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Abstract—We consider day-ahead electricity price forecasting
on the European market. In this market, participants can
offer electricity for sale or purchase for a specific price by
submitting overnight orders. Market operators determine the
market clearing price – the price at which the amount of
electricity supplied equals the amount of electricity demanded
– using the Euphemia balancing algorithm. EUPHEMIA is a
quadratic optimization problem that maximizes the social welfare
defined as the sum of the supplier surplus and consumer
surplus while ensuring a null energy balance. This mechanism
deeply influences the price calculation, but has so far been little
considered in electricity price forecasting algorithms. Existing
models are generally based on identifying relationships between
exogenous characteristics (consumption and production forecasts)
and the market clearing price to be predicted. A few studies
have examined the EUPHEMIA mechanism during prediction,
by doing costly manual transformations on order books. In
this article, we overcome this limitation by considering the
pricing mechanism during model training. For this, we use a
predict-and-optimize strategy with differentiable optimization.
We design a fully differentiable and scalable solving method for
the EUPHEMIA optimization problem and apply it on real-life
data from the European Power Exchange (EPEX). We design
different model architectures using our differentiable solver and
empirically study the impact of taking into account the optimal
calculation of prices within the training of the neural network.

Index Terms—Electricity Price Forecasting, decision-focused
learning, differentiable optimization, predict-and-optimize.

I. INTRODUCTION

Electricity Price Forecasting (EPF) is a problem that has
interested specialists in the field for many years [1], [2] in
order to better adjust electricity production to the needs of
consumption for this resource that is difficult to store. This also
allows stock market activities, such as making it possible for
owners of renewable energy production facilities to make their
investments profitable by anticipating price movements and
promoting intelligent applications such as self-consumption
[3] or battery optimization [4]. These issues have become
increasingly crucial in recent months with high price volatility.

EPF is complex as many factors influence it, both at
the level of production and consumption. Different methods
have been used so far, such as auto-regressive methods [5]–
[10], but also augmented machine learning models for the
EPF problem [6], [11]–[21]. The two approaches focus on

finding relationships between exogenous features (electricity
consumption and production forecasts) and price histories with
day-ahead prices, and machine learning models have recently
proven to be superior to auto-regressive models [22].

However, European market prices are set by the EUPHEMIA
algorithm on the basis of order books that contain purchase
and sale offers, and not directly on the basis of consumption
and production forecasts. EUPHEMIA [23] maximizes social
welfare defined as the sum of the difference between the price
paid to the supplier and the minimum price stated in the
sales order, as well as the difference between the maximum
price defined in purchase order and the price actually paid. By
solving a mixed-integer quadratic programming optimization
problem, EUPHEMIA ensures the highest price for producers,
the lowest price for purchasers and a constant energy balance.
This pricing mechanism is very specific and thus, it seems
relevant to take it into account in the prediction model because
it directly influences prices. For this, it is necessary to integrate
the optimization problem as formalized in EUPHEMIA into the
price prediction problem.

Various works have studied the coupling of a prediction
model with an optimization task. In the predict-then-optimize
approach [24] a predictive model is first built and then used
to optimize decision-making. However, the learning of the
model is not guided by the prediction errors on the final task
related to the optimization problem. Conversely, the predict-
and-optimize framework proposes to learn a predictive model
by directly minimizing the error related to the downstream
decision-making task [25].

In this paper, we explore the impact of coupling the EU-
PHEMIA optimization problem, with machine learning on price
prediction accuracy. Three models are considered. First, a
standard machine learning approach predicts day-ahead prices
based on exogenous variables. The loss used minimizes the
difference between predicted and real prices. The second
model predicts order books by minimizing the difference
between predictions and actual order books. The last model
predicts order books with a neural network and then solve
the EUPHEMIA optimization problem. The resulting prices are
then compared to real prices. During training, the derivation
of the loss after optimisation is used to adjust the parameters



of the neural network. Finally, by making these three models
share a common neural network, it is possible to combine
them using a loss resulting from the linear combination of
the three previous losses. We can then evaluate empirically
and on different data sets the impact of each model on the
accuracy of the predictions. We aim to show that end-to-end
predict-and-optimize methods are beneficial for this problem.

Our contributions are summarized as follows:

1) We formalize EUPHEMIA optimization problem, a
Mixed-Integer Quadratic Programming problem with
linear orders, as the maximization of social welfare
measured by the difference between market price and
order book prices, for all accepted orders (supply orders
with prices inferior to the market price, and demand
orders prices superior to the market price).

2) We present the dual optimization problem, that expresses
EUPHEMIA as the optimization of market prices. This
problem can be solved by setting the derivative to zero
using a dichotomy search.

3) We explain how to integrate the optimization problem
into the neural model, by deriving the calculations of
the backward pass. Several neural networks and their
associated loss allow the model to be adjusted according
to real prices or order books.

4) Finally, we present experiments performing a deep anal-
ysis of seven configurations on four datasets. We provide
an extensive discussion of our results in context.

The rest of the paper is structured as follows. In Section II
the EUPHEMIA optimization problem is framed based on its
definition. Assuming that model predictions can be improved
by tightly coupling the problem with order book prediction
from exogenous data, a method for solving EUPHEMIA to
determine the electricity price from order books is proposed in
(Section III). Then, three strategies of combining an optimal
decision process while learning the order book prediction
model are presented in Section IV). The experimental evalua-
tion (Section V) subsequently compares several configurations
of this end-to-end predict-and-optimize model on 4 different
European datasets. Afterwards, a qualitative analysis deter-
mines what information has been captured by the differentiable
optimization problem using Shap values. Finally, Section VII
concludes and provides future work.

II. EUPHEMIA OPTIMIZATION PROBLEM

Electricity prices in Europe are set at the continental level.
Since the 1990s, the European Union (EU) has gradually
opened up national electricity markets to competition in order
to harmonize and liberalize the European market, and better
interconnect it. The European electricity transmission network
now ensures security of supply and exchanges between forty-
six European zones. As electricity cannot be stored, the market
is regularized to guarantee the balance between supply and
demand at European scale, by prioritizing the least expensive
means of production. This price harmonization promotes trade
between countries. Several market places exist, such as the

European stock exchange, EPEX Spot SE, on which megawatt-
hours (MWh) are traded, with prices that vary by country
depending on supply and demand. It is a speculative place
that brings together producers and consumers, who sell and
buy electricity (nuclear, renewable or fossil), for immediate
or deferred deliveries. A peculiarity in this wholesale market,
is that the price is set not according to the average cost of
electricity production, but based on the “marginal” production
cost of the last (and therefore most expensive) MWh injected
into the network. This mechanism is illustrated in Figure 1.

Fig. 1. Supply and demand curves.

Let us consider the supply curve. Each segment of the curve
(e.g. see the black segment on the supply curve) corresponds
to an order defined by a volume Vi that the seller offers at a
price in the interval [Poi, Poi+Pi] on the ordinate axis. The
sell offers are sorted according to increasing prices. Similarly,
the demand curve consists of bids for a given volume at a
maximum price made by buyers. Demand offers are sorted
in decreasing order of prices. The market price is set at
the intersection of the two curves. All supply orders with
prices inferior to the market price, and all demand orders
superior to the market price are accepted. Power exchange
members, whose orders have been accepted, trade electricity
at the market price for a specific trading hour. The difference
between the market price and an accepted order times the
sold volume (the area in yellow) is called the social welfare
(SW ). The set of all demand and offer orders are the ORDER
BOOK, denoted OB in the following. Algorithm EUPHEMIA
fixes the market price by solving a Mixed-Integer Quadratic
Programming problem (MIQP) whose simplified definition,
using only linear orders, is given below.

Definition 1 (EUPHEMIA optimization problem): Let orders
be defined by a price range [Poi, Poi + Pi] and a volume
Vi. Supply orders are defined by positive volumes and prices
(Vi > 0 and Pi > 0), while demand orders are specified by



negative values (Vi < 0 and Pi < 0). EUPHEMIA is defined
by the following convex quadratic optimization problem over
the variables Ai ∈ [0, 1], which state whether the order i is
fully accepted (value 1), fully rejected (value 0), or partially
accepted (other values):

max
A

f(A) =max
A

∑
i

(
−1

2
A2
iViPi −AiViPoi

)
(1)

u.c.
∑
i∈ OB

AiVi = 0, (2)

−Ai ≤ 0, (3)
Ai − 1 ≤ 0 (4)

Equation (1) is obtained as follows. To maximize the social
welfare, the difference between the market price (P ∗) and what
is demanded as minimum payment by the supplier (PS) must
be maximized. Similarly, the difference between the maximum
amount that the consumer is willing to pay (PD) and what he
actually pays (P ∗) must be maximized as well. This leads to

max(P ∗ − PS) + (PD − P ∗) = maxPD − PS

If we denote by vi = Ai×Vi, the proportion of volume actually
sold for order i, we have,

P (vi) =
Pi
Vi
vi + Poi

Thus, the expected payment PS is the result of this function
applied to each possible volume:

PS(vi) =

∫
P (vi) dvi =

1

2

Pi
Vi
v2i + vi P01 + θ

with θ independent of vi. The same result is obtained for
PD(vi). By considering that volumes Vi of demand orders
are negative, and by summing over all the orders i, we obtain
that f(A) is proportional to

∑
i PD(vi)− PS(vi).

The equation (2) is just the constraint on the energy balance
to ensure that demand equals supply, and bound the decision
variables Ai to belong to interval [0, 1].

III. FINDING THE OPTIMAL PRICE FROM AN ORDER BOOK

In order to improve electricity price forecasts, we want to
integrate the EUPHEMIA pricing mechanism into the predictive
model, as we believe that this should increase the accuracy
of the predictions. Market players submit their orders before
12 a.m. each day. EUPHEMIA then calculates Day-Ahead
prices that maximize social welfare. While EUPHEMIA is
reproducible to some extent, the ORDER BOOK is not known
until the prices are released. Hence, we propose to predict
the ORDER BOOK using fundamental variables and use the
predicted orders as input to EUPHEMIA optimization problem
to get the price predictions. By doing so, we expect to
obtain more accurate predictions. As the goal is to predict the
market price and EUPHEMIA model is expressed in volume of
electricity exchanged, we first consider the dual problem.

A. Dual EUPHEMIA optimization problem
To determine the dual problem of Definition 1, we introduce

λ ∈ R, M ∈ RN and K ∈ RN as the dual variables
associated to the constraints in equations (2)-(4) and consider
the Lagrangian:

L(A, λ,M,K) =
∑
i(

−A
2
iViPi
2

−AiViPoi + λAiVi −MiAi +Ki(Ai− 1)

)
Its minimum is reached when its derivative with respect to A
vanishes, that is to say when Ai = λ−Poi

Pi
+ Mi−Ki

ViPi
. At that

point, the Karush–Kuhn–Tucker necessary conditions hold,
especially −MiAi = 0 and Ki(Ai − 1) = 0, which occurs
when (1) Ai = 0, Ki = 0 and Mi ≥ 0, or (2) Ai = 1,
Ki ≥ 0 and Mi = 0, or (3) Ai ∈ ]0, 1[, Ki = 0 and Mi = 0.
By re-injecting the expression of Ai in those conditions, we
obtain the dual problem of Definition 1 defined by:

min
λ
D(λ) = min

λ

∑
i∈ OB

Di(λ) with Di(λ)

=


(1) 0, if Vi(Poi − λ) > 0

(2) Vi(λ− Pi

2 − Poi), if Vi(λ− Pi − Poi)) > 0

(3) Vi

2Pi
(λ− Poi)2, if λ ∈ [Poi, Poi + Pi]

The optimal dual variable, λ?, is the day-ahead price. Then,
(1) corresponds to the situation of a fully rejected order where
the optimal price λ is lower than Poi for the supply orders
(Vi > 0) and higher for the demand orders (Vi < 0). Inversely,
(2) corresponds to fully accepted orders. (3) happens when
the order is partially accepted (λ is in the price range and the
proportion λ−Poi

Pi
of volume Vi is exchanged).

B. Computing the optimal price λ?

The minimum of D(λ) can be obtained by looking for
the values for which the derivative of D vanishes: ∂D

∂λ = 0.
Each segment of the piecewise function Di is differentiable or
equals 0. Only the inflection points Poi and Poi+Pi have to
be examined by considering their limits.

Let us consider supply orders (similar results can be ob-
tained for demand orders). Using the generic expression

Di(λ+ h)−Di(λ)
h

=
2Vi
Pi

(
h

2
+ λ− Poi

)
we can compute the limits for the inflection points with h 7→
0−, h 7→ 0+. We find that the limit at λ = Poi is 0 for both
sides of h, and the limit at λ = Poi + Pi is Vi. Hence, Di is
differentiable for all values of λ and the derivative of D is

D′i(λ) =


0 if Vi(Poi − λ) > 0

Vi if Vi(λ− Pi − Poi) > 0
Vi

Pi
(λ− Poi) if λ ∈ [Poi, Poi + Pi]

We can rewrite D′ with the Heaviside function H(x)1:

D′(λ) =
∑ xi

Pi
H(xi)−

∑ yi
Pi
H(yi)

1H(x) = 0 if x < 0 and 1 otherwise.



with xi = Vi(λ − Poi) and yi = Vi(λ − Poi − Pi). This
function is strictly increasing and we can use a dichotomy
search to solve D′(λ?) = 0. Using lb, ub as the lower and
upper bounds initialized at the extreme market prices fixed by
EPEX, λ? is computed with Algorithm 1.

Algorithm 1 Dichotomy search.
lb ← -500e/MWh
ub ← 3000e/MWh
found ←False
while (found = False) and (ub− lb > 2 ∗ 0.01) do
M ← ub+lb

2
DM ← D′(M)
found ← DM = 0
ub← ub−H(DM ) ∗ (ub−M)
lb←M −H(DM ) ∗ (M − lb)

end while

Using heaviside function allows us to differentiate through
IF statements. Analytically, it derives as the Dirac function,
but numerically we have to replace it by the sigmoid to make
the whole process fully differentiable as required by neural
network prediction models.

IV. A DIFFERENTIABLE OPTIMIZATION APPROACH FOR
EPF

We present in this section how to integrate the solution
of the optimization problem into the price prediction neural
network model. First, we present how the difference between
the optimal price calculated by Algorithm 1 and the real
price is back-propagated to adjust the parameters of the neural
network.

A. Integrating the optimization process into the forward and
backward passes

Figure 2 presents the model architecture. Exogenous vari-
ables X are provided to a neural network that is trained
to predict ORDER BOOK. The order book is then used to
determine the optimal price λ? using Algorithm 1. A loss
function L, between Ŷ , the optimal price based on estimated
ORDER BOOK ÔB, and the real price Y , evaluates the error
made on the predictions. This error has to be back-propagated
on the network that learns ÔB from exogenous features X:

∂L(Ŷ , Y )

∂X
=
∂L

∂Ŷ
× ∂Ŷ

∂ÔB
× ∂ÔB

∂X

In this expression, the first term is the gradient of the loss, and
the third term is the standard back-propagation. The second
term, ∂Ŷ

∂ÔB
is obtained by differentiating the dual problem

formulation. Therefore, Algorithm 1 is implemented using
PyTorch 2 and used to solve EUPHEMIA during the forward
pass. It is also used to compute the derivative of the order
books with respect to the optimal price ∂Ŷ

∂ÔB
during the

backward pass.

2https://pytorch.org/docs/stable/index.html

Fig. 2. Differentiable optimization: Predict the order book variables ÔB,
find optimal prices given the order book, and back-propagate the errors on
the prediction model.

Fig. 3. Three models architecture combined in one. The α branch directly
forecasts the prices from the exogenous variables. The γ branch forecasts
the OB and the β branch solves the EUPHEMIA problem. The final loss is
Lf = αLDNN + γLOB + βLP&O .

B. Varying the impact of optimization problem on model
learning

To be able to vary and evaluate the impact of the integration
of the optimization process within the predictive model, we
propose to consider three scenarios (see Figure 3). The first
one is a traditional Deep Neural Network (DNN) used to
solve the EPF problem. Without considering order books, the
DNN directly predicts prices form exogenous variables and
computes the loss LDNN with respect to the real prices. The
second approach is a DNN that uses the exogenous variables
to predict order books. The loss function LOB evaluates the
difference between the predicted order books and the true
ones. The last scenario is the predict-and-optimize approach
that uses order books predictions to solve EUPHEMIA, then
computes the loss LP&O between solved prices and real prices.

As these three models share a common neural network
NN , it is possible to combine them. We propose to evaluate
different linear combinations of the losses, and hence the
networks, in a multi-task setting. We define the general loss



as a linear combination of the three losses: Lf = αLDNN +
γLOB+βLP&O. Note that we chose a relative loss for LDNN ,
LOB and LP&O so that they produces values in the same
range. The final price predictions are computed over the price
prediction ŶDNN as well the optimized price ŶP&O over
predicted order books:

Ŷ =
αŶDNN + βŶP&O

α+ β

V. EXPERIMENTS

In this section we describe a series of experiments with
multiple objectives. First, we want to compare our ORDER
BOOK model and differentiable EUPHEMIA method to the
baseline (direct neural network) and determine if they im-
prove the performances. We then analyze more precisely
the impact of parameter β to understand its links with the
model performances. Lastly, we seek to link the effects of
differentiable optimization to the input variables. For this, we
perform a contribution analysis using Shap values to identify
which features have been put forward by adding differentiable
optimization.

A. Datasets

We consider the EPF problem on the European market
where the data is available free of charge3. We forecast the
prices of 4 countries: France (FR), Germany (DE), Belgium
(BE) and the Netherlands (NL). As predictive variables, we
use the consumption forecasts, the generation forecasts, the
renewable generation forecasts and the current prices of nine
European countries: France, Germany, Belgium, the Nether-
lands, Austria, Italy, Spain, Switzerland and England. To those
variables, we add the reference gas price, as well as the date
indicators (day, day of week, week, month) that are circularly
encoded. Given a cyclic feature x in the domain C (with
cardinality α), this function f returns two numeric values:

f : C 7→ R2

x 7→ (sin(
2πx

α
), cos(

2πx

α
))

Hence, each day is described by 9+36×24 predictive features
and the targets to be predicted are the 24 hourly prices for each
country. The variables can be grouped into families: domestic
variables (variable of the country being predicted), foreign
variables (variable of another country), gas price and date.
The Swiss and English prices are also considered separately
because they are available at 11am and can be used in the
training set. Our dataset spans from 01/01/2016 to 31/12/2019.
We use the last year (2019) as test set, to account for the prices
seasonality.

Additionally, it is possible to include order books from the
previous day as predictive features. They are made available by

3https://transparency.entsoe.eu

the Epex exchange against a fee. Due to their high dimension
(hundreds of orders per hour) and variable size, we first need
to define a procedure to map the order books onto a smaller
fixed-size representation, while keeping the same day-ahead
price and matched volume. For a desired dimension of size
n = nS + nD + 4, we select the nS supply orders and nD
demand orders closest to the intersection price. The orders
not selected are summarized by 4 fictitious orders, for the
supply and demand orders that are far before or far after
the intersection. These fictitious orders are defined by the
following values:

Variable Supply Demand
V

∑
i Vi

∑
i Vi

Po mini Poi maxi Poi
P mini (Poi + Pi)− Po maxi (Poi + Pi)− Po

Graphically, this replaces the step curve of the portion of
unselected orders by a line, as displayed in the left-hand side
of Figure 4.

B. Models’ implementation

We elaborate on the models introduced in Figure 3. As
losses LDNN , LP&O, LOB , we use the Symmetric Mean Ab-
solute Percentage Error SMAPE(Y, Ŷ ) = 200

n

∑
i
|Yi−Ŷi|
|Yi|+|Ŷi|

%

that accounts for the market’s volatility. The NN part is a
dense layer with 873 inputs and 888 outputs, followed by
batch normalization, dropout and ReLU activation layers. The
NNY part is a dense layer with 888 inputs and 24 outpus. The
NNOB part is detailed on Figure 5. This network receives as
input X the output of the shared neural network NN . The
input data is first reshaped to hourly granularity, and then sent
through a dense layer with 37 inputs and 37 outputs, followed
by batch normalization, dropout and ReLU activation layers.
This is followed by 6 distinct dense layers with 37 inputs and
20 outputs that forecast the components of the supply and
demand sides.

We establish two baseline models and four models to test, by
setting α, β or γ to 0. We define these models in Table I where
the first two are common DNN models from the literature (see
[1]) since they do not use the differentiable EUPHEMIA solver
(β = 0). The last 4 models are the novel models (β > 0).

Model α γ β Description
DNNY 1 0 0 Predict Ŷ using a standard DNN.
DNNY,OB

1
2

1
2

0 Predict ÔB and Ŷ without differentiable optimization.

DO 0 0 1 Pure differentiable optimization model: there is no loss on ÔB, and Ŷ is only obtained
through the solving the optimization problem.

DO + DNNOB 0 1
2

1
2 A loss is applied to ÔB, but Ŷ is only obtained through solving.

DO + DNNY
1
2

0 1
2

No ÔB forecast loss. Ŷ is obtained directly, but also by solving the optimization
problem.

DO + DNNY,OB
1
3

1
3

1
3

The three models are combined.
TABLE I

THE DIFFERENT MODELS DERIVED FROM OUR ARCHITECTURE. MODELS
DNNY AND DNNY,OB ARE THE BASELINES THAT DO NOT USE THE

DIFFERENTIABLE OPTIMIZATION.



Fig. 4. The order book of the 2019/10/12, 1am auction in Belgium (black), and its reduced version to 20 orders (blue). Around the intersection, the real and
reduced order books are the same (right). Orders far from the intersection are replaced by a straight line. Both real and reduced order books cover the same
volume range and solve to the same price (left).

Fig. 5. Implementation details of the NNOB network. The input X , coming
from the common NN part, is reshaped to hourly granularity and goes
through a dense layer. Then, it is fed to 6 different linear layers to forecast
supply and demand components of the order book.

C. Results

a) Configurations: We compare the values between the
predicted Ŷ and the real Y target variable. We use stan-
dard measures as MAE(Y, Ŷ ) (the average of the abso-
lute difference between the values over the target variables),
DAE(Y, Ŷ ), that first computes the average price of a
given day and then compares it to the true average price,
RMAE(Y, Ŷ ) that compares the MAE of the predictions
with the MAE of a naive forecaster (that forecasts the last
day’s prices), SMAPE(Y, Ŷ ) (the symmetric mean absolute
percentage error over the target variables). To check the statis-
tical significance of the results, we use the Diebold & Mariano

(DM) test [26] that compares two models M1 and M2. The
null hypothesis H0 is that MAE(M1) > MAE(M2), i.e. the
first model is less efficient than the second. We can reject H0

and conclude that M1 outperforms M2 if the resulting p-value
is lower than a fixed threshold of 0.05. The source code and
the free data are made available.4

The metrics computed on the test period are displayed in
Table II. The p-values of the Diebold & Mariano test are
displayed in Figure 6. Our observations are the following:

• On the French market, dominated by nuclear energy
production whose marginal cost is independent of other
variables, the order books are more difficult to predict and
less significant. Consequently, the metrics of the baseline
models DNNY and DNNY,OB are significantly better :
the order book modeling plus differentiable optimization
models fail to improve performances.

• On the German, Dutch and Belgian datasets, models
P&O + DNNY and P&O + DNNY,OB outperform other
models with statistical significance. These markets are
characterized by an important gas or coal-fired electric-
ity generation, whose marginal costs are tight to the
commodity prices. Such pricing produces more relevant
order books and hence, the models using differentiable
optimization are more adapted to these markets.

• Models P&O and P&O+DNNOB that do not use direct
forecast (α = 0) are often outperformed by others on ev-
ery datasets. Models using the differentiable optimization
are better trained when the loss is also computed using
direct prediction. This suggests a deeper analysis of the
α and β parameters.

b) Varying the β parameter: In this experiment, we
focused on the Belgian dataset. For this dataset, we have

4CODE: https://github.com/Leonardbcm/MOB, DATA: https://rb.gy/v9ui3



Country Model MAE DAE RMAE SMAPE
DNNY 7.74 5.79 0.941 21.27
DNNY,OB 9.63 4.17 1.17 26.48

BE P&O 7.27 4.37 0.884 19.73
P&O + DNNOB 19.85 19.49 2.425 42.19
P&O + DNNY 6.85 4.32 0.832 20.35
P&O+DNNY,OB 6.28 3.44 0.763 17.28
DNNY 7.28 6.67 0.778 29.83
DNNY,OB 8.87 6.52 0.946 30.36

DE P&O 9.01 6.96 0.958 29.87
P&O + DNNOB 9.24 7.1 0.983 31.24
P&O + DNNY 6.99 5.15 0.745 25.97
P&O+DNNY,OB 6.91 4.53 0.735 25.53
DNNY 4.54 3.06 0.653 15.5
DNNY,OB 5.11 3.03 0.734 15.21

FR P&O 6.47 4.8 0.93 20.31
P&O + DNNOB 5.92 3.5 0.849 18.25
P&O + DNNY 5.3 3.22 0.759 16.2
P&O+DNNY,OB 5.79 3.87 0.831 19.51
DNNY 6.32 4.43 1.057 18.84
DNNY,OB 5.77 3.81 0.965 15.5

NL P&O 6.53 3.96 1.092 16.47
P&O + DNNOB 10.97 10.34 1.838 25.18
P&O + DNNY 5.22 3.49 0.874 13.4
P&O+DNNY,OB 5.79 4.47 0.968 14.41

TABLE II
METRICS OBTAINED ON THE TEST PERIOD FOR DIFFERENT MODEL

CONFIGURATIONS. BOLD VALUES INDICATE THE BEST METRIC AMONG
ALL MODEL CONFIGURATIONS FOR A GIVEN DATASET.

seen that model DNNY (α = 1) is outperformed by model
P&O (β = 1), but both models are outperformed by model
P&O + DNNY (α = 1

2 and β = 1
2 ) and P&O + DNNY,OB

(α = 1
3 and β = 1

3 ). Our purpose is to find even more
adequate values for α and β parameters. To this aim, we start
from the configuration of DNNY (α = 1) and increase β
by steps of 5%, while decreasing α by steps of 5%. Results
are displayed in Figure 7. It is clear that not considering the
optimization problem during training (β = 0) does not yield
the best results. However, considering only the predict-and-
optimize part (β = 1) is not an adequate solution either. We
see in Fig. 7 that adding the optimization loss even with a
very small weight in the global loss (5%) increases all the
considered metrics.

c) Contribution Analysis: We now perform a contribu-
tion analysis using SHAP [27]. Our aim is to determine which
features have been prioritized by adding the differentiable opti-
mization problem, and how the weight of the differentiation in
the loss affects features contribution. To this aim, we compute
the difference of contribution between a variable with β > 0
and its contribution when β = 0. For each value of β, we
compute 1000 SHAP values on the test set. For a clearer
analysis, we regroup the contributions by families of variable
and we display them on Fig. 8. Colored squares quantifies
the variation of contribution between β = 0 and β > 0. We
observe almost no variation on the domestic features (first 4
columns), with only a slight increases of the price contribution
at the expense of the generation forecast (gen). Changes for
Foreign features are more pronounced. The contribution of
Foreign Prices (F. price) are increased for smaller values of
β while higher values favor the Swiss and English prices

Fig. 6. p-values of the Diebold & Mariano test for the price forecast task.
Colored squares in (i, j) indicate that the forecasts of model i are significantly
more accurate than forecasts of model j. Green columns indicate that the
corresponding models are significantly better than every other. Black lines
indicate that the model on the y-axis’ forecasts are significantly worse than
every other.

(CH price, UK price). We also note important decrease of the
contribution of the Foreign generation forecast (F. ren gen)
for all values of β, and of the contribution of the Foreign
generation and consumption forecast (F. gen) and (F. conso)
for higher values of β.

d) Discussion: In the scope of our study, the order book
modeling and differentiation of the optimization problem lead
to significantly better results on the datasets where the energy
mix is eclectic. For the Belgian dataset, the analysis of the β
hyper-parameter shows that the best model is a combination of
the traditional approach where prices are directly forecast from
exogenous features β = 0 and the differentiable optimization
approach (β > 0). This experiment suggests that the optimal
value of β could be found using hyper-parameter search
methods. The variation in the contribution also reveals that
adding differentiable optimization to the model guides it to a
more refined representation of the variables. The Domestic and
Foreign consumption, generation and renewable generation
forecasts are less regarded, at the profit of prices. Indeed,
while those forecasts are to an extent correlated to the prices,
this correlation does not hold with the order books whose
complex structure is more price-dependent. This is especially
true for Swiss and English prices that are set at 11am and thus
available for market players to form their order books.

To illustrate this finding, we provide an extract of the test
set predictions in Figure 9, where the Belgian day-ahead



Fig. 7. Quality of the obtained predictions according to β on the Belgian
dataset: MAE (top), DAE (middle) and SMAPE (bottom).

prices from 10/10/2019 to 12/10/2019 are displayed on the
top diagram along with the forecasts of different models
(β = 0 in red, β = 1

2 in yellow and β = 1 in green).
On the bottom diagram, the market conditions are displayed
(forecast generation and forecast residual load), expressed as
% of deviation from their normal values. Focusing on the 1am
auction of the 12/10/2019, we remark that the model without
differentiable optimization (β = 0), given that the residual load
is 40% below the normal, greatly underestimates the price. The
real sensibility of the price to consumption variations, given
by the order book displayed in Figure 4, cannot be captured
by the model without differentiable optimization, while the
other two models with β = 1

2 and β = 1 predict the price
accurately.

VI. RELATED WORK

While many ML models have been proposed for EPF [6],
[11]–[21], only two papers have tried to include the price-
fixing algorithm. First, Schürch and Wagner [28] aim to extract
features from the ORDER BOOK before feeding them to a
ML algorithm. Then, Tschora et al. [29] model energy flow
between countries by solving an optimization problem before
forecasting prices using Graph Neural Networks. Those two
approaches sequentially apply a transformation to the data,
and then learn a Neural Network for prediction. In this current
work, we try to link both steps so that the data transformation
is optimal with respect to the prediction task. In this context,
we aim at developing a decision-focused framework that
forecasts ORDER BOOKs then used to solve the EUPHEMIA
algorithm.

Real-world decision-making problems often require the in-
tegration of machine learning and combinatorial optimization.

Fig. 8. Variation of the feature contributions while increasing β on the Belgian
dataset. A green square at coordinate (i, j) indicates that the model trained
with β = i increase the contribution of feature j compared to the model with
β = 0. A red square indicates the opposite. On the x-axis, the features are
regrouped by category. For instance, F. CONS is the sum of contribution of
all Foreign Consumption Forecasts (for Belgium, it is the French, German,
Dutch, Spanish, Italian, English, Austrian and Swiss prices).

Fig. 9. Day-Ahead prices on the Belgian dataset from 10/10/2019 to
12/10/2019 (black line) and their predicted values for various β (Top).
Fundamental variables of the Belgian market for the same period, expressed
as percentage of deviation from the average (Bottom).

In such scenarios, combinatorial optimization problems are
solved to arrive at decisions that maximize or minimize



an objective function. However, it is common for certain
parameters of the optimization problem to be unknown but
can be estimated from other feature attributes using historical
data. A common solution to tackle this problem is to adopt a
predict-then-optimize strategy. Such an approach sequentially
involves a machine learning model to provide point estimates
for uncertain parameters, followed by solving the optimiza-
tion problem using these predictions. However, this type of
methods assumes independent parameter errors and neglects
the interplay between these errors and their impact on the
combinatorial optimization problem.

To overcome this issue, decision-focused learning [30]
– also known as predict-and-optimize5– was introduced.
Decision-focused learning has gained significant attention in
the field of machine learning and optimization. Decision-
focused learning involves optimization problems where the
optimization parameters are only partially defined. A notable
advancement in this area is the introduction of the differen-
tiable optimization layer [33]. This layer calculates gradients
by differentiating the Karush-Kuhn-Tucker (KKT) optimality
conditions of a quadratic program. The solver comes with a
cubic complexity. Amos and Kolter [33] recommend not ex-
ceeding 1000 hidden dimensions which is largely exceeded by
our problem. In comparison, our solution based on dichotomy
search has a complexity in O (log2(|OB|)), which make the
problem tractable. The so-called Optnet approach [33] is not
applicable to linear programming. To address this limitation,
Wilder et al. [34] propose incorporating a small quadratic
regularizer in the objective function. Mandi and Guns [35]
introduce a log-barrier regularization term and compute gradi-
ents using the homogeneous self-dual embedding of the linear
programming. In [36], the authors focus on mixed integer
linear programmings and convert them to linear programming
by adding cutting planes to the root linear programming node.
Recent works have also investigated the integration of learning
to rank into decision-focused learning [25], [37]. To the best of
our knowledge, our paper is the first decision-focused learning
method to predict the electricity price, taking into account the
EUPHEMIA optimization through differentiable optimization.

VII. CONCLUSION

In this paper, we addressed the problem of Electricity Price
Forecasting (EPF) by combining a prediction model with an
optimization task based on the EUPHEMIA algorithm. We
aimed to demonstrate the benefits of the end-to-end predict-
and-optimize approach for this problem. Our research hypoth-
esis was that tightly coupling the EUPHEMIA optimization
task with order book prediction from exogenous data would
improve the accuracy of the model predictions. To achieve
this, we first formalized the EUPHEMIA optimization problem
and proposed a method for solving it to determine electricity
prices from order books. We then explored different ways
of integrating the optimal decision process while learning

5In [31], a Dagstuhl seminar report, the group of experts recommend to
use decision-focused learning instead of predict-and-optimize [24], [25] or
predict+optimize [32] because of some confusion around the terminology.

the order book prediction model. By directly minimizing
the error related to the downstream decision-making task,
we aimed to improve the overall performance of the EPF
model. In the experimental evaluation, we compared several
configurations of the end-to-end decision-focused model using
four different European datasets. The results demonstrated
the effectiveness of our approach, showing improvements
in the accuracy of the predictions compared to traditional
methods for the datasets for which the exogenous variables
make it possible to finely estimate the order books. The tight
coupling of the EUPHEMIA optimization task with the order
book prediction task then allows the model to capture more
relevant information and make more accurate price predictions.
Furthermore, we conducted a qualitative analysis using Shap
values to understand the factors and features that influenced the
predictions and decisions made by the predict-and-optimize
model. This analysis provided insights into the captured in-
formation and shed light on the relationships between the
input features and the final decision-making process. Our study
highlights the benefits of the end-to-end predict-and-optimize
approach for Electricity Price Forecasting. By integrating
the EUPHEMIA optimization task with order book prediction,
we achieved improved accuracy in price forecasting, which
has significant implications for the efficient management of
electricity production and consumption. Our findings pave
the way for further research and development in this area,
including exploring other optimization algorithms and refining
the prediction models to enhance the overall performance of
EPF systems.
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