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Physics-constrained deep learning for biophysical parameter retrieval from Sentinel-2
images: inversion of the PROSAIL model

Yoël Zérah1,∗, Silvia Valero1, Jordi Inglada1

aCESBIO, CNES/CNRS/INRAE/IRD/UT3 - Université de Toulouse, 18 avenue Edouard Belin, 31401, Toulouse CEDEX 9, France

Abstract

In this era of global warming, the regular and accurate mapping of vegetation conditions is essential for monitoring ecosystems, climate sustainability and biodiver-
sity. In this context, this work proposes a physics-guided data-driven methodology to invert Radiative Transfer Models for the retrieval of vegetation biophysical
variables. A hybrid paradigm is proposed by incorporating the physical model to be inverted into the design of a neural network architecture, which is trained by
exploiting unlabeled satellite images. In this study, we show how the proposed strategy allows the simultaneous probabilistic inversion of all input PROSAIL model
parameters by exploiting Sentinel-2 images. The interest of the proposed self-supervised learning strategy is corroborated by showing the limitations of existing
simulation-trained machine learning algorithms. Results are assessed on LAI and CCC in-situ measurements collected on 4 different field campaigns over three
European tests sites. Prediction accuracies are compared with performances reached by the well-established Simplified Level 2 Product Prototype Processor (SL2P).
Obtained overall accuracies corroborate that the proposed methodology achieves performances equivalent to or better than the state-of-the-art methods.
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1. Introduction

Climate change and human activities affect ecosystems at an unprece-
dented magnitude. Monitoring vegetation traits at large scale and precise res-
olution is essential to maintain crop yield in a context of global population
growth (Weiss et al., 2020), as it could help both to adapt agriculture practices
and to react to increasingly frequent extreme events that threaten to disrupt food
supply (Raj et al., 2022; Balasundram et al., 2023).

The regular and accurate mapping of vegetation biophysical variables (BV)
on a global scale is thus becoming increasingly important in environmental
monitoring. The international community has confirmed a strong consensus on
the need of high-resolution BV maps at sub-weekly temporal frequency, and the
Copernicus Land Monitoring Service identified it as a priority. These variables
are essential to understand the vital role of biodiversity and ecosystem services.
They include variables such as the leaf area index (LAI) and the canopy chloro-
phyll content (CCC), which are respectively defined as half the leaf surface area
per unit ground area, and the ”total amount of chlorophyll a and b pigments
per unit ground area” (Gitelson et al., 2005). The LAI is a critical attribute
of canopy involved in processes such as photosynthesis (Duncan, 1971), land
evaporation (Kergoat et al., 2002; Wang et al., 2014), precipitation intercep-
tion (Boussetta et al., 2013), and can be used to estimate crop yield (Mokhtari
et al., 2018). The CCC, which is highlighted as an essential climate variable
(ECV) by the Global Climat Observing System (GCOS) (GCOS, 2011), has
an important role to quantify vegetation health, carbon and water fluxes, and
productivity (Ali et al., 2020).

Quantifying vegetation BV from satellite imagery is a well-known problem
in remote sensing (Zheng and Moskal, 2009). As reviewed in Verrelst et al.
(2019); Fang et al. (2019), retrieval methods can be broadly classified into three
main categories: (i) parametric (ii) non-parametric and (iii) physically-based
model inversion methods.

Parametric methods are model fitting strategies assuming that it exists an
explicit relationship between spectral observations and BV. Traditionally, they
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build explicit parameterized functions relating a limited number of spectral
bands (or vegetation indices) with the variables of interest. Despite being a
widely-used strategy, these methods suffer several disadvantages. One of the
main limitations is that their robustness depends on the properties of the re-
quired in-situ data (i.e., number, quality and representativeness) used to fit sim-
ple mathematical functions. Besides, they do not exploit full-spectrum informa-
tion and mostly combine data features in a linear way. Therefore, these methods
are not reliable given their poor transferability performances to other sites with
different types of vegetation (Heiskanen et al., 2012).

Non-parametric methods do not assume any information about fitting func-
tions, spectral band relationships, correlation between variables or data distri-
butions. In this category, most of the existing works propose machine learning
regression methodologies. These algorithms build a regression model through
a learning phase based on a high number of training samples. The most pop-
ular algorithms are decision trees (Houborg and McCabe, 2018; Srinet et al.,
2019), artificial neural network (Weiss and Baret, 2016; Danson et al., 2003)
and kernel methods (Tuia et al., 2011; Panigrahi and Das, 2021; Durbha et al.,
2007). These methodologies have important strengths : (i) their ability to cap-
ture non-linear relationships of full data spectrum without explicitly knowing
the underlying data distribution, (ii) to cope well with datasets showing redun-
dancy and high noise levels and (iii) efficient data processing times once the
model is trained.

Despite the multiple advantages offered by these methods, they have im-
portant weaknesses for being suitable candidates for operational retrieval pro-
cessing. A well-known limitation of these black-box methodologies is that the
accurate models need to be trained with high number of labeled in-situ samples,
which is difficult or even impossible. Besides, training samples should repre-
sent the real world data as much as possible since algorithms do not generalize
well if training and testing data have deviating statistics.

To avoid performance degradations due to label scarcity and diverse data
distributions, physically-based retrieval methods propose the inversion of radia-
tive transfer models (RTMs). These physical models allow to simulate canopy
reflectances from biophysical variables. The inversion of the well-known RTM
PROSAIL (Jacquemoud et al., 2009; Zhu et al., 2018; Darvishzadeh et al.,
2012) is the most established approach. Considering a high number of combi-
nations of RTM input values, these hybrid methods generate simulated spectral
reflectance scenarios. These simulations enable the creation of look-up-tables
(LUT) containing a large set of simulated vegetation reflectance spectra, (Duan
et al., 2014; Hauser et al., 2021). For these approaches, the inversion problem
is solved by finding the close match between the simulated spectra in the LUT
database and the observed spectrum. Different similarity cost functions are pro-
posed to identify the most similar sample or the set of samples (Rivera et al.,
2013; Marie Weiss et al., 2000; Verrelst et al., 2015). Unfortunately, these ap-
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proaches are computationally expensive due to the iterative calls of LUT entries
on a per-pixel basis making the retrieval of variables unfeasible for large areas.

The most recent works propose to combine the advantages of physically-
based approaches with non-parametric methods (Verrelst et al., 2015; Svendsen
et al., 2018). These hybrid inversion strategies train machine learning regres-
sion algorithms by using artificial data generated by RTM simulations. The
problem of training data availability is thus avoided and the model inversion
process is computationally efficient. Different machine learning algorithms are
proposed by hybrid methodologies aiming the inversion of PROSAIL : artificial
neural networks (ANNs) (Baret et al., 2007), random forests (RF) (Campos-
Taberner et al., 2018), support vector machine regression (Durbha et al., 2007),
Gaussian processes (GPs) Camps-Valls et al. (2016); Svendsen et al. (2018),
etc. The most well-known method is the biophysical variable neural network
(BVNET) (Marie Weiss et al., 2002), which proposes the inversion of the RTM
by training an ANN on PROSAIL simulated data. The satisfactory results ob-
tained by BVNET explain why this hybrid approach is implemented on the
SL2P algorithm of the Sentinel Application Platform (SNAP) Biophysical Pro-
cessor (BP) (Weiss and Baret, 2016) and Sen2-Agri ToolBox (Defourny et al.,
2019).

Despite hybrid strategies are very promising, they do not alleviate some
of the main issues of the ill-posedness inversion problem (Combal et al., 2003;
Atzberger, 2004). The main shortcoming is the lack of realism of physical sim-
ulations which are not representative of real-world data. As a result, poor gener-
alization performances and inaccurate predictions can be obtained by synthetic
unbalanced and biased training datasets. Besides, the choice of the imperfect
RTM to be inverted (epistemic uncertainty) also affects the performances of
these methods.

These limitations are recently highlighted by several studies (Kamenova
and Dimitrov, 2021; Xie et al., 2019) where the poor performance of SL2P over
heterogeneous canopies such as forests are reported (Xie et al., 2019; Brown
et al., 2021b). In it, the low SL2P accuracies are justified by the inability of
PROSAIL to model non-agricultural vegetation types of reflectances.

The main challenge of hybrid methodologies is that the generation of ac-
curate simulations reflecting the characteristics of real-world vegetation spectra
requires a lot of prior knowledge from the physical process. Simulation input
modeling is a hard complex task for experts which requires: (i) the identifica-
tion and the choice of the input data distribution, (ii) the selection of the interval
range of the data and, (iii) the recognition of the correlation or dependency be-
tween variables.

Despite the large number of existing works, the modeling of the ensemble
of BV to generate RTM simulations is still limited. In practice, the distribution
of BV is available only for some vegetation types in a few geographical spatial
and temporal conditions. Furthermore, correlations between BV are not well
established and most of the time the dependency between variables is arbitrarily
imposed.

Recently, some solutions to reduce the impact of real observations and sim-
ulated match-mismatch distributions have been proposed. The work in Gallo
et al. (2023) proposes to train a neural network in a self-supervised manner
to build a feature extraction encoder from hyperspectral data. Then, the pre-
trained encoder is fine-tuned to perform a supervised regression retrieval BV
task by using a simulated training data-set of moderate size.

The work in Svendsen et al. (2021) proposes a different hybrid strategy to
combine machine learning algorithms and physical models for the inversion of
PROSAIL. In it, two different variational inference strategies relying on Monte
Carlo expectation maximization (MCEM) and variational autoencoder (VAE)
are proposed to retrieve three BV from Landsat-8 data. The first strength of this
work is that both methods allow to measure the uncertainty of the predictions
by estimating BV probability distributions. It must be noticed that the quan-
tification of the uncertainties associated to the estimated BV is a well-known
challenge in the literature Brown et al. (2021b). Only a few solutions based on
GP regression algorithms are presented by some works (Verrelst et al., 2013;
Estévez et al., 2021).

Another advantage presented in Svendsen et al. (2021) is that a physics-
based guidance is incorporated in to the training process avoiding simulation-
assisted learning. Unfortunately, the benefits of training without synthetic simu-
lations is not corroborated in the study since only simulated data are considered
for training and testing purposes. Another limitation of the work is that PRO-
SAIL is used as a non-differentiable decoder into a VAE architecture design.
As a consequence, an end-to-end learning procedure can not be performed. Be-
sides, the computational burden is a serious practical impediment for sampling
intensive methods such MCEM or Markov Chain Monte Carlo (MCMC) (Wang

et al., 2022), which can not be deployed for large scale operational variable re-
trieval.

Under this framework, this work aims to propose a physics-driven proba-
bilistic deep learning method for the inversion of PROSAIL. Based on the work
presented in Zérah et al. (2023), our methodology proposes to incorporate a
differentiable PROSAIL model in a deep learning architecture. Then, an end-
to-end training strategy is presented for the simultaneously retrieval of all the
input PROSAIL parameters. There are some works that propose the simultane-
ous estimation of a few BV (Tuia et al., 2011; Atzberger, 2004; Darvishzadeh
et al., 2008; Sehgal et al., 2016; Zhu et al., 2023). However, it must be noticed
that most of the proposed methods focus on a single variable at once (typically
the LAI and other related indices, or the chlorophyll content) and operational
methods such as SL2P train independent ANN for predicting LAI, CCC and
canopy water content (CWC).

Besides the multi-parameter inversion purpose, the proposed methodol-
ogy, denoted as PROSAIL-VAE, presents other important contributions: (i) to
assist the training of advanced regression algorithms by using real Sentinel-2
data (without simulations), (ii) to incorporate prior information about physical
variables to constraint the retrieval estimation and (iii) to exploit spatial context
information in the retrieval process.

Different experiments are carried out to corroborate the interest of the
proposed PROSAIL-VAE. First, the limitations of a simulation-based learning
strategy are analyzed by considering different synthetic training data scenarios.
The experiments evaluate how different choices (prior BV distributions, corre-
lations between parameters and RTM) used to generate the simulations can limit
the transferability of the regression algorithms to real-world situations. Sec-
ondly, different hybrid PROSAIL-VAE architecture designs and training cost
functions are evaluated and compared with the well-established SL2P proces-
sor.

The article is organized as follows. Section 2 presents the proposed method-
ology. Section 3 describes the three types of data-sets considered in this work
(synthetic PROSAIL simulations, Sentinel-2 satellite observations and in-situ
data measurements). Section 4 presents the above described experiments and
the obtained results are discussed in Section 5. Then, Section 6 contains con-
cluding remarks.

2. Methodology

2.1. PROSAIL
The combined PROSPECT leaf optical properties model (Jacquemoud and

Baret, 1990; Feret et al., 2008; Feret and de Boissieu, 2023) and SAIL canopy
bidirectional reflectance model (Verhoef, 1984), known as the PROSAIL RTM
(Jacquemoud et al., 2009) that simulates canopy reflectances from 400 to 2500
nm. PROSAIL links the chemical properties of leaves with canopy structural
properties (e.g. the LAI) to simulate canopy reflectance for a given observation
geometry (with the relative directions of the Sun and sensor from the observed
surface). Scattering by Arbitrary Inclined Leaves (SAIL) is a turbid medium
model, that assumes that the canopy is made of parallel transparent layers be-
tween the atmosphere and the soil. The model is well-suited for dense canopies
with small (or even infinitesimal) leaves such as grasslands, agricultural crops,
and some forests.

The first version of PROSPECT simulates leaf spectra at 5 nm resolu-
tion from three parameters: a leaf structure parameter, a water content and
a leaf pigment content (Jacquemoud and Baret, 1990). The next early PRO-
SPECT versions improve the spectral resolution to 1 nm, and introduce the
spectral contribution of the dry matter contained in leaf cell wall molecules
(Jacquemoud et al., 2000). All photosynthetic pigments in PROSPECT-4 are
assumed to be chlorophyll, whereas PROSPECT-5 differentiates chlorophylls
from carotenoids (Feret et al., 2008). PROSPECT-D adds the contribution of
anthocynanins (Féret et al., 2017, 2019), and PROSPECT-PRO incorporates
nitrogen-based proteins and carbon-based constituents (Féret et al., 2021).

The PROSAIL version used in our study is composed of PROSPECT-5
and 4SAIL (Verhoef et al., 2007), which is a numerically optimized version
of SAIL. The corresponding BV are detailed in Table Section 2.1. A differ-
entiable PROSAIL version has been implemented to allow the propagation of
gradients through a hybrid deep learning architecture incorporating the physi-
cal model. Specifically, the leaf inclination distribution function (LIDF) (Wang
et al., 2007) in SAIL considered is the Campbell’s ellipsoidal LIDF (Campbell,
1990) controlled by the mean leaf angle α, instead of other distributions such
as Verhoef’s LIDF (Verhoef).
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Table 1: PROSAIL input parameters

Model Input Description Unit

PROSPECT-5 N Leaf structure parameter -
Cab Chlorophyll a + b content µg cm−2

Cw Water equivalent thickness cm
Cc Carotenoid concentration g cm−2

Cm Dry matter content µg cm−2

Cb Brown pigments content -

4SAIL LAI Leaf Area Index -
α Mean leaf angle deg
h Hotspot parameter -
ρS Wet soil factor -
rS Soil brightness factor -

Geometry θS Solar zenith angle deg
θO Observer zenith angle deg
ψS O Relative azimuth angle deg

Considering as a starting point the code available on (Domenzain et al.,
2019), an implementation of PROSAIL in Pytorch compatible with automatic
differentiation and allowing the generation of simulations in parallelized batches
has been developed. Finally, the simulated PROSAIL reflectance values are
converted to Sentinel-2 bands by applying the band-specific response functions
of the sensor (see Appendix Appendix A for more details).

2.2. Variational Autoencoder
Auto-Encoders (AE) are symmetric encoder-decoder neural network mod-

els trained in a self-supervised manner to infer embedding representations from
input data. Deterministic embeddings are outputted by the encoder and the
decoder part uses them to match the reconstruction with the input data.

Introduced by (Kingma and Welling, 2014), Variational Auto-Encoders
(VAE) incorporate Bayesian theory with classical AE architectures to solve
stochastic inference problems. Assuming that the input data x is generated
from an ensemble of probabilistic embeddings z (called latent variables), the
VAE’s goal is to retrieve the posterior distributions p (z|x). Because the joint
distribution of the input data p(x) is untractable, variational inference is used to
retrieve p (z|x), by approximating them with distributions q(z|x).

The encoder (resp. the decoder) corresponds to qφ(z|x), (resp. pθ(x|z)),
with φ (resp. θ) the parameters to be optimized. Both qφ(z|x) and pθ(x|z) are
commonly chosen as isotropic Gaussian distributions.

For a given input x, the encoder learns the distribution parameters µφ(z)
and σφ(z). The distributions are sampled from the latent space and injected
through the decoder which outputs the distribution parameters µθ(x) and σθ(x),
from which reconstructions can be sampled. Latent variables are sampled by
considering the reparametrization trick, which enables the back-propagation
during the training process minimizing the following objective function:

− Ez∼qφ(z|x)
[
pθ (x|z)

]︸                 ︷︷                 ︸
Reconstruction term

+KL
[
qφ(z|x)‖p(z)

]︸                ︷︷                ︸
Regularization term

. (1)

The loss reconstruction term incites the VAE to learn reconstructions match-
ing the input data x. This term is known as the expected negative log-likelihood
and, under the Gaussian assumption, it can be written as:

Ez∼qφ(z|x)
[
pθ (x|z)

]
=

1
2

∑
i

[
log 2πσ2

θ,i(z) +

(
xi − µθ,i(z)

)2

σ2
θ,i(z)

]
, (2)

with i indexing the feature dimension of the input data.
The regularization term is the Kullback-Leibler divergence (KLD) between

the approximate posteriors qφ(z|x) and the prior distributions p(z), that are
usually chosen as standard Gaussian distributions. This term encourages the
matching of latent and prior distributions.

2.3. PROSAIL-VAE
PROSAIL-VAE is defined as a VAE in which PROSAIL is integrated as

a physics-based deterministic differentiable decoder (see Fig. 1). In this archi-
tecture design, the encoder takes Sentinel-2 (S2) reflectances and observation
angles as input, and outputs the parameters of the marginal distribution of each
PROSAIL variable (i.e. the latent distributions correspond to PROSAIL input
parameter distributions). Once trained, the encoder is thus a fast, probabilistic
inverser of PROSAIL.

During the training phase, samples from latent BV distributions are drawn
and forwarded to the PROSAIL model. The physical decoder then simulates
the corresponding canopy spectra and the resulting reflectances are converted
to Sentinel-2 bands by applying the band-specific response functions of the
sensor. Although only the encoder is trained during the end-to-end learning
process, our differentiable implementation of PROSAIL allows gradient back-
propagation to be performed through the whole architecture (from the loss term,
upstream towards the encoder inputs).

As mentioned above, the distributions inferred by the encoder correspond
to the physical PROSAIL input variables. Therefore, the learned variables
are constrained to ensure accurate and realistic PROSAIL simulations. This
is achieved by forcing latent variable distributions to be within a specified
range. Specifically, sampled values are constrained to BV definition domains by
modeling their distributions as two-sided truncated Normals (TN). The specific
range (see Table 2) is imposed by re-scaling the output encoder distributions,
which are previously constrained to the range [0, 1].

PROSAIL-VAE is optimized by minimizing the VAE loss function de-
scribed in Eq. 1. In our case, the KLD loss term encourages the inferred TN
distributions to match prior latent distributions corresponding to the ensem-
ble of BV. Uniform distributions over their definition ranges (see Table 2) are
considered as BV priors. The work in (Zérah et al., 2023) gives more infor-
mation about the choice and sampling of meaningful latent distributions, the
KLD distance between TN and uniform distributions and the computation of
the decoder’s distribution with Monte Carlo (MC) sampling.

To balance reconstruction and KLD loss terms, the incorporation of a βKL
weighting coefficient (see Eq. 3) is proposed (Higgins et al., 2017). The influ-
ence and the impact of KLD loss terms is studied in Section 4 through different
scenarios by considering : (i) βKL = 0, (ii) a KLD loss term computed on all
PROSAIL BV and (iii) the selection of a subset of the variables (LAI and Cab)
for KLD term computation.

LPROSAIL-VAE = Lrec + βKLLKL. (3)
The two different PROSAIL-VAE encoder architectures described in Fig. 2

are proposed. Both are based on a residual network backbone, with 3 residual
connection blocks, and they infer BV for each pixel of the input images. The
first architecture is a pixel-wise multi-layer perceptron (MLP) which handles
independently each image pixel. The second proposed encoder is defined as a
convolutional neural network (CNN) and it captures the spatial context infor-
mation.

2.4. Supervised regression strategies
Besides the proposed self-supervised PROSAIL-VAE, two simulation-assisted

learning regression methods are also studied for the inversion of PROSAIL. The
first strategy is the well-known BVNET, which is integrated as a SL2P tool in
SNAP’s BP (Weiss and Baret, 2016). Secondly, a multiple probabilistic super-
vised regression approach is presented by considering the proposed pixel-wise
probabilistic encoder of Section 2.3 (see Fig. 2).

2.4.1. BVNET
BVNET is a very simple two-layered neural network architecture predict-

ing single biophysical variables (LAI, CCC, CWC, fraction of vegetation cover
(F-COVER) or fraction of absorbed photosynthetically active radiation (FA-
PAR)). Composed by 66 weights, the network is trained by using a classical
mean squared error (MSE) loss function. Satellite reflectances and observation
angles are considered as input data.

In this study, the performance of BVNET is assessed by two different
configurations. Firstly, the transferability of BVNET is evaluated by train-
ing several models using different simulated data-sets scenarios (Section 3.1).
Secondly, the performance of predictions obtained by the pre-trained BVNET
available in SL2P is studied in Section 4.3. The studied pre-trained model was
originally trained by using PROSPECT-3+SAILH simulations and it predicts
LAI and CCC variables.
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Table 2: Range of the PROSAIL input variables in PROSAIL-VAE

Variable N Cab Cw Cc Cm Cb LAI α h ρS rS

min 1.2 20.0 0.0075 5 0.003 0 0 30 0.0 0 0.3
max 1.8 90.0 0.0750 23 0.011 2 10 80 0.5 1 3.5

Decoder - PROSAIL

PROSPECT-5

4SAIL
Leaf

reflectance
spectra

Latent
distribution
parameters

Reparametrization sampling
+ rescaling

PROSAIL
input

variables

Canopy
reflectance

spectraEncoder

Sun / S2
angles

S2 image Reconstruction

S2 Sensor 
model

Figure 1: Description of the proposed PROSAIL-VAE methodology

last linear layer

first linear layer

S2 image + Sun / S2 angles

Sigmoid

residual connexion block

residual connexion block

residual connexion block

ReLU

ReLU

linear layer

ReLU

linear layer

+

Figure 2: Backbone of the encoder of PROSAIL-VAE, with a first input layer
followed by 3 blocks of 2 layers with skip connections, and a last layer that
outputs the parameters of the distribution of PROSAIL variables. For the pixel-
wise version of the encoder, all linear layers are dense layers of size 32. For the
spatial version, all linear layers are 2D convolutional layers with size 32 and
stride 1. The first layer has a filter size of 3×3, whereas the size of the rest of
the layers is 1 × 1.

2.4.2. Multiple probabilistic supervised regression (MPSR)
The neural network architecture of the pixel-wise PROSAIL-VAE encoder

(see Section 2.3 and Fig. 2) is proposed to solve the supervised regression prob-
lem. It must be noticed that the pixel-wise encoder is considered because sim-
ulated training data-sets composed of realistic images cannot be generated by
PROSAIL. Compared to BVNET, this strategy has several advantages: (i) more
complex relationships can be discovered by increasing the complexity of the
neural network and (ii) a multiple probabilistic prediction of BV can be per-
formed by training a single model. In this case, the supervised training is carried
out by using the Negative Log-Likelihood of Truncated Gaussians described in
(Zérah et al., 2023). Thus, the predicted distribution parameters of all BV are
compared with the simulated data-set values at each training step.

2.5. Evaluation metrics
Assuming a set of n reference measurements (xi)i∈{1,...n} and their corre-

sponding predictions (x̂i)i∈{1,...n}, the root mean squared error (RMSE) is used
to evaluate the accuracy of the predictive models:

RMSE =

√√
1
n

n∑
i=1

(xi − x̂i)2

Probabilistic predictions are also evaluated by studying the uncertainties
associated to the prediction intervals of each reference measurement. The pre-
diction interval

[
lx̂i , ux̂i

]
estimates in what range a future individual observation

will fall, with probability α. In this study, α is set to 0.95 (corresponding to a
2σ rule) and the quantitative evaluation is carried out by:

• the mean prediction interval width (MPIW), that quantifies the confi-
dence of the model in its estimation.

MPIW =
1
n

n∑
i=1

(
ux̂i − lx̂i

)
• the prediction interval coverage probability (PICP) that corresponds to

the ratio between the number of measurements that are inside their pre-
diction intervals, over the total number of measurements.

3. Data-sets

PROSAIL simulations, Sentinel-2 satellite data and in-situ measurements
are used in our experiments. Simulations correspond to a set of data pairs con-
structed from PROSAIL input variables and corresponding outputs. The super-
vised BVNET and MPSR strategies described in Section 2.4 are trained with
this synthetic data. The Sentinel-2 satellite data is used to train the proposed
self-supervised PROSAIL-VAE methodologies. Finally, the in-situ data-set,
which integrates measurements from three different field campaigns, is consid-
ered to assess the predictions of the trained models.
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3.1. Simulated data-sets
A simulated data-set is composed of a set of S2 reflectances derived from

the PROSAIL simulations with their corresponding input parameters. Differ-
ent design decisions are considered for the simulation input modeling process:
(i) the choice of the input data distributions and their interval ranges, (ii) the
correlation or dependency between variables and (iii) the selection of PRO-
SAIL model version. As a result, several synthetic data-sets are built and used
in our experiments.

1. Ranges and distributions of PROSAIL input parameters. The descrip-
tion of the input PROSAIL parameters used for the simulation process
are described in Table 3. These distributions are mostly identical to
that of the training data-set of SL2P (Weiss and Baret, 2016). Only
few differences can be found for some variables since PROSAIL model
versions chosen in this study differ from the one used to pre-train the
SL2P toolbox (see Section 2.4.1). For instance, instead of using a refer-
ence soil spectra database, the soil is made up of the linear combination
of two spectra, dry and wet, respectively in our PROSAIL simulations.
The wet soil spectrum is controlled by a wet soil factor coefficient ρS ,
whose distribution is set to uniform over its definition range. Equiv-
alent water thickness Cw distribution parameters are derived from rel-
ative water content (Cw,rel) specifications previously defined in Weiss
and Baret (2016) by considering the relation Cw,rel =

Cw
1−Cm

. Also, the
observation angles are simulated with S2 orbital characteristics, by uni-
formly drawing random locations between -56° and 83° latitudes, like
performed in Weiss and Baret (2016).

2. Correlation between input PROSAIL variables and LAI. Two proce-
dures are studied to transform the independently sampled input PRO-
SAIL parameters V into variables V? correlated with LAI. Both define
the correlated variable V? as an affine transformation of the LAI. The
first strategy referred as type 1 is proposed in Inglada (2017) and it is
described by Eq. 4. It uses two parameters: the mode µV of the PRO-
SAIL variable distribution, and a scaling constant CLAI (see Table 3).

V? (LAI) = µV + (V − µV )
(
1 − min (LAI,CLAI)

CLAI

)
(4)

The second procedure presented in Weiss and Baret (2016) and referred
as type 2 is denoted by Eq. 5. This method uses 4 auxiliary variables
Vl,0, Vu,0, Vl,M and Vu,M

1 for each PROSAIL input variable (see Ta-
ble 3). Vl,0 and Vu,0 are the lower and upper bounds of the interval of
the independently sampled variable V , and Vl,M and Vu,M are the lower
and upper bounds of the correlated variable V? at LAI = LAImax = 15.

V? (LAI) =

(
V − Vl,0

)
(vu (LAI) − vl (LAI))
Vu,0 − Vl,0

+ Vl,M (LAI) (5)

with the functions

vl (LAI) = Vl,0 + LAI
(
Vl,M − Vl,0

)
vu (LAI) = Vu,0 + LAI

(
Vu,M − Vu,0

)
.

3. PROSAIL models. Two versions are evaluated by combining 4SAIL
with PROSPECT-5 (or PROSPECT-D) versions. The PROSPECT-D
model is created by adding a new parameter (anthocyanins) to PROSPECT-
5 model. As a result, this model is able to to simulate leaf optical prop-
erties through a complete lifecycle, including juvenile and senescent
stages, as well as environmental stresses.

3.2. Sentinel-2 patch data-set
To train PROSAIL-VAE, a data-set of S2 image patches is built. The four-

teen western Europe S2 Military Grid Reference System (MGRS) tiles shown in
Fig. 3 and freely available in the THEIA catalogue2 are considered in this data-
set. They are orthorectified, terrain-flattened and atmospherically corrected
with the MAJA processor (Rouquié et al., 2017; Hagolle et al., 2017). Only
spectral bands acquired at 10 and 20 m spatial resolutions are considered and
20 m bands are upsampled using cubic interpolation to 10 m. For each pixel,

1Indices notations are: u for ”upper bound”, l for ”lower bound”, 0 for ”at
LAI=0”, M for ”at maximum LAI value”.

2https://www.theia-land.fr/en/product/sentinel-2-surface-reflectance/

Figure 3: The selected 14 MGRS tiles. They include the location of 2 of the
3 the test sites where in-situ measurements were collected (Las Tiesas-Barrax
and the Belsar Site).

the three angles defining its observation geometry are also taken into account:
the satellite and solar zenith angles at the Earth surface and the relative azimuth
angle between the sun-Earth and Earth-satellite directions. For each tile, 1–3
different regions of interest (ROIs), of size 5120×5120 m describing croplands
and forest areas are selected (see Table 4). The resulting ROIs do not overlap
test sites where in-situ measurements described in Section 3.3 were collected.
For each tile, multiple acquisitions with dates ranging between January 2016
and December 2019 are considered (see Fig. 4). Within chosen S2 acquisitions,
when the selected ROIs are observed (the cloud coverage is below 3%), the
corresponding 512 × 512 pixels patches are extracted.

As depicted in Fig. 5, each 512 × 512 ROI patch is spatially split into 16
disjoint patches of size 128 × 128 10 m pixels: 14 for training, 1 for validation,
and 1 for testing. Any 128 × 128 patch with invalid pixels (due to clouds) is
discarded. The training data-set is used for PROSAIL-VAE model training, the
validation data-set is used to monitor the loss during training and ensure that
the model does not over-fit. The testing data-set is used to assess the perfor-
mances of the trained models3. Specifically, the testing data is used to assess
reconstructions and parameter inference on unseen samples (see Section 4 and
Appendix Fig. B.22). The number of patches for each data-set is described in
Table 4.

3.3. In-situ data collection
The data-set is composed of direct measurements collected in different

field campaigns under the framework of fiducial reference measurements for
vegetation (FRM4Veg) and BelSAR projects. The complete data-set contains
211 LAI and 121 CCC reference measurements. This data serves as a reliable
reference for quantitatively evaluating the accuracy of the biophysical variable
predictions.

3.3.1. fiducial reference measurements for vegetation (FRM4Veg)
FRM4VEG is a European Space Agency (ESA) managed project focused

on establishing the protocols required for traceable in-situ measurements of
vegetation-related parameters, to support the validation of Copernicus prod-
ucts (Origo et al., 2020). In this project, different field campaigns have been
performed over two test sites covering agricultural crops (Las Tiesas-Barrax,

3The testing data-set doesn’t intervene in either model parameters nor
hyper-parameter tuning.
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Table 3: Sampling distributions of PROSAIL parameters to generate the simulated data-sets.

Variable V Distribution Range Distribution parameters
Co-distribution

type 1 parameter
Co-distribution

type 2 parameters
Vl,0 (min) Vu,0 (max) µV σV CLAI Vl,M Vu,M

N TN 1.2 2.2 1.5 0.3 10 1.3 1.8
Cab TN 20 90 45 30 10 45 90
Cw TN 0.0075 0.0750 0.025 0.020 10 0.015 0.055
Cc TN 5 23 11 5 - - -
Cm TN 0.003 0.011 0.005 0.005 10 0.005 0.0110
Cb TN 0.0 2.0 0.0 0.3 10 0.0 0.2
LAI TN 0 15 2 3 - - -
α TN 30 80 60 20 10 55 65
h TN 0.10 0.50 0.25 0.50 - - -
ρS Uniform 0 1 - - - - -
rS TN 0.3 3.5 1.2 2.0 10 0.5 1.20

2015-12
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2016-09

2016-12
2017-03

2017-06
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2017-12
2018-03

2018-06
2018-09

2018-12
2019-03

2019-06
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2019-12
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T31TCJ
T30UWU
T30TXQ
T30TUM
T30SWJ
T30SVG
T30STE

Acquisition Date

M
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R
S
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Figure 4: Dates of image acquisitions for each MGRS tile
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Table 4: Patches and pixel content of training, validation and testing S2 image data-sets for PROSAIL-VAE.

S2 Tile Acquisitions ROIs
Training
patches

(32 x 32)

Training
pixels

Validation
patches

(32 x 32)

Validation
pixels

Testing
patches

(128 x 128)

Testing
pixels Total pixels

T30STE 13 1 2688 2752512 192 196608 12 196608 3145728
T30SVG 8 1 1568 1605632 128 131072 8 131072 1867776
T30SWJ 5 3 896 917504 64 65536 4 65536 1048576
T30TUM 7 1 1568 1605632 112 114688 7 114688 1835008
T30TXQ 6 1 1344 1376256 96 98304 6 98304 1572864
T30UWU 8 1 1792 1835008 112 114688 8 131072 2080768
T31TCJ 1 1 224 229376 16 16384 1 16384 262144
T31TFJ 9 1 2016 2064384 144 147456 9 147456 2359296
T31UDP 8 2 1792 1835008 128 131072 8 131072 2097152
T31UFS 8 2 1792 1835008 128 131072 8 131072 2097152
T32TPQ 9 1 1808 1851392 144 147456 9 147456 2146304
T32ULV 10 1 2240 2293760 160 163840 10 163840 2621440
T33SVB 11 1 2464 2523136 176 180224 10 163840 2867200
T33TWF 8 3 1792 1835008 128 131072 8 131072 2097152

Total 23984 24559616 1728 1769472 108 1769472 28098560

Figure 5: Example of ROI contained in T30TXQ tile (French Aquitaine) on
2019-10-11. The splitting result patches are shown in red (training), blue (vali-
dation) and green (testing).

Spain) and deciduous broadleaf forest (Wytham Woods, UK). Besides LAI,
CCC and bare soil measurements, their associated uncertainties are also avail-
able for both test sites.

Considering an elementary sampling unit (ESU) of 20×20m, about 12 to
15 LAI individual measurements were performed using digital hemispheric
photography (DHP). Leaf chlorophyll content (LCC) measurements were made
on 13 points per ESU with a Konica Minolta SPAD-502 chlorophyll meter.
Considering 3 leaves per point with 6 replicates per leaf, 234 measurements
were thus performed for each ESU. The relative values provided by the SPAD-
502 were converted to absolute units using calibration functions specific to each
vegetation type (Origo et al., 2020). Finally, CCC measurements were obtained
by applying CCC = LCC×LAI. Although the measurement of non-destructive
chlorophyll can lead to imprecise and unreliable results (Zhang et al., 2022), it
must be noted that measurements provided by the FRM4Veg campaigns were
performed with rigorous and high standard protocols considering important
number of repetitions and uncertainty estimations (Brown et al., 2021a).

In our study, the measurements collected in 2018 and 2021 over Barrax
test site are used (see Fig. 6). As proposed in Brown et al. (2021b), alfalfa mea-
surements are not considered because these crops had been thinned prior to the
Sentinel acquisitions, but after the in situ measurements were made. By con-
sidering the dates of in-situ measurements, satellite images acquired on (2018-
05-16, 2018-06-13, 2018-07-22) are considered for the Barrax test site.

In the case of Wytham test site, only data from 2018 is considered due to
the lack of clear satellite image acquisitions over the summer of 2021. For this
study area, S2 images acquired on 2018-06-29 and 2018-07-06 are used.

3.3.2. BelSAR
In the framework of the BelSAR project (Bouchat et al., 2023; Orban et al.,

2021; Bouchat et al., 2022), field measurements and airborne SAR bistatic ac-
quisitions were collected over a test site in Belgium, near the town of Gembloux
during the summer of 2018. This project had the objective of assessing the inter-
est of SAR bistatic acquisitions for vegetation and soil humidity monitoring. It
also wanted to validate the capabilities of active-passive satellite configurations
by ensuring the performances of L-band SAR bistatic and multistatic imagery.

In the BelSAR campaign, measurements were collected over 10 maize and
10 winter wheat fields larger than 1 hectare (ha) in size (see Fig. 8).

The BelSAR project provides plant area index (PAI) measures for wheat
parcels and green area index (GAI) for maize fields. Considering that PAI and
GAI are similar to LAI Fang et al. (2019), both measurements are interpreted
as LAI in our study. For each field, 3 measurements were made at each date.
Accordingly, the average of the measurements computed at each parcel for each

7



2018 2021

Measurement	year

Figure 6: In-situ measurements of 2018 and 2021 FRM4Veg in Las Tiesas -
Barrax test site (S2 image of 2018-06-13).

Figure 7: In-situ measurements collected over FRM4Veg Wytham area in 2018.

Figure 8: Field parcels of BelSAR test site over a S2 image acquired on 2018-
05-08).

date is considered as reference. Following the same idea, the standard deviation
at parcel level is interpreted as an uncertainty measurement.

A timeline of the BelSAR measurement dates and available S2 images
is shown in Fig. 9. It should be noted that the measurements of 2018-08-29
were excluded from our study, as no valid S2 images were available within 24
days before or after. There are three or four acquisitions for each parcel, as
field measurements are not carried out for each maize or wheat parcel for each
measurement date.

4. Experiments

4.1. Experimental setup
First, experiments investigate how the simulation process described in Sec-

tion 3.1 affects the performances of the well-established BVNET algorithm.
Second, different hybrid PROSAIL-VAE architecture designs and training cost
functions are evaluated and compared with the regression strategies described
in Section 2.4.

The quantitative evaluation is carried out by using the in-situ data described
in Section 3.3. The predictions are temporally interpolated because satellite and
in-situ measurements are usually not acquired at the same dates. The weighted
interpolation considers the two most temporally closest available S2 images.
The predicted uncertainty intervals output by PROSAIL-VAE and MPSR are
also interpolated.

The high-performance computing (HPC) platform of CNES’s Data Pro-
cessing Centre with the following hardware is used for the experiments :

• CPU model: Intel(R) Xeon(R) CPU E5-2698 v4

• GPU model: NVIDIA Tesla V100-SXM2-32GB

• RAM: 64 GB.
To greatly reduce the time-cost of simulations, the resolution of 1 nm over

the PROSAIL spectral range of [400, 2500] nm is down-sampled. This task is
performed by a moving average filter which moves a sliding fixed size window
with a specified stride over the simulated spectra. A filtering stride size equals
to the window length is used to avoid zero overlap. Some experiments have
corroborated that a size equal to 7 ensures a negligible error with respect the
non-down-sampled version. Specifically, the simulation error is at least an or-
der of magnitude lower than the uncertainty induced by MACCS-ATCOR joint
algorithm (MAJA) atmospheric corrections (RMSE ≈ 10−2) (Colin et al., 2023;
Doxani et al., 2023).
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Figure 9: Timeline of measurement dates for maize and wheat parcels of BelSAR campaign, and available S2 images.

4.2. Impact of the simulation process on BVNET performances
The performances of several BVNET models trained using different sim-

ulation scenarios are evaluated. The LAI and CCC predictive accuracies of
BVNET are assessed over a simulated and the in-situ datasets. Within SL2P,
the trained BVNET has 2 linear layers with optimized weights, and performs
normalization of input data, and de-normalization of the output prediction,
with constants computed from its training data-set. In our experiments, we
use the same normalization and de-normalization constants, that we retrieved
from SL2P, and only the BVNET linear layer weights are optimized during the
training process.

4.2.1. Learning under training and testing distribution mismatch
This experiment studies how a mismatch between the training and testing

LAI distributions affects the BVNET model performances. A set of training
data-sets are generated using simulations provided by the PROSAIL model with
PROSPECT-5. Except for LAI, the distribution parameters specified in Table 3
are considered for the generation of all the data-sets. For LAI, each training
data-set is generated using a TN with range [0, 15], with parameters µtrain ∈
(0, 1, 2, 3, 4) , σtrain ∈ (0.5, 1, 2, 3, 4). Each of the simulated training data-sets
contains 40000 samples and it is used to independently train different BVNET
models. For each training data-set, 10 BVNET models are trained to account
for variability due to randomness in trainings.

The RMSE is used to assess the LAI predictive performances of the trained
BVNET models. First, a synthetic testing data-set with 40000 samples is used
to assess performances across all models. The generation of this data-set fol-
lows the same training data simulation procedure considering a LAI TN dis-
tribution with µtest = 2, σtest = 3. A second validation is performed by con-
sidering the in-situ measurements of Section 3.3. Results obtained for both
testing data-sets are shown in Fig. 10. This figure shows how the discrepancy
between training and testing LAI distributions impacts the BVNET predictive
performances. The similarity measure between the training and testing LAI
TN distributions is computed with the KLD metric. The upper row in Fig. 10
shows the LAI RMSE obtained on the simulated testing data-set. The lower
row shows the LAI RMSE obtained on the in-situ measurements. The RMSE
is shown as a function of the log-scale KLD between the LAI testing (ptest)
and training (ptrain) distributions. The dots correspond to the average RMSE
of the 10 BVNET models trained with a given data-set, whereas the vertical
lines are the standard deviations (stds) of the RMSE. The horizontal red line
shows the performances of the well-established SL2P. The results displayed in
both rows corroborate that BVNET performances decrease when the mismatch
between training and testing distributions increases. Furthermore, the behavior
is the same for simulations and for real data, showing that the experiment is
reflecting what may occur with real-world applications. This also shows that
the distributions used to generate the training data of SL2P are very well chosen
since optimal performances are reached on in-situ measurements.

It can be noted that there is a BVNET trained with a data-set whose KLD
is high (orange dot with KLD= 8.75), which has a similar performance on
in-situ data than BVNET with lower KLD. Despite this last satisfactory result
obtained on the in-situ data, it is unlikely that this BVNET model would gen-
eralize well because the LAI distribution of the training data-set is very narrow
(σ = 0.5). As a matter of fact, the large std of RMSE on in-situ data confirms
this hypothesis.
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Figure 10: LAI RMSE (lower is better) shown as a function of the log-scale KL
divergence between the LAI testing (ptest) and training (ptrain) distributions.
The dots are the average RMSE of the 10 BVNET models trained with a given
data-set, whereas the vertical lines are the standard deviation of the RMSE. The
horizontal red line shows the performances of the well-established SL2P. Upper
row: simulated testing data-set. Lower row: in-situ measurements.
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Figure 11: LAI and CCC RMSE (lower is better) obtained by BVNET models
trained by using the 4 different data-sets. The data-sets naming convention is
P{V}-C{i}, with V being the PROSPECT version and i being the co-distribution
type used to generate the data-set samples. The horizontal red line indicates
SL2P’s accuracy performances.

4.2.2. The effect of PROSAIL version and variable co-distributions
The following experiments evaluate how the BVNET performances are

impacted by the choice of (i) the PROSAIL model version and (ii) the proce-
dure used to incorporate correlations between PROSAIL input parameters. To
evaluate these effects, the simulation modeling designs described in Section 3.1
are used to generate four different training data-sets, with the distributions pa-
rameters of Table 3. The resulting data-sets, with 40000 samples each, are used
to train BVNET models to predict LAI or CCC variables (i.e. eight training
configurations). For each training configuration, 20 BVNET models are inde-
pendently trained.

The training data-sets are referred as P{V}-C{i}, with V denoting the PRO-
SPECT model version (5 or D). To ensure that input variables for both studied
models are strictly identical, the anthocyanin content parameter required by
PROSPECT-D is set to 0.0 µg cm−2. Concerning C{i}, it denotes the procedure
used to incorporate correlations between LAI and the rest of PROSAIL vari-
ables. We denote the co-distribution types 1 and 2 which follow Eq. 4 and Eq. 5
respectively.

A quantitative evaluation is performed using the previously described in-
situ LAI and CCC validation data (see Section 3.3). Fig. 11 shows the obtained
results which corroborate that the different simulation engineering designs im-
pact the BVNET performances. Unfortunately, concluding which configuration
to choose from the results is not straightforward. For instance, co-distribution
type 2 seems to improve LAI predictions whereas it deteriorates the predictive
performances of CCC.

Using PROSPECT-5 instead of PROSPECT-D seems to increase LAI pre-
diction accuracy no matter the used co-distribution. PROSPECT-5 obtains
slightly better performances for CCC than PROSPECT-D for the co-distribution
type 1. Conversely, the predictive accuracies of these models decrease when the
co-distribution type 2 is used. The difference in performance observed here for
chlorophyll between PROSPECT versions in training data-sets is corroborated
in Hauser et al. (2021). The impact of simulation modeling design on predictive
performances explains why results obtained by our trained BVNET models are
slightly different from the ones reached by the BVNET in SL2P. Note that the
simulated data-base used to train SL2P’s BVNET is generated by PROSPECT-3
model (this model doesn’t differentiate carotenoid from chlorophyll pigments).
Besides, different strategies are used to characterize soil spectra required by the
SAIL model.

Another important remark of the obtained results is that the best perfor-
mances of LAI and CCC are not reached by the same training data-set. This
confirms that the generation of optimal simulations to assist supervised regres-
sion algorithms requires extensive efforts and it can lead to poor transferability
performances.

4.3. Evaluation of the proposed PROSAIL-VAE methodology
Different PROSAIL-VAE model configurations are trained and evaluated

here. The studied configurations summarized in Table 5 aim to investigate:
(i) spatial or pixel-wise encoder architectures (Fig. 2), (ii) different prior KL

regularization terms and (iii) the impact of the βKL parameter balancing the
training loss terms (Eq. 3). This last experiment is performed by using three dif-
ferent βKL values (0,1,2). The configuration βKL = 0 is denoted as PROSAIL-
VAE-NP and it indicates that no prior is considered. For all configurations, uni-
form prior distributions p(z) are considered for all PROSAIL input parameters.
To investigate the effects of different KL regularization terms, the following
scenarios are studied:

• a single LAI prior (PROSAIL-VAE-L)

• the use of LAI and CAB priors (PROSAIL-VAE-LC)

• all PROSAIL input variables priors (PROSAIL-VAE-AV)

The proposed PROSAIL-VAE configurations are trained on the S2 image
data-set presented in Section 3.2 (see Table 4). By using the classical Adam
optimizer (kin, 2015), a two-phase optimization strategy is used for each con-
figuration. First, 10 different models are trained with different seeds, with a
learning rate (LR) equal to 10−3 for 10 epochs. Secondly, the model perform-
ing best on S2 validation data is selected for the second optimization step and
further trained for 300 epochs. During this second training phase, a cyclical LR
scheduler is used by considering a maximum and minimum bound values equal
to LRmax = 5 × 10−4 and LRmin = 10−8. The scheduler reduces the LR by a
factor of 10 when the validation loss hits a plateau during 5 consecutive epochs.

The prediction performances of the different trained PROSAIL-VAE mod-
els are compared with the MPSR supervised strategy described in Section 2.4.2
and the well-known pre-trained SL2P processor. The training of MPSR is car-
ried out by using a simulated data-set containing 2×105 samples. This data-set
is generated with PROSPECT-5 + 4SAIL, following the procedure detailed in
Section 3, with the BV sampled from the distributions provided in Table 3,
and with correlations introduced by co-distribution type 2. For the supervised
training stage, similarly to PROSAIL-VAE, different models are initialized and
trained for a few epochs, and the best is selected for further training. In this sec-
ond training phase, the number of epochs is set to 5000 and the LR is scheduled
identically to that of PROSAIL-VAE.

The quantitative assessment of the results is performed using the LAI and
CCC in-situ measurements of Section 3.3. The metrics described in Section 2.5
are used to evaluate the TN distributions associated to the input PROSAIL pa-
rameters predicted by PROSAIL-VAE models and the MPSR strategy.

The estimate of the LAI is taken as the expectation µLAI of the LAI TN
distribution produced by the encoder of PROSAIL-VAE, and is directly com-
pared with the in-situ measurement. A simple prediction interval is computed
as

[
µLAI − nσLAI , µLAI + nσLAI

]
, with σLAI the standard deviation of the TN

distribution and n = 2. Concerning CCC, the predicted value is obtained by
CCC = µLAI × µCab

4.
The SL2P evaluation is performed by taking directly LAI and CCC predic-

tions. For this approach, uncertainty evaluation can not be performed.

4.3.1. Quantitative assessment using in-situ data-sets
Fig. 12 shows the LAI results, whereas CCC performances are shown in

Fig. 13 for the different test sites.
Some differences can be observed by comparing the results obtained by the

studied methods on the different test sites. For instance, PROSAIL-VAE mod-
els always outperform SL2P on the Wytham site. In contrast, SL2P seems to
perform a little better on Barrax’s 2021 campaign. However, the SL2P improve-
ment on this last test site is less significant since good RMSE and uncertainty
metrics are also obtained by the rest of methods.

On the BelSAR campaign, best results are mostly obtained by PROSAIL-
VAE models. In this case, some differences can be highlighted by comparing
PROSAIL-VAE strategies proposing different prior KLD regularization terms.
The PROSAIL-VAE-AV configuration forcing the prior on all input PROSAIL
parameters obtains the worst results. In contrast, PROSAIL-VAE-LC reaches
the best performances on BelSAR campaign by only considering LAI and Cab
priors. The performance of PROSAIL-VAE-L configuration is corroborated by
results on the Barrax 2018 campaign.

Despite the differences between results obtained on the different sites, most
of PROSAIL-VAE models achieve better overall RMSE performances than

4The estimated uncertainty is derived from the variance of the product of
LAI and Cab, by assuming that they are not correlated (Goodman, 1960):
var (LAI ×Cab) =

(
var (LAI) + µ2

LAI

) (
var (Cab) + µ2

Cab

)
− µ2

LAIµ
2
Cab
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(a) RMSE of regression experiments obtained on in-situ data-sets. The vertical red line corresponds to SL2P results for each test site.
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(c) PICP of regression experiments on in-situ data-sets. The vertical green line is the ratio of values that lie within a 2-σ interval estimate in a normal distribution
(≈ 0.95)

Figure 12: Boxplots of LAI metrics obtained on in-situ data-sets with PROSAIL-VAE models and MPSR. For each configuration, 10 models are trained and attained
min and max values are displayed by boxplot whiskers. The box sites are the 25th and 75th centiles, and the purple line inside corresponds to the median.
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(b) MPIW of regression experiments on ground validation data-sets
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(c) PICP of regression experiments on in-situ data-sets, the vertical green line is the ratio of values that lie within a 2-σ interval (consid-
ering a normal distribution) (≈ 0.95)

Figure 13: Boxplots of CCC metrics obtained on in-situ data-sets with PROSAIL-VAE models and MPSR. For each configuration, 10 models are trained and
attained min and max values are displayed by boxplot whiskers. The box sites are the 25th and 75th centiles, and the purple line inside corresponds to the median.
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Table 5: Studied PROSAIL-VAE configurations which depend on the encoder architecture, βKL value and the used variable priors. The configuration acronyms
consider : pix for ”pixel-wise”, spa for ”spatial”, NP for ”no prior”, L for ”LAI”, LC for ”LAI and Cab”, AV for ”all variables”.

Configuration acronym Prior type Variable prior Encoder architecture βKL

Pix-B0-NP None None
(PROSAIL-VAE-NP)

pixel-wise 0
Spa-B0-NP spatial 0
Pix-B1-L

Uniform

LAI
(PROSAIL-VAE-L)

pixel-wise 1
Pix-B2-L 2
Spa-B1-L spatial 1
Spa-B2-L 2
Pix-B1-LC

LAI, Cab

(PROSAIL-VAE-LC)

pixel-wise 1
Pix-B2-LC 2
Spa-B1-LC spatial 1
Spa-B2-LC 2
Pix-B1-AV

All variables
(PROSAIL-VAE-AV)

pixel-wise 1
Pix-B2-AV 2
Spa-B1-AV Spatial 1
Spa-B2-AV 2

SL2P as shown in the last column of 12a. Comparing the two supervised
strategies, the MPSR shows slightly worse LAI performance than SL2P.

The assessment of CCC predictions is corroborated by results shown in
13a. For this variable, PROSAIL-VAE models always outperform SL2P in

all in-situ data-sets. Except for PROSAIL-VAE-AV, the different PROSAIL-
VAE configurations obtain similar results. Results obtained in Wytham shows
how the use of a high number of priors decreases the accuracy of the results,
which is exacerbated by increasing βKL. Results obtained by MPSR are slightly
worse than those reached by PROSAIL-VAE models, however, its performance
is better than SL2P.

Prediction uncertainties can be evaluated by MPIW and PICP metrics ob-
tained by LAI ( 12b and 12c) and CCC ( 13b and 13c) predictions.

The MPSR predicts wider distributions than PROSAIL-VAE-NP for both
BV (see 13b and 12b). The MPIW values obtained for the LAI and CCC show
that adding KLD regularization terms (βKL > 0) increases the variance of LAI
and CCC distributions. In general, the width of prediction intervals improves by
increasing βKL and the narrowest intervals are reached by PROSAIL-VAE-NP.
On the LAI, the MPIW is further increased with PROSAIL-VAE-L and with
PROSAIL-VAE-AV with βKL = 2.

The PICP depends on both the estimation error being low and the predic-
tion intervals being large enough. Compared to PROSAIL-VAE-NP, PROSAIL-
VAE-L has a similar LAI RMSE, but wider prediction intervals (larger MPIW),
therefore the PICP is increased. For the CCC, the RMSE varies relatively little
between PROSAIL-VAE models. The PICP increases as the MPIW increases.

PICP results obtained on Barrax 2021 show that LAI predictions of all
PROSAIL-VAE models reach 2σ target (except PROSAIL-VAE-AV with βKL =

1). However, overall results show that the LAI prediction intervals tend to un-
certainty underestimation. This can be corroborated by PICP results shown in
the last column of 13b, which range from 0.65 to 0.9.

Concerning CCC, PROSAIL-VAE-NP obtains the lowest PICP results,
whereas slightly better metrics are obtained by PROSAIL-VAE-L and MPSR.
The overall PICP metrics obtained by CCC are close to 2σ target for PROSAIL-
VAE-LC and PROSAIL-VAE-AV.

Results show how, despite low CCC RMSE results are obtained by PROSAIL-
VAE-LC and PROSAIL-VAE-AV in Barrax 2021 (under 40 µg cm−2), accurate
predictions are contained on their prediction intervals.

All the presented results show that there is no notable difference between
results obtained by pixel-wise and spatial encoder architectures. This can be
attributed to the fact that only the first layer of the CNN uses filters larger than
1 pixel in order to preserve the input data resolution.

4.3.2. Comparison between PROSAIL-VAE and SL2P
The performances of the best PROSAIL-VAE model are compared here

against the pre-trained SL2P. Considering overall results from Section 4.3.1 on
situ-data (see Section 3.3), the lowest RMSE for LAI and CCC are obtained

by PROSAIL-VAE-L and PROSAIL-VAE-LC configurations. Both models
reach PICP results close to the target for the CCC variable. In terms of MPIW,
PROSAIL-VAE-L obtains overall CCC results (≈ 100–170 µg cm−2) better than
PROSAIL-VAE-LC (≈ 150–250 µg cm−2). However, the large prediction inter-
vals of this last configuration leads to PICP close to 1 suggesting that the un-
certainty is overestimated. Accordingly, PROSAIL-VAE-L model associated to
the Pix-B2-L results is chosen as the best model to be compared against SL2P.
Additional results assessing the good training performances of PROSAIL-VAE-
L are available in Appendices B and C.

The first performance comparison between the selected Pix-B2-L PROSAIL-
VAE and SL2P is shown in Table 6. Comparing results obtained for LAI and
CCC predictions, it can be observed that PROSAIL-VAE obtains the best over-
all RMSE metrics.

Fig. 14 allows to corroborate these results by showing the individual pre-
dictions of both methods. These results show that similar LAI predictions are
obtained by PROSAIL-VAE and SL2P. For instance, LAI and CCC predictions
for the alfalfa crop are underestimated by both methods. The same behavior
can be observed by the LAI predictions of the poppy class on Barrax 2108. The
underestimation seems slightly lower for PROSAIL-VAE.

Both methods predict a limited range of LAI values for the Wytham site.
However, PROSAIL-VAE seems to perform better than SL2P, which can be
explained by the heterogeneous forest canopies LAI underestimation problem
of SL2P reported on (Xie et al., 2019; Brown et al., 2021b).

PROSAIL-VAE slightly overestimates the prediction of low LAI values.
The temporal evolution of LAI predictions of both methods is also studied

in Fig. 15. This last figure displays the LAI time series predictions obtained
over a maize parcel belonging to the BelSAR site. Both predicted time series
show a well-defined summer crop phenology curve, that can be fitted with a
double-logistic model (Zeng et al., 2020; Zérah et al., 2023). As observed,
similar predictions for both PROSAIL-VAE and SL2P closely match the maize
in-situ measurements.

Fig. 16 allows to assess how closely the SL2P and PROSAIL-VAE predic-
tions are correlated. It shows the LAI, CCC and CWC variables predicted on
the S2 testing data-set (see Section 3.2) by both methods. The results show that
a strong correlation is observed between LAI predictions, whereas a different
behavior is obtained for CCC and CWC variables.

SL2P tends to predict higher CCC values than PROSAIL-VAE which satu-
rates at 250 µg cm−2. In this case, the in-situ validation showed that SL2P tends
to overestimate. The same behavior is observed by CWC where PROSAIL-
VAE predictions saturate at at 0.17 cm. To assess these results, more in-situ
measurements would be required to corroborate the quality of these two pre-
dicted variables. A visual comparison of the results can be found in Fig. D.24 in
Appendix Appendix Appendix D, where predicted biophysical variable maps
are shown.

Despite PROSAIL-VAE performing the inversion of all input PROSAIL
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Table 6: LAI and CCC prediction performance on in-situ data-sets for SL2P and PROSAIL-VAE.

Method BV LAI CCC

Metric BelSAR Barrax
(2018)

Barrax
(2021) Wytham All

Barrax
(2018)

Barrax
(2021) Wytham All

SL2P RMSE 1.22 1.43 0.48 1.77 1.24 83.92 84.53 101.35 88.08

PROSAIL-VAE
RMSE 1.30 1.42 0.72 1.21 1.16 27.60 20.51 80.78 42.33
MPIW 4.74 3.74 2.72 5.45 4.04 140.53 94.02 235.20 138.18
PICP 1.0 0.88 0.96 0.95 0.95 0.95 0.98 0.84 0.94

parameters, not all predicted variables can be compared with SL2P results.
Therefore, a visual evaluation is proposed in Fig. 17 to assess the set of PROSAIL-
VAE predictions. This figure shows the histograms of expectation and std of
PROSAIL variables predicted on the testing S2 image data-set. The histograms
of the PROSAIL variables expectations are compared to the distribution of vari-
ables (see Table 3) used to generate training data-sets for BVNET (see Sec-
tion 4.2) and MPSR.

Fig. 17 shows that the leaf parameter index N is likely to be poorly esti-
mated. The histogram of the expectation of the leaf parameter N is concentrated
on the lower bound of its definition interval at N = 1.2, which is associated with
monocotyledon vegetation (Féret et al., 2021). Unfortunately, it is well-known
that vegetation with N values significantly higher than 1.3 occurs in real sce-
narios, and should be present in the images of the testing data-set.

Besides N, looking at the histograms of expected values of Cab, Cc, Cb,
Cw, α, it can be observed how predictions are not occurring over the full range
of their definition intervals described in Table 3. For these variables, it is un-
certain whether their predictions are flawed, or if they reflect the vegetation
observed in the data-set. The low predicted Cab values corroborate the CCC
saturation effect observed in Fig. 16. In spite of this, PROSAIL-VAE obtains
good CCC and LAI results for in-situ data-sets which hints at accurate Cab
predictions.

In general, the distributions used in the literature (see Table 3) are very dif-
ferent from the variable distributions predicted by PROSAIL-VAE. The closest
match is observed by LAI and Cb variables. For Cm, predicted values sat-
urate on the upper bound (at Cm=0.011 µg2 cm−1) of its definition interval,
suggesting that it is too tight. Similarly Cw saturates on its lower bound (at
Cm=0.0075 cm), which may be lowered to 0 cm.

For a further evaluation, the scatter-plots between the expectation of all
pairs of PROSAIL variables predicted by PROSAIL-VAE on the S2 testing
data-set are available in Appendix Fig. E.25. These figures allow us to study
the correlations between predicted variables. Results show how arbitrary co-
distributions traditionally used in the literature (see Section 3.1) may not de-
scribe real relationships between variables. In particular, most of the predicted
variables do not exhibit a simple linear relationship with LAI.

The results also corroborate that there exists a correlation between LAI and
hot-spot parameters predicted by PROSAIL-VAE. Fig. 18 shows the scatter
plot between these variables, which are inferred for a wheat crop parcel of
the BelSAR site at different 2018 dates. As observed, the hot-spot parameter
decreases when LAI values are greater than one. This result follows the theory
about the hot-spot parameter of the SAIL model (Verhoef) suggesting that h ∝
1/LAI for a tall wheat plant with constant leaf size.

5. Discussion

The experiments have shown the potential of the proposed hybrid method-
ology incorporating a physical model into the design of a trainable neural net-
work architecture. Obtained results have corroborated that it is possible to train
a neural network in a self-supervised manner for the simultaneously retrieval of
all the input PROSAIL parameters. Accurate performances are obtained by our
proposed models, which have not been trained with simulations generated by
the physical model that is inverted. To highlight the advantages of avoiding sim-
ulation modeling design, first experiments have evaluated the impact of training
simulations on predictive supervised regression algorithm performances. LAI
and CCC prediction results obtained by different BVNET models trained with
different pre-simulated data-sets have been compared. Results evaluated on
simulated and the in-situ data have corroborated that accuracies were impacted
by

(i) the physical model used to generate the simulations,

(ii) the choice of the LAI data distribution and

(iii) the strategy proposed to incorporate dependencies between the LAI and
the rest of variables.

The second family of experiments have evaluated the performances of the
different proposed PROSAIL-VAE configurations. The obtained results have
been validated with in-situ measurements and compared with predictions ob-
tained by the pre-trained SL2P. Overall results have shown that PROSAIL-VAE
achieves similar or better performances than the SL2P pre-trained model.

Among the several PROSAIL-VAE scenarios, a strategy has been investi-
gated to incorporate spatial information at local scale in the prediction process.
It must be noticed that most of existing regression algorithms inverting PRO-
SAIL are purely pixel-wise. Unfortunately, obtained results have not allowed
us to corroborate the interest of using a spatial encoder architecture. These re-
sults can be explained by the fact that the convolutional part of the encoder was
limited to 3 × 3 filters on the first layer. Also, the reconstruction loss metric
does not inject spatial context information during the learning process. New re-
construction loss functions or new priors on input model variables considering
spatial dependencies could be proposed. For instance, the use of a perceptual
loss penalizing the texture of reconstructions during the training process may
be a next step towards this goal.

Experiments have also studied the incorporation of prior knowledge in the
physics-based guidance learning process. Compared to the existing simulation-
assisted regression methods, it must be noticed that PROSAIL-VAE requires
little prior knowledge about the distribution of input model parameters. For
instance, the configuration βKL = 0 has shown that accurate results can be
obtained by only setting information about the input PROSAIL parameter’s
value ranges (only upper and lower bounds, not their distributions).

The incorporation of knowledge about the prior distributions of PROSAIL
parameters has also been studied by investigating configurations with different
prior KL regularization terms. The studied PROSAIL-VAE configurations have
shown how information about prior distributions can be injected in the loss term
to guide the model training.

Experiments have corroborated that the selection of priors to be used in
the KLD regularization term is not trivial. Adding some few priors describ-
ing well-known variables such as LAI can improve the prediction accuracies.
However, low prediction accuracies can be reached by configurations incorpo-
rating less well-known parameters. It must be remarked that only uniform prior
distributions have been considered in our experiments. To improve the results,
more informative and specific priors about PROSAIL input parameters could
be incorporated in the KLD regularization term.

Experiments have shown how multiple probabilistic predictions can be ob-
tained by training a single model. Visual results have shown that some PRO-
SAIL parameters seem to be better predicted than others. This could be ex-
plained by the principle of the ill-posed inverse problem or by the importance
of each input variable in PROSAIL model. In general, although a visual evalu-
ation has been carried out, in-situ measurements related to less studied param-
eters such as carotenoids, brown pigments or dry mater content are completely
necessary to quantitatively assess the performance of predicted variables. Be-
sides, more in-situ data is necessary, in both quantity and variety (vegetation
types, location, season) to further validate the proposed hybrid methodology.

The best PROSAIL-VAE configuration has been deeply investigated and
compared with SL2P. In our work, the choice of the best model has been pro-
posed by comparing the performances obtained on in-situ measurements. In
operational contexts, this selection criterion can lead to an over-fitting risk since
testing data should be never used for setting hyper-parameters or choosing the
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Figure 14: Scatter plots of LAI and CCC predictions from SL2P and PROSAIL-VAE versus in-situ test sites measurements. For each data point, the horizontal
black lines correspond to the predicted uncertainty measures. In contrast, the vertical black lines indicate PROSAIL-VAE 2σ prediction intervals, derived from the
inferred PROSAIL variable distributions.

best configuration. Some experiments (outside the scope of the paper) have
shown that it does not exist a correlation between the training reconstruction
loss values and prediction accuracies obtained on LAI and CCC in-situ mea-
surements. In fact, reconstruction is a training proxy task and the selection
model criteria must be related to their inversion performances. Therefore, reli-
able solutions based on cross-validation techniques could be proposed to com-
pare trained models if a large number of in-situ samples would exist.

Accuracy prediction improvement could be also obtained by changing the
SAIL version considered in our PROSAIL-VAE implementation. The obtained
results have shown that a positive bias can exist for low LAI values, which
may be explained by the insufficient capacity of the model to simulate realistic
soil spectra. Instead of combining only two reference soil spectra, the use of
a soil spectral library could improve the prediction of low LAI values where
the ground is visible. In the same direction, using other PROSPECT model
versions or other RTM could improve the performances of our hybrid method-
ology. An important remark is that the change of the physical-based decoder to
be inverted do not require any additional tuning task, which would be the case
for simulation-based approaches as BVNET.

6. Conclusion

This work has presented a new data-driven paradigm to invert radiative
transfer models for the retrieval of biophysical variables. The proposed hybrid
methodology has proposed to incorporate the PROSAIL model into the design
of a trainable neural network architecture, which has been trained in a self-
supervised manner by directly exploiting unlabeled S2 images. As a result, the
presented strategy has allowed the simultaneously probabilistic prediction of all
the input PROSAIL parameters.

The main advantage of the proposed method is that physics-based guidance
has been incorporated in to the training process avoiding simulation-assisted
learning. Training without simulations avoid unrealistic failure scenarios that
can limit the transferability of the algorithms to real-world situations. Besides,
simulation engineering process is a very hard task requiring a lot of prior knowl-
edge about the physical process and the dependencies between the involved
variables. Different experiments have corroborated the interest of the proposed
hybrid methodology by showing the limitations of simulation-trained machine
learning algorithms.

Results obtained by PROSAIL-VAE have been validated with LAI and
CCC in-situ measurements collected on 4 different field campaigns over three
European tests sites. The performances of the proposed method have been com-
pared with the state-of-the art SL2P. The different experiments have corrobo-
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Figure 15: LAI time series predictions obtained over a maize parcel belonging
to the BelSAR site. PROSAIL-VAE and SL2P predictions are obtained by con-
sidering non-cloudy S2 available images acquired on 2018.

rated that the presented strategy can reach more accurate predictions (specially
for CCC variable).

Another important advantage of the proposed methodology is that it is ag-
nostic to the physical-based decoder to be inverted. Therefore, other canopy
reflectance models could be plugged into our architecture and be trained in the
same self-supervised manner. Future work may therefore focus on using dif-
ferent RTM to perform the simultaneous inversion of several physical models
sharing input parameters.

In an attempt to enable reproducible research, the implementation of the
methods presented in this paper is available at https://src.koda.cnrs.fr/yoel.zerah.
1/prosailvae.git.
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J., Pacifici, F., Pflug, B., Poilvé, H., Ramon, D., Richter, R., Yin, F., 2023.
Atmospheric correction inter-comparison exercise, acix-ii land: An assess-
ment of atmospheric correction processors for landsat 8 and sentinel-2 over
land. Remote Sensing of Environment 285, 113412. URL: https://www.
sciencedirect.com/science/article/pii/S0034425722005181, doi:https://
doi.org/10.1016/j.rse.2022.113412.

Duan, S.B., Li, Z.L., Wu, H., Tang, B.H., Ma, L., Zhao, E., Li, C.,
2014. Inversion of the prosail model to estimate leaf area index
of maize, potato, and sunflower fields from unmanned aerial vehicle
hyperspectral data. International Journal of Applied Earth Observa-
tion and Geoinformation 26, 12–20. URL: https://www.sciencedirect.
com/science/article/pii/S0303243413000561, doi:https://doi.org/10.
1016/j.jag.2013.05.007.

Duncan, W.G., 1971. Leaf angles, leaf area, and canopy photosyn-
thesis1. Crop Science 11, cropsci1971.0011183X001100040006x.

URL: https://acsess.onlinelibrary.wiley.com/doi/abs/10.2135/

cropsci1971.0011183X001100040006x, doi:https://doi.
org/10.2135/cropsci1971.0011183X001100040006x,
arXiv:https://acsess.onlinelibrary.wiley.com/doi/pdf/10.2135/cropsci1971.0011183X001100040006x.

Durbha, S.S., King, R.L., Younan, N.H., 2007. Support vector machines regres-
sion for retrieval of leaf area index from multiangle imaging spectroradiome-
ter. Remote Sensing of Environment 107, 348–361. URL: https://www.
sciencedirect.com/science/article/pii/S0034425706004159, doi:https://
doi.org/10.1016/j.rse.2006.09.031. multi-angle Imaging Spectro-
Radiometer (MISR) Special Issue.
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Appendix A. Sentinel-2 bands simulation from PROSAIL
canopy spectra

For each band i with spectral range
[
λlow,i, λup,i

]
, the reflectance is derived

from canopy spectra output ρ (λ) by PROSAIL, the solar irradiance spectrum
Es (λ) (see Fig. A.20), and the spectral response of the Sentinel-2 sensor S i (λ)
(see Fig. A.19) (Tupin et al., 2014):

ρi =

∫ λup,i
λlow,i

S i (λ) ES (λ) ρ (λ) dλ∫ λup,i
λlow,i

S i (λ) ES (λ) dλ
. (A.1)

Appendix B. Band reconstruction capabilities of PROSAIL-
VAE-L

Fig. B.21 shows the reconstruction performances obtained by the trained
model on the S2 testing data-set described in Section 3.2. The scatter plots com-
pare original S2 band reflectance values against reflectances reconstructed by
the trained PROSAIL-VAE-L configuration. The results show that the recon-
structions predicted by the trained encoder match original spectral S2 bands.

The assessment of the results can be also done with Fig. B.22, which illus-
trates visible and infra-red color compositions and their corresponding recon-
structions. Visual results corroborate the accurate reconstruction of crops areas
for both color compositions.
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Figure A.19: Spectral response of the Sentinel-2A multi spectral instrument (MSI) sensor (only the bands used by PROSAIL-VAE are shown).

400 600 800 1,0001,2001,4001,6001,8002,0002,200
0

0.5

1

Wavelength (nm)

N
or

m
al

iz
ed

ir
ra

di
an

ce
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Figure B.21: Scatter plots comparing the original S2 band reflectance values
against reflectances reconstructed by PROSAIL-VAE-L on S2 test data-set.

S2 True color composite Reconstruction
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Figure B.22: S2 ROI image from test data-set acquired on 2023-05-13 and
located at T31UFS tile (Southern Belgium). First column shows true and
false color composites constructed by original S2 reflectance values whereas
PROSAIL-VAE reconstruction results are displayed at the second column. The
RGB true color composite corresponds to bands (B4, B3, B2). The RGB false
color composite corresponds to bands (B11,B8,B5)
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Appendix C. Biophysical variable prediction on an image

In Fig. C.23 are showed the BV expectations and std, besides the LAI,
predicted by PROSAIL-VAE from the example patch of Fig. B.22. This S2 im-
age patch contains both crop vegetation elements, and areas without vegetation:
roads, buildings, bare soils. In areas devoid of vegetation, variables besides ρS
and rS are irrelevant, even though some of them exhibit high values (Cc, Cm,
α, h). In particular, the soil wetness factor ρS is well correlated to the bare soil
areas. For areas with vegetation, N, Cab, Cb, Cw seem correlated to the density
of vegetation. Overall, the predicted std are correlated to the expected values.
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Figure C.23: Inference of BV by PROSAIL-VAE Pix-B2-L. BV are predicted at pixel level in a ROI of the MGRS tile T31UFS (Southern Belgium) on 2023-06-01.
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Appendix D. Visual comparison between PROSAIL-VAE
and SNAP results

In Fig. D.24, the predictions of SL2P and PROSAIL-VAE over a patch are
compared. For both methods, the LAI, CCC and CWC are well correlated to
the presence of vegetation (see Fig. B.22). The predictions made by PROSAIL-
VAE looks sharper than the prediction by SL2P, and some structures, such as
roads and the shapes of the parcels, are better outlined by PROSAIL-VAE.
Within the parcels, the predictions of PROSAIL-VAE seem more homoge-
neous. The CCC and CWC tend to be predicted with higher values within
the parcels. For LAI, CCC and CWC, the stds are correlated to high expected
values.
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Figure D.24: Comparison of LAI, CCC and CWC results obtained by SL2P and a PROSAIL-VAE Pix-B2-L model. The image ROI is located at T31UFS tile
(Southern Belgium) and acquired on 2018-06-01.

Appendix E. PROSAIL variables inferred co-distribution
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Figure E.25: Scatter-plot of the expected values of all pairs of variables of PROSAIL (PROSPECT-5 + 4SAIL), predicted by PROSAIL-VAE over the S2 testing
data-set.
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Appendix F. Acronyms

ANITI Natural Intelligence Toulouse Institute. 1

ANN artificial neural network. 2

BP Biophysical Processor. 2, 3

BV biophysical variables. 1–4, 10, 13, 14, 22, 23

BVNET biophysical variable neural network. 2–4, 8–10, 14, 15

CCC canopy chlorophyll content. 1, 2, 4, 5, 7, 9, 10, 12–17, 24, 25

CNN convolutional neural network. 3

CWC canopy water content. 2, 4, 13, 17, 24, 25

DHP digital hemispheric photography. 7

ECV essential climate variable. 1

ESU elementary sampling unit. 7

F-COVER fraction of vegetation cover. 4

FAPAR fraction of absorbed photosynthetically active radiation. 4

FRM4Veg fiducial reference measurements for vegetation. 5, 7, 8

GAI green area index. 7

GCOS Global Climat Observing System. 1

GP Gaussian process. 2

HPC high performance computing. 16

KLD Kullback-Leibler divergence. 3, 9, 10, 13, 14

LAI leaf area index. 1–7, 9–11, 13–17, 19, 22, 24, 25

LCC leaf chlorophyll content. 7

LIDF leaf inclination distribution function. 2

LR learning rate. 10

LUT look-up-tables. 1

MAJA MACCS-ATCOR joint algorithm. 8

MC Monte Carlo. 3

MCEM Monte Carlo expectation maximization. 2

MCMC Markov Chain Monte Carlo. 2

MGRS Military Grid Reference System. 5, 6, 23

MLP multi-layer perceptron. 3

MPIW mean prediction interval width. 4, 11–14

MPSR multiple probabilistic supervised regression. 4, 8, 10–14

MSE mean squared error. 4

MSI multi spectral instrument. 20

PAI plant area index. 7

PICP prediction interval coverage probability. 4, 11–14

RF random forests. 2

RMSE root mean squared error. 4, 8–14

ROI region of interest. 5, 7, 21, 23, 25

RTM radiative transfer model. 1, 2, 15, 16

S2 Sentinel-2. 3, 5, 7–10, 13, 14, 16–18, 21, 22, 26

SAIL Scattering by Arbitrary Inclined Leaves. 2, 10, 14, 15

SL2P Simplified Level 2 Product Prototype Processor. 1–5, 9–17, 24, 25

SNAP Sentinel Application Platform. 2, 3, 24

std standard deviation. 9, 14, 19, 22, 24

TN truncated Normal. 3, 6, 9, 10

VAE variational autoencoder. 2, 3

Appendix G. Notation

Cab Chlorophyll a+b concentration. 3, 4, 6, 10, 13, 14, 22

Cc Carotenoid concentration. 3, 4, 6, 14, 22

Cb Brown pigments content. 3, 4, 6, 14, 22

Cm Dry matter content. 3–6, 14, 22

Cw Water equivalent thickness. 3–6, 14, 22

Cw,rel relative water content. 5

h Hotspot parameter. 3, 4, 6, 22

KL Kullback-Leibler divergence. 9, 14

α mean leaf inclination. 2–4, 6, 14, 22

N Leaf structure parameter. 3, 4, 6, 14, 22

θO Observer zenith angle. 3

ρS Wet soil factor. 3–6, 22

ψS O Relative azimuth angle. 3

rS Soil brightness factor. 3, 4, 6, 22

θS Solar zenith angle. 3
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