification procedure with RF and apply the
goodness-of-fit test presented in Section 3.3. The evaluation scheme, carried out through Monte-
Carlo repetitions, is as follows. We repeat independently 20 times the following steps:

1. we randomly choose 75% of the data set DLn for training and the remaining 25% for test. We
denote respectively those subsample by DLntrain

and DLntest ;

2. based on DLntrain
, we compute the estimates θ̂0, θ̂1 and build the classifiers ĝERM, ĝRF;

3. on DLntest , we apply the step 3) of the procedure describe in Section 4.2.

The results are provided in Table 5 and in Figure 6 where the confusion matrix is displayed. Several
comments can be made from these results.

Firstly, we obtain a satisfactory rate of correct classification equal to 0.68 (0.04). Let us point
out that the RF algorithm achieves a rate of 0.67 (0.02) of correct classification which is similar
to the ERM classifier. However, the lack of interpretation of the RF procedure is an important
limitation to consider this method for practical purpose.

Secondly, Figure 6 shows that the predictions are significantly better on class 1 than on class 0.
In particular the true positive rate is of order 0.79 which is quite good. Besides, the ERM classifier
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tends to predict more often class 1, that is foraging behavior. It can be interpreted as the fact
that a transit site with a bit of foraging is assigned as moderate hunting site by our procedure.

Lastly, from Table 5, we can see that the means of the acceptances rates over the Monte-Carlo
simulation are around 0.4 except for Â where the rate is of order 0.66. It is obviously less than
on synthetic data but it is sufficiently high to confirm that the proposed modeling is relevant to
discriminate the sites between commuting and foraging. Similar comment can be made regarding
to the means of the p-values. In particular, looking at the values of the estimates of the parameters
θ∗0, and θ∗1, we observe that the two classes are mainly discriminated by the arrival intensity. We
obtain α̂0 = 0.26 for the class 0, and α̂1 = 0.98 for the class 1. Hence, as expected, the emission
of echolocation calls tends to promote the foraging. Finally, for the class 0, we also can notice
that the p-value ˆ̄p obtained with the predicted labels is much larger than the p-value p̄ obtained
with the true labels. The same comment holds for the acceptance rate. It is mainly due to the
fact that our classification procedure predicts the class 1 more often, especially for the sites which
have ambiguity between the classes, for example high traffic commuting sites or commuting sites
with some foraging behavior. Thus, these sites may not be included in the computation of ˆ̄p and
Â, which could explain the higher values.
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Figure 6: (Bats data set). On DLn . Confusion matrix of prediction error over 20 Monte-Carlo
repetitions on labeled data. The true label are those given by the metric I. On the left are
represented the predictions of the ERM procedure, percentage of correct classification: 68.13%
(4.15). On the right are represented the predictions of the RF procedure, percentage of correct
classification: 67.35% (2.21).

p-value p̄ Acceptance Rate A p-value ̂̄p Acceptance Rate Â

Class 0 0.17 (0.03) 0.42 (0.06) 0.26 (0.06) 0.66 (0.11)

Class 1 0.14 (0.04) 0.44 (0.08) 0.15 (0.03) 0.45 (0.07)

Table 5: (Bats data set). Mean p-values and acceptance rate over 20 Monte-Carlo repetitions
on labeled data DLn . The standard deviation over repetitions is displayed. For each classes, the
average values of the estimated parameters are θ̂0 = (µ̂0 = 1.02, α̂0 = 0.26, β̂0 = 0.92) and
θ̂1 = (µ̂1 = 1.09, α̂1 = 0.98, β̂1 = 1.08).
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5.2 Prediction on unlabeled data

In this section, we provide predictions for the observations of the unlabeled data DUm (m = 423).
We recall that, as illustrated in Figure 4, the unlabeled sites are the sites for which the value of the
metric I belongs to [τ1, τ2]. Let us also emphasize that on these sites, bats have mixed behavior
between commuting and foraging. Therefore prediction of the majority behavior on these sites is
a tricky task.

We apply our methodology on DUm. For each site i we return the predicted label Ŷi. The
classifier ERM predicts foraging behavior (class 1) for 320 sites and commuting behavior (class 0)
for 103 sites. Then, with the predicted label Ŷi, we perform the goodness-of-fit test described in
Section 4.2. Note that, since the true label is unknown, we only compute p̂ and Â. The results
are provided in Table 6. We observe that the ̂̄p and Â are slightly better for the class 1 which
corresponds to the foraging behavior. It is also interesting to note that we obtain similar values
as on the labeled sample.

p-value ̂̄p Acceptance Rate Â

Class 0 0.15 0.43

Class 1 0.21 0.49

Table 6: (Bats data set). Mean p-values and acceptance rate for a 5% significance level test on
unlabeled real data DUn .

Discussion. To discuss the obtained results, we also propose to investigate the predictions given
by our method w.r.t. two environmental covariates of interest, Light and Water (see Table 1). This
choice seems to be appropriate insofar as they represent factors likely to influence bat behavior.
Indeed, artificial light spot may create prey aggregation and thus favor foraging behavior for fast-
flying species such as the Common Pipistrelle (see [1]). Same comment holds for soft water. Indeed
the presence of soft water is a highly favorable condition for insect reproduction.

To illustrate the interplay between the obtained predictions and the two covariates of interest,
for each site i ∈ DUm with observed sequence of calls T iT , we represent in Figure 7 the predictive
probability πp̂,θ̂(T iT ) (estimation of P(Yi = 1|T i)) as a function of covariates values on this site.
For both covariates, we observe that, above a threshold, only foraging behavior is predicted by
our procedure. The predictions on those sites seems relevant. Indeed, as already said, when the
covariates Light and/or Water take high value, it strongly implies foraging behavior. For the sites
for which the covariates values are moderate, we can see that the predictive probabilities are close
to 0.5, thus indicating uncertainty of the predictions.

6 Conclusion and perspectives

In the present work, we propose a novel procedure for ecologists that is designed to classify the
majority behavior of a site into two classes: foraging sites and commuting sites. We apply our
methodology on both synthetic and real data sets. The proposed method exhibits good perfor-
mance on synthetic data while the obtained results on real data set are promising. In addition
to the predicted classes, our procedure outputs predictive probabilities that provide an index of
confidence for the foraging behavior. Such an index is a major point of interest for ecologists, as
it enables to interpret the activity of sites with mixed behavior between pure foraging and pure
commuting. It is important to note that predictions as well as predictive probabilities do not
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Figure 7: (Bats data set). For each site i ∈ DUm, Predictive probability πp̂,θ̂(T iT ) represented as a
function of Artificial light for the Figure on the left and as a function of Soft water for the Figure
on the right.

depend on environmental covariates. Therefore, our procedure may be used to highlight scale ef-
fects. Furthermore, our proposed methodology could be extended to any supervised classification
problem for temporal dependent data that can be modeled using a continuous time point process.

Home range size is known to affect population dynamics [see 19]. In particular, as the common
pipistrelle has a small home range, leading to short periods of commuting, it is difficult to dis-
criminate between foraging and commuting. Although our procedure shows promising result with
this species, it could be very interesting to apply it to other species of bats which have a larger
home range. As a consequence, on a one-night scale, we expect to observe a more marked majority
behavior for these species. Keeping this in mind, we could consider the western barbastelle (Bar-
bastella barbastellus) living in forest habitat or Daubenton’s myotis (Myotis daubentonii) whose
roosts are close to water sources.

Besides, given that several species are recorded at each site, it could be a guideline for further
research to model the call sequence of each species using multivariate Hawkes processes. More
precisely, each component of the multivariate Hawkes process would model the temporal distribu-
tion of calls associated with a species. Such a model would not only take into account the past
activity of a single species but also the effects of inter-species cooperation. To model the effect of
competition between species, inhibition influences may be considered in the model. To this end,
we can allow the intensity parameter α to be negative by adding a link function in the intensity.
The extension of our procedure to this framework could be the object of further works.

Finally, from ecological perspective, it would be interesting to consider the ranking problem.
Indeed, we could rank the sites according to the foraging behavior intensity. It would allow direct
comparisons across sites while separating habitats selected for foraging from those selected for
commuting. It would be particularly helpful when a stressor could have opposite effects on those
two behaviors, e.g. artificial light facilitating foraging for some species but having negative effect
on commuting activity [see 1].

Data availability statement

Both data sets and code can be found at here.
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