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Abstract: Self-organization is the core principle of all learning in Adaptive Resonance Theory 10 

(ART), which has been highly successful in accounting for biological visual learning, or 11 
biologically plausible computational modelling of visual processing. Such processing includes the 12 
analysis of visual data we may not be able to see consciously, such as changes in fine visual detail 13 
in images relating to alterations in natural or urban landscapes, for example. In the course of time, 14 
such imaging data may reveal structural changes that are the consequence of measurable human 15 
impact or climate change. Capturing such change in time series of satellite images before the 16 
human eye can see them makes them available at early stages to citizens, professionals, and 17 
policymakers, promotes change awareness, and facilitates early decision making for action. Here, 18 
we use unsupervised Artificial Intelligence (AI) that exploits principles of self-organized biological 19 
visual learning for the analysis of time series of satellite images. The Quantization Error (QE) in 20 
the output of a Self-Organizing Map prototype is exploited as a computational metric of 21 
variability and change. Given the proven sensitivity of this neural network metric to the intensity 22 
and polarity of image pixel contrast, and its proven selectivity to pixel colour, it is shown to 23 
capture critical changes in urban landscapes. This is achieved here in the example of satellite 24 
images from two regions of geographic interest in Las Vegas County, Nevada, USA across the 25 
years 1984-2008. The SOM-QE analysis is combined with the statistical analysis of demographic 26 
data revealing human impacts correlated with the structural changes in the specific regions of 27 
interest. By correlating the impact of human activities with the structural evolution of urban 28 
environments we further expand SOM-QE analysis, as a parsimonious and reliable AI approach, 29 
to the rapid detection of human footprint-related environmental change. 30 

Keywords: SatelliteImages, Landscapes, Urban Environment, Las Vegas, Self Organizing Map 31 

(SOM), Quantization Error, Demographic Data, Human Impact 32 
 33 

1. Introduction 34 

Grossberg’s Adaptive Resonance Theory proposes neural network models that enable stable 35 

brain learning in non-stationary and unexpected worlds [1]. These models rely on self-organized 36 

learning akin to biological synaptic learning [2, 3, 4]. In biological neural networks, such learning is 37 

by nature unsupervised and may be accounted for in terms of competitive winner-takes-all matching 38 

principles [5]. The Self-Organizing Map (SOM) is, by comparison with the ART models, a 39 

parsimonious, one may call it minimalist, artificial neural network architecture [6, 7] with input-40 

driven self-organization using winner-takes-all learning in sensory model neurons that become 41 

locally and globally ordered during learning. In our previous studies, we exploited the functional 42 

properties of sensitivity to spatial extent, intensity, and colour of local pixel contrasts of the 43 
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Quantization Error (QE) in the output of a SOM for automatic data classification as a function of 44 

finest, mostly invisible, yet, clinically or functionally relevant, local variations in visual or other data 45 

time series. This work, extensively and well documented in our prior publications [8-19], has 46 

permitted establishing SOM-QE [8] as a reliable computational model of statistical variability in 47 

sensed data, directly relating to critical local changes in images of one and the same landscape [15], 48 

of organs [19], cells [10, 13, 16], and other simulated visual objects at different moments in time [11, 49 

14, 17, 18], and in temporal series of sensor responses from surgical data simulating robotic control 50 

by grip forces distributed in the human hands of experts and novices [9, 12].  51 

Any technique for the determination of the finest changes of visual or other sensed data across 52 

time, even when combined with an advanced imaging model, sooner or later requires human 53 

classification for an interpretation. This may involve guesswork when the spatiotemporal 54 

uncertainty [20-22] in the data or visual image contents is high. It then becomes difficult to rule out 55 

subjectivity of the analyst, even when the latter is a skilled expert. To ensure quality decision 56 

making, affordable precision software for automatic data classification should combine high 57 

accuracy with further advantages relative to speed, objectivity, and reproducibility of the 58 

classification. All these have been proven ensured by SOM-QE within the scope of its application 59 

[8]. In this work here, we show simulations exploiting SOM-QE analysis [8] to demonstrate its 60 

statistically significant sensitivity to the spatial extent of local pixel contrast translating significant 61 

landscape changes correlated with significant increase in human impact, and its ecological footprint 62 

as a consequence [23], in response to these changes. NASA Landsat images of Las Vegas City 63 

Centre and the residential North of Las Vegas from a time period between 1984 and 2008 were 64 

submitted to SOM-QE analysis for this study. In the 1980ies Las Vegas City, located in the middle of 65 

the Nevada Desert, featured mainly ‘The Strip’, with a number of smaller casinos and motels. 66 

Subsequently, in a large restructuration project between 1990 and 2007 a large number of the old 67 

casinos and motels were demolished. The ensuing reconstruction of Las Vegas City Centre and the 68 

subsequent opening of a large number of mega-resorts with casino spaces, tropical landscapes with 69 

waterfalls or simulations of urban environments such as Venice, restaurants with world-class chefs, 70 

and shows performed by international megastars like Celine Dion transformed Las Vegas City 71 

Centre and The Strip entirely. By offering multiple kinds of entertainment, dining gambling, and 72 

lodging, attracting millions of visitors from all over the world, Las Vegas City Centre has become 73 

one of the largest entertainment poles in the world [24]. Most elements of the project opened in late 74 

2009. This was accompanied by the rapid spread of greater Las Vegas, including the residential 75 

North, into the adjacent desert. The population count grew from thousands in 1984 to millions in 76 

2009. 77 

2. Materials and Methods  78 

25 satellite images of the geographic regions of interest (ROI), Las Vegas City Center and 79 
Residential North were pre-processed and then submitted to SOM-QE analysis. The original pre-80 
processed input images can be accessed from the Supplementary Materials. 81 

2.1. Image input 82 

The original images were extracted from time-lapse animations of Las Vegas County, Nevada, 83 
for a reference time period from 1984 to 2008, as captured by NASA Landsat sensors [25]. VLC [26], 84 
an open source media player, was used to generate static images from the time-lapse animations 85 
provided. The images are colour-coded for optimal visualization [27], displaying arid desert regions 86 
in brownish-gray, building structures in dark-gray and healthy vegetation and green spaces in red 87 
pixels. Water is represented by black pixels. Sample copies of two of the pre-processed 25 images 88 
for each ROI, Las Vegas City centre (Fig.1) and residential North (Fig. 2) from the years 1984 and 89 
2008 are shown here below. 90 

 91 
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 92 
 93 

Figure 1. Representation of two of the 25 satellite image extracts of Las Vegas city centre in 1984 (left) and 2008 94 
(right), after preprocessing. 95 
 96 

 97 
 98 
 99 
Figure 2. Representation of two of the 25 satellite image extracts of Las Vegas residential North in 1984 (left) 100 
and 2008 (right), after preprocessing. 101 
 102 

Before running the SOM-QE analysis on the image time series for the two geographic ROI, the 103 
images were pre-processed to ensure they are all identically scaled and aligned within a given 104 
series. This was achieved by applying the method of co-registration using StackReg [28], which is a 105 
plug-in for ImageJ, an open source image processing program designed for scientific 106 
multidimensional image processing. The last image of the time series was used to anchor the 107 
registration. Control for variations in contrast strength between images of a given series was 108 
performed after registration. This was achieved by increasing the image contrast and by removing 109 
any local variations at different times of image acquisition [29-30]. For each extracted image, 110 
contrast intensity (I) normalization was ensured using 111 

 112 
Ifinal = (I - Imin/Imax - Imin) x255   (1) 113 

 114 
The registered and normalized image taken in 2008 from each ROI was used to train the SOM. Since 115 
the original images used colour to emphasize different areas on the maps, pixel-based RGB values 116 
are used as input features to the SOM. This ensures a pixel-by-pixel capture of detail and avoids 117 
errors due to inaccurate feature calculation, which often occurs with complex images [30].  118 

2.2. SOM-QE analysis 119 

The Self-Organizing Map (the prototype for this study here is graphically represented in Fig. 3, 120 
for illustration) may be described formally as a nonlinear, ordered, smooth mapping of high-121 
dimensional input data onto the elements of a regular, low-dimensional array [6, 7, 8]. It is assumed 122 
that the set of input variables can be defined as a real vector x, of n-dimensionality. A parametric 123 
real vector mi of n-dimension is associated with each element in the SOM. Vector mi is a model and 124 
the SOM is therefore an array of models. Assuming a general distance measure between x and mi 125 
denoted by d(x, mi), the map of an input vector x on the SOM array is defined as the array element 126 
mc that matches best (smallest d(x, mi)) with x. During the learning process, the input vector x is 127 
compared with all the mi in order to identify mc. The Euclidean distances ||x-mi|| define mc. Models 128 
topographically close in the map up to a certain geometric distance indicated by hci will activate 129 
each other to learn something from their common input x. 130 

 131 
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 132 
 133 

Figure 3. Graphic representation of the 4x4 SOM prototype with 16 models, indicated by the filled circles in the 134 
grey box. Each of these models is compared to the SOM input in an unsupervised winner-take-all learning 135 
process. The input vector corresponds to the RGB image pixel space. 136 

This results in a local relaxation or smoothing effect on the models in this neighborhood, which in 137 
continuous learning leads to global ordering. Self-organized learning in a SOM is represented by 138 
the equation 139 

                                       (2) 140 

where           is an integer, the discrete-time coordinate, hci (t) is the neighborhood function, a 141 
smoothing kernel defined over the map points which converges towards zero with time,     is the 142 
learning rate, which also converges towards zero with time and affects the amount of learning in 143 
each model. At the end of the winner-take-all learning process in the SOM, each image input vector x 144 
becomes associated to its best matching model on the map mc. The difference between x and mc, ||x-145 
mc||, is a measure of how close the final SOM value is to the original input value and is reflected by 146 
the quantization error QE. The average QE of all Xi in an image is given by 147 

               
 
       (3) 148 

where N is the number of input vectors x in the image. The final weights of the SOM are defined by 149 
a three dimensional output vector space representing each R, G, and B channel. The magnitude as 150 
well as the direction of change in any of these from one image to another is reliably reflected by 151 
changes in the QE. The SOM training process consisted of 1 000 iterations for a two-dimensional 152 
rectangular map of 4 by 4 nodes capable of creating 16 model observations from the data. The 153 
spatial locations, or coordinates, of each of the 16 models or domains, placed at different locations 154 
on the map, exhibit characteristics that make each one different from all the others. When a new 155 
input signal is presented to the map, the models compete and the winner will be the model the 156 
features of which most closely resemble those of the input signal. The input signal will thus be 157 
classified or grouped in one of models. Each model or domain acts like a separate decoder for the 158 
same input, i.e. independently interprets the information carried by a new input. The input is 159 
represented as a mathematical vector of the same format as that of the models in the map. 160 
Therefore, it is the presence or absence of an active response at a specific map location and not so 161 
much the exact input-output signal transformation or magnitude of the response that provides the 162 
interpretation of the input. To obtain the initial values for the map size, a trial-and-error process 163 
was implemented. Map sizes larger than 4 by 4 produced observations where some models ended 164 
up empty, which meant that these models did not attract any input by the end of the training. As a 165 
consequence, 16 models were sufficient to represent all the fine structures in the image data. 166 
Neighborhood distance and learning rate were constant at 1.2 and 0.2 respectively. These values 167 
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were obtained through the trial-and-error method after testing the quality of the first guess, which 168 
is directly determined by the value of the resulting quantization error; the lower this value, the 169 
better the first guess. It is worthwhile pointing out that the models were initialized by randomly 170 
picking vectors from the training image. This allows the SOM to work on the original data without 171 
any prior assumptions about any level of organization within the data. This, however, requires 172 
starting with a wider neighborhood function and a higher learning-rate factor than in procedures 173 
where initial values for model vectors are pre-selected. The approach is economical in terms of 174 
computation times, which constitutes one of its major advantages for rapid change versus no change 175 
detection on the basis of even larger sets of image data, prior to any further human intervention or 176 
decision making. The last image of the series from the time range here was used to train the SOM. 177 
After training, SOM-QE analysis permits determining the QE in the map output for each of the 25 178 
images of the series. The code used for implementing the SOM-QE is available in the “R-badged 179 
articles” series [8] of the journal Software Impacts, a collection that presents software publications 180 
that have been verified for computational reproducibility by CodeOcean, a cloud-based 181 
computational reproducibility platform that helps the community by enabling sharing of code and 182 
data as a resource for non-commercial use. Certified papers have an attached Reproducibility 183 
Badge, a permanent Reproducibility Capsule, and are listed on the CodeOcean website [8]. 184 

3. Results 185 

The results from the SOM-QE analysis on the image time series for the two ROI are given in 186 
Table 1 as a function of the image the year was taken and the type of ROI. They show a general 187 
trend towards increase in the QE metric across images for each ROI between 1984 and 2008. The QE 188 
in the SOM output is a reliable indicator of variability in pixel color (or contrast intensity; here in 189 
this study all images were normalized for contrast intensity and did not display variability across 190 
images) as shown in our previous work.  191 

Table 1.SOM-QE output as a function of the image year and geographic ROI.  192 

Year Las Vegas City Residential North    

1984 0,240437503 0,151226618 

1985 0,264341069 0,157865360 

1986 0,271480118 0,155998180 

1987 0,289065099 0,169213765 

1988 0,282803632 0,210600120 

1989 0,286535270 0,213982186 

1991 0,303956828 0,219973707 

1991 0,298541690 0,225406972 

1992 0,301994751 0,214975264 

1993 0,293683986 0,208605453 

1994 0,304328745 0,221313177 

1995 0,298240329 0,212630331 

1996 0,309779114 0,222464495 

1997 0,284870821 0,225816809 

1998 0,291493024 0,223026329 

1999 0,296067339 0,238731572 

2000 0,304491317 0,246826836 

2001 0,311488540 0,254509105 
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2002 0,314104190 0,259835794 

2003 0,299101833 0,263285485 

2004 0,299139369 0,249477866 

2005 0,296761075 0,237934169 

2006 0,305053585 0,250044464 

2007 0,301298833 0,256201407 

2008 0,314321877 0,261825498 

 193 
Here, the increase in QE captures the increasing structural variability of the landscapes, directly 194 
reflected by an increasing variability in image pixel colors, across these critical years of 195 
restructuration of Las Vegas City accompanied by the progressive building development of the 196 
Residential North. In a first analysis, these data were submitted to linear regression analysis to 197 
assess the statistical significance of the increase in QE across the years. 198 

3.1. Linear regression and statistical trend analysis on the QE data 199 

The linear fits to the trend in the QE to increase across the image years are shown in Figure 4.  200 

 201 
Figure 4. Linear fits to the QE data as a function of the year in which a study image for a given ROI was 202 
taken. 203 

 204 
As an estimate of the part of variance in the data that is accounted for by a linear trend, or fit, the 205 
regression coefficient r2 is a direct reflection of the goodness of that fit. The statistical significance of 206 
the trend in the data in any given direction, upward or downward, is determined by the probability 207 
that the linear adjustment sufficiently differs from zero on the basis of Student’s distribution (t). The 208 
results from the comparison QE versus year of image acquisition reveal a statistically significant 209 
linear trend towards increase in QE as a function of time for both ROI.The results from the linear 210 
regression analysis with the slopes and intercepts of the fits and their regression coefficients r2 are 211 
shown in Table 2. The results from the statistical trend analyses with Student’s t, Degrees of 212 
Freedom (DF) for a given comparison and the associated probability (p), limits are given in Table 3. 213 
 214 

Table 2. Fit parameters from the linear regression analysis of the QE data as a function of the 215 
geographical ROI. 216 

Linear Fit Parameter Las Vegas City Residential North    

Slope (b1) 1,554 4,0331 

Intercept (b0) -2,8077 -7,8286 

r2 0,4776 0,7995 
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Table 3. Trend statistics as a function of the geographical ROI. 217 

Trend Parameter Las Vegas City Residential North    

t 88,98 33,45 

DF (1, 24) (1, 24) 

p <.001 <.001 

The regression coefficients r2(Table 2) reveal that the linear fit to the QE data for the images of the 218 
residential North is a reasonably good one, while the linear model poorly fits the QE data for the 219 
images of Las Vegas City. This is consistent with the type of structural change that took place in 220 
each of the ROI across the study years. There was a step-by-step reorganization of the City Center, 221 
with old casinos and hotel centers disappearing one after the other to be replaced by new ones, and 222 
a much smoother, rather progressive development of buildings the in desert regions that have 223 
become part of what is now the residential North. The linear trend statistics (Table 3) reveal a 224 
statistically highly significant increase in the QE data across the image years for both ROI. 225 

3.2. Human impact data  226 

For the reference time period of this study, the Las Vegas Convention and Visitors Authority 227 
[31], and the Las Vegas Population Review [32] have provided publically archived data that show 228 
the increase of human impact across the same years as those from which the satellite images 229 
analyzed here were taken. These data are shown in Table 4 in terms of annual population estimates 230 
in thousands for Greater Las Vegas, which includes the City and the residential North, and visitors 231 
per annum in millions.  232 
 233 

Table 4. Human impact data across the years in terms of visitor (in millions) and population 234 
(in thousands) estimates per annum. 235 

 236 

Year Visitors (in millions) Population (in K)   

1984 12,8000 191,0000 

1985 14,2000 197,0000 

1986 15,2000 204,0000 

1987 16,2000 226,0000 

1988 17,2000 240,0000 

1989 18,1000 266,0000 

1991 20,9000 276,0000 

1991 21,3000 298,0000 

1992 21,9000 310,0000 

1993 23,5000 330,0000 

1994 28,2000 352,0000 

1995 29,0000 374,0000 

1996 29,6000 406,0000 

1997 30,4000 423,0000 

1998 30,6000 448,0000 

1999 33,8000 466,0000 

2000 35,8000 483,0000 

2001 35,0000 506,0000 
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2002 35,0000 521,0000 

2003 35,5000 535,0000 

2004 37,3000 560,0000 

2005 38,6000 576,0000 

2006 38,3000 592,0000 

2007 37,5000 603,0000 

2008 39,5000 608,0000 

 237 
These data, shown graphically in Figure 5, were also submitted to linear regression and statistical 238 
trend analysis. 239 

 240 
 241 

Figure 5.Linear fits to the human impact data as a function of the year in which the study images were 242 

taken. 243 

3.3. Linear regression and statistical trend analysis on the human impact data  244 

The results from the comparisons population estimate versus year of image acquisition and 245 
annual visitor estimate versus year reveal statistically significant linear trends towards increase as a 246 
function of time for both types of human impact data.The linear fits to the trends in these data to 247 
increase across the image years are shown in Figure 5. The results from the linear regression 248 
analysis with the slopes and intercepts of these fits and their regression coefficients r2 are shown in 249 
Table 5. The results from the statistical trend analyses with Student’s t, Degrees of Freedom (DF) for 250 
a given comparison and the associated probability (p), limits are given in Table 6. 251 

 252 
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Table 5. Fit parameters from the linear regression analysis of the human impact data in terms 253 
of visitors in millions and population (residents) in thousands per annum. 254 

 255 

Linear Fit Parameter Visitors Population    

Slope (b1) 1,1828 19,0723 

Intercept (b0) -2,333 -3766 

r2 0,9657 0,9955 

Table 6. Trend statistics as a function of the type of human impact data 256 

Trend Parameter Visitors Population    

t 15,70 14,20 

DF (1, 24) (1, 24) 

p <.001 <.001 

 257 

The regression coefficients r2(Table 5) reveal that the quality of the linear fits to the human impact 258 
data across the years is excellent. The steady increase in population and visitors of Greater Las 259 
Vegas is consistent with the restructurations that took place across these years, creating an 260 
increasingly larger offer for state-of-the-art entertainment on the one hand, and a need for more 261 
residential development catering for the needs of people providing their workforce for this 262 
expanding industry. The linear trend statistics (Table 6) reveal a statistically highly significant 263 
increase in the visitors and population data across these critical years. 264 

3.4. Correlation Analysis 265 

In the next analysis, the correlations between the QE distributions from the SOM-QE 266 
analysis and the distributions reflecting human impact data in terms of population and visitors 267 
per annum statistics and were computed. Correlations are useful because they may indicate a 268 
predictive relationship between variables, which then can be further exploited in practice. To 269 
that effect we computed Pearson's correlation coefficient R, which mathematically determines 270 
statistical covariance. The probability p that the covariance of two observables is statistically 271 
significant is determined by the magnitude of the Pearson coefficient, which is directly linked 272 
to the strength of correlation, while its sign is directly linked to the direction of the covariance 273 
(positive or negative) of two variables. This analysis was performed on the paired distributions 274 
for the QE from the image analysis of the residential North as a function of the population data 275 
and for the results from the image analysis of Las Vegas City as a function of the average 276 
yearly visitor estimates. The results show statistically significant positive correlations between 277 
the paired variables in both cases. The correlation statistics, with the Pearson coefficients for a 278 
given comparison and the associated DF and probability limits, are shown in Table 7. 279 

Table 7. Pearson correlation statistics as a function of the type of comparison 280 

Correlation Parameter QE North vs Population QE City vs Visitors    

Pearson’s R 0,87 0,71 

DF (1, 24) (1, 24) 

p <.001 <.001 

The correlations were plotted graphically for visualization (Figure 6), showing the SOM-QE 281 
from the 25 images of the residential North as a function of the yearly population estimates 282 
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(Fig. 6, top) and the SOM-QE from the 25 images of Las Vegas City as a function of the annual 283 
number of visitors across the years of the reference period (Fig. 6, bottom). 284 

 285 

Figure 6. Correlation between the QE values from the image analyses and the pertinent human 286 
impact estimate for a given geographic ROI. 287 

4. Discussion 288 

This study is couched in the larger framework of pixel colour-based approaches to the analysis 289 
of Earth images from satellites such as Landsat to study temporal changes relating to the effects of 290 
human activities on landscape changes and/or climate change [33, 34]. Here, the SOM-QE data from 291 
analyses of satellite images of the residential North of Greater Las Vegas and the Las Vegas City 292 
Center consistently capture the anthropogenic structural changes in each ROI across the study 293 
years. The step-by-step reorganization of the City Center, with old casinos and hotel centers 294 
disappearing and replaced by more and larger new ones, and the progressive development of 295 
housing and infrastructure in desert regions that are now part of the residential North. The 296 
significant positive correlations between the QE distributions from the SOM-QE analysis and the 297 
distributions reflecting human impact data in terms of population and visitors per annum allow for 298 
adeeper analysis of anthropogenic movements across these critical years. The steady increase in 299 
visitors of Las Vegas City reflects the direct anthropogenic response to the increasingly larger offer 300 
of state-of-the-art entertainment in the City. This engendered an increasing need for residential 301 
development in desert regions to provide housing for an increasing population providing the 302 
necessary workforce. During these same years, the water supply to these regions dwindled away 303 
progressively, as shown in a previous study applying SOM-QE to satellite images of Lake Mead, 304 
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the major source of water supply to greater Las Vegas, which includes the residential North, and 305 
Las Vegas City. These observations reveal combined effects of climate change and increase in 306 
human footprint [35] on this region, bearing in mind that greater Las Vegas is one of the driest 307 
regions in the world [36]. The analyses provided here open a window for understanding the links 308 
between economic development and environmental impact in this particular region. When plotting 309 
the total revenues from gaming and leisure activities [37] of Las Vegas City Centre (‘The Strip’) and 310 
the water level statistics for Lake Mead provided by the Hoover Dam Control Room [38] across the 311 
years of the reference period (for illustration only here), we see a negative correlation (Pearson’s R 312 
(1,24) = -0,82; p<.00) between economic development and resource availability (Figure 7). 313 

 314 

 315 
 316 

Figure 7. Revenues from gaming and leisure activities (top) and water level statistics for Lake Mead 317 
across the years of the reference study. 318 

The results from this study highlight some novel aspects of the full potential of input-driven self-319 
organization in a parsimoniously designed neural network model (AI). SOM-QE provides a highly 320 
reliable output metric that scales, in a few minutes and with a to-the-single-pixel precision, local 321 
variability in time series of images containing millions of pixels each. Although it is self-organizing, 322 
learning in the SOM is explainable and so are its prototype design architecture and the neural 323 
workspace. The input data are not biased, and clearly defined physically. The output metric, the QE, 324 
initially used as a quality metric and for network quantization [6, 7], is proven a powerful and 325 
consistent detector of invisible local changes. When the input to a SOM is constant across time, the QE 326 
metric is invariant [6, 7]. When variability in a locally defined dimension of the input data is 327 
systematic across time, in a given direction (increase or decrease), the QE will systematically and 328 
reliably increase or decrease, as shown in the bulk of our previous work and, once again, here in this 329 
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study. Easily implemented, fast, and computationally economic, SOM-QE satisfies all the current 330 
criteria for trustworthy and sustainable AI [39, 40], within a modest but diverse range of applications.    331 

Supplementary Materials: The following are available online at www.mdpi.com/link: Folder S1, 50 original 332 
pre-processed images from the time series of 25 images for each the two ROI. 333 
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