
HAL Id: hal-04345422
https://hal.science/hal-04345422v1

Submitted on 23 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deep Learning in NLP for Anomalous HTTP Requests
Detection

Manh Tien Anh Nguyen, Van Tong, Sondes Bannour Souihi, Sami Souihi

To cite this version:
Manh Tien Anh Nguyen, Van Tong, Sondes Bannour Souihi, Sami Souihi. Deep Learning in NLP for
Anomalous HTTP Requests Detection. International Conference on Network and Service Management
(CNSM), Oct 2023, Niagara Falls, Canada. pp.1-8, �10.23919/CNSM59352.2023.10327888�. �hal-
04345422�

https://hal.science/hal-04345422v1
https://hal.archives-ouvertes.fr


Deep Learning in NLP for Anomalous HTTP
Requests Detection

Manh Tien Anh Nguyen∗‡, Van Tong∗, Sondes Bannour Souihi§, and Sami Souihi†
∗School of Information and Communication Technology, Hanoi University of Science and Technology, Vietnam

†LISSI-TincNET Research Team University Paris-Est Creteil, France
§ Université Paris-Saclay, CEA, List, F-91120, Palaiseau, France

‡TexPECT, France

Abstract—Techniques for Deep Learning (DL) and Natural
Language Processing (NLP) are rapidly advancing. In addition,
we notice that the access and utilisation of web applications
is expanding in almost all fields in conjunction with related
technologies. Web applications include a wide range of use cases
involving personal, financial, military, and political data. This
renders web-based applications a desirable target for cyber-attacks.
To address this problem, we propose, in this study, a novel
model capable of differentiating normal HTTP requests from
different types of anomalous HTTP requests. Our model combines
NLP techniques, the Bidirectional Encoder Representations from
Transformers (BERT) model, and DL techniques. The pre-trained
BERT model is able to operate on unprocessed data and therefore
does not require manually extracted features. Our experimental
results show that the proposed method achieves an F1 score of
more than 98.90% in the classification of multiple categories
of anomalous requests and normal requests on CAPEC dataset.
Furthermore, we leverage Transfer Learning in order to detect
new types of anomalous requests or new attack patterns that are
similar to training anomalous patterns. With Transfer Learning
techniques, our proposed model achieves an F1-score of 61.50%
on unseen types of anomalous HTTP requests.

Index Terms—Web attack detection, Deep Learning, Natural
Language Processing (NLP), Anomalous HTTP request

I. INTRODUCTION

Web applications play a significant role in people’s daily
lives, mainly because individuals are migrating their applica-
tions and confidential data to the cloud. The prevalence of
web applications and the large quantities of sensitive user data
they store make them vulnerable to attacks [1]. Therefore, it
is essential to protect web applications from intrusions. The
majority of vulnerabilities come from HTTP request-related
flaws that can be exploited by transmitting specially crafted
requests. These requests are intended to circumvent the Web
Application Firewall (WAF) and get unauthorized access to
the sensitive data. There are hundreds of web attack categories.
According to [2], injection attacks are the third most critical
threats to web applications security. In addition, the rapid
development of web-based applications has resulted in the
emergence of an expanding number of new attack types deriving
from well-known attacks. Therefore, web attack detection
systems have now to be able not only to detect known attack
patterns with high accuracy, but also to adapt effectively to
new attack patterns.

Given the prevalence of this threat, the cybersecurity com-
munity has responded to web application attacks in a variety of

ways [4]. Generally, there are two approaches to detect attacks
mentioned above. The first is the signature-based method,
which detects malicious patterns by searching for a known
identity. ModSecurity [5] is one of the most widely used engine
for implementing the signature-based method. This platform
provides a rule configuration language called ’SecRules’ for
real-time monitoring, logging, and filtering of HTTP requests
according to user-defined rules. However, these rules can still
be breached because the majority of signature-based methods
rely on regular expression-based filters constructed from known
attack signatures and require extensive configuration by security
experts. The second approach is the anomaly-based method
consisting in establishing normal request profiles so that
abnormal requests can be distinguished from regular ones.
The anomaly-based approach can be considered as a pattern
classification problem with the objective of distinguishing
anomalous from benign patterns. Recently, Machine Learning
(ML) and Deep Learning (DL) techniques have proved, in
use cases that rely on pattern recognition, to be superior
alternatives especially for difficult attack detection scenarios
[14]–[17]. Since malicious attacks are inherently repetitive
and involve codes with similar patterns, DL approaches are
highly effective at recognizing such patterns. However, both
approaches suffer from a lack in detecting unseen attack
patterns or new types of anomalous HTTP requests related to
previous attack patterns. These problems can be overcome by
leveraging Transfer Learning or Domain Adaptation strategies
[11].

In this paper, we propose a novel method for detecting web
attacks mentioned in the CAPEC dataset [3]. Note that we
explicitly consider non-encrypted web requests (e.g., requests
from users behind a firewall). Concretely, our system serves as
a Host-based Intrusion Detection System [8] to control access
to a web server. HTTP requests between end-users and the
web server are strictly managed by our system which has the
ability to detect abnormal requests that can be harmful to the
server. We use state-of-the-art methodologies in DL and NLP.
We leveraged the SecBERT pre-trained model [6] to obtain
the vectors corresponding to the HTTP sequence in the word
vector space. SecBERT is a variant of BERT model [9] trained
on cybersecurity texts, which makes it efficient at learning
cybersecurity knowledge and improving downstream tasks
(e.g., Named Entity Recognition, Text Classification, Semantic
Understanding) in the cybersecurity domain. Our proposed

© IFIP, 2023. This is the author's version of the work. It is posted here by permission of IFIP for your personal use. Not for redistribution. The definitive
version was published in M. T. Anh Nguyen, V. Tong, S. B. Souihi and S. Souihi, "Deep Learning in NLP for Anomalous HTTP Requests Detection," 2023 19th 
International Conference on Network and Service Management (CNSM), Niagara Falls, ON, Canada, 2023, pp. 1-8, doi: 10.23919/CNSM59352.2023.10327888., 
available at https://ieeexplore.ieee.org/document/10327888 



framework takes URLs as inputs from HTTP requests. The
BERT tokenizer is then used to tokenize these URLs, which are
then input into the pre-trained SecBERT model to obtain their
corresponding word vectors. Based on resulting word vectors,
we have trained a classifier with feed-forward neural networks
and used the softmax activation function. Furthermore, we
used Transfer Learning or Adversarial Domain Adaptation
[12] to detect new anomalous requests or attack patterns that
are similar to previously training anomalous patterns. We
implement a non-generative approach in Adversarial-based
Domain Adaptation strategy where a domain confusion loss
produced by the domain discriminator helps learn the domain
invariant representations. This strategy encourages the training
requests space and the unseen requests space to follow the
same distribution. The proposed model is consequently able to
detect new anomalous requests with greater accuracy than the
baseline method. According to our experiments, the proposed
method with Domain Adaptation strategy achieves an F1 score
exceeding 98.90% and 61.50% respectively on testing dataset
and on new anomalous HTTP requests.

The remainder of this paper is structured as follows. In
Section II, we provide a literature review of notable studies on
web attack detection and Domain Adaptation techniques. We
present a thorough description of our proposed framework in
Section III. In Section IV, we evaluate the performance of our
model. Finally, Section V draws the conclusions of this study.

II. RELATED WORK

In this section, we provide a systematic review of represen-
tative studies that are the most relevant to our research. Firstly,
we provide a brief overview of ML/DL-based attack detection
techniques. Secondly, we summarize studies employing Domain
Adaptation, a specific strategy of Transfer Learning. Finally,
we explicit the differences between our proposal and previous
research.

Mac et al. [14] proposed a model for identifying malicious
HTTP/HTTPS request patterns. They used CSIC 2010 data. The
proposed model includes an autoencoder for feature extraction.
In addition, ModSecurity is integrated with an autoencoder.
Performance evaluations revealed an F1-score of 94%, with a
detection time of 5.1 milliseconds. Tian et al. [15] proposed a
model for detecting web attacks targeting cloud data centers
that have facilitated data transmissions made difficult by the
growth of the Internet of Things. The authors used CNN
for classification, with M-ResNet and Word2Vec for feature
extraction. They conducted their experiments on the CSIC 2010,
FWAF, and HttpParams datasets achieving 99% of accuracy on
the CSIC 2010 dataset. Tekerek et al. [16] conducted research
on web-based attacks and based their work on CNN and bag of
words techniques. They achieved more than 96% of Accuracy
and F1-score on the CSIC 2010 dataset. Chen et al. [17]
proposed an SQLI detection system using Word2Vec, a non-
rule-based NLP technique, and CNN for classification. They
conducted their experiments using 4000 normal samples and
4000 SQLI samples. The system’s accuracy and F1-score are
reported to exceed 98%.

According to [18], Domain Adaptation (DA) approaches
can be categorized into two different categories, namely, (i)
Domain Invariant feature learning approach and (ii) Adversarial-
based Domain Adaptation approach. The most prevalent deep
DA approach relies on decreasing domain discrepancy in a
latent feature space and learning domain invariant feature
representations. The key component of these strategies is
selecting an appropriate divergence measure to accomplish this.
MMD [19] measures the distribution divergence of observed
samples using the hypothesis of a two-sample statistical test.
In particular, the mean of a smooth function relative to
the samples from two domains is contrasted, with a larger
mean difference indicating a greater domain disparity. In
practice, the alignment component proceeds similarly to a
task classifier. MMD can then be computed and minimized
between the outputs of the classifiers’ layers. CDD [20] is
proposed to integrate the class label into MMD in order to
achieve class-conditioned distribution alignment. While within-
class divergence is lowered by lowering CDD, cross-class
divergence is widened. Contrastive adaptation networks (CAN)
[20] have been proposed as an alternative to estimate the
target domain label using clustering, while reducing CDD,
in the event that the label in a target domain is lacking in
UDA. Rather than a divergence measure such as MMD, the
Adversarial based domain adaptation approach focuses on
adaptive learning of a divergence measure. Domain adversarial
neural network (DANN) [12] uses the gradient reversal layer
as a domain discriminator. In addition, a method for initializing
the target model with training from the source domain and
then performing adversarial adaptation to produce the target
domain-specific classifier has been proposed: Adversarial
Discriminative Domain Adaptation (ADDA) [21].

As mentioned succinctly in the preceding paragraph, there
is a wealth of literature on web attack detection. However, the
majority of proposals are designed for binary tasks (such as
normal and anomalous requests detection). With only binary
detection, it is challenging to analyze and investigate further
attack behaviors. In addition, we hypothesized that HTTP
request could be regarded as synthetic information that can
leverage a pre-trained BERT-based model to extract contextual
information for subsequence tasks. Moreover, to the best of
our knowledge, Domain Adaptation’s application to web attack
detection has not been the subject of any research for detecting
new anomalous requests that are similar to training anomalous
requests.

III. PROPOSED METHODOLOGY

Figure 1 illustrates the proposed system architecture for
detecting web attacks. Firstly, the SecBERT [6] pre-trained
model is used to transform the HTTP sequences in text form
into dense vectors. SecBERT [6] is a BERT model [9] trained on
a vast corpus of cybersecurity-related text, and is thus capable
of representing text-based cybersecurity information (e.g. HTTP
requests) as input for subsequent tasks. Secondly, a Multi-layer
Perceptron (MLP) classifier model is trained to classify HTTP
requests into normal and various anomalous requests groups. In



Fig. 1. Proposed system architecture.

addition, Domain Adaptation strategy is used to identify new
requests or attack patterns that are comparable to previously
trained anomalous patterns. Concretely, we implement a non-
generative strategy in Adversarial-based Domain Adaptation
in which a domain confusion loss generated by the domain
discriminator is used to detect new anomalous requests or new
attack patterns that are similar to training anomalous patterns.
We classify unknown web attacks into pre-defined categories
(e.g., injection) that have the same label as correlating training
attack patterns. We trained and evaluated the proposed model
on CAPEC dataset. In the remainder of this section, we first
present the BERT and SecBERT pre-trained models for our
feature extraction and classification task. Next, Adversarial
Domain Adaptation strategy [12] is introduced to adapt our
proposed model with new types of anomalous HTTP requests.
Finally, the overall system architecture is described in detail.

A. BERT and SecBERT pretrained models
The bidirectional encoder representations from transformers

(BERT) is a language representation model that was recently
introduced by [9]. BERT is used for supporting feature
extraction in natural language processing (NLP). NLP is a
subfield of computer science concerned with the ability of
machines to comprehend written and spoken language in
the same manner as humans. In natural language processing
(NLP), rule-based human language modeling (computational
linguistics) is combined with statistical, machine learning,
and deep learning models. The BERT model is employed
to produce pre-trained deep bidirectional representations from
unclassified text by mutually training on left and right context in
all layers. This means that BERT is able to acquire contextual
embeddings for words or text form. The pre-trained BERT
model may be fine-tuned by adding an output layer to generate
a variety of models for a wide range of use cases, such as
natural language processing tasks. However, some domains,
for example cybersecurity, actually remain highly confidential

because of the critical nature of data they deal with, which
makes them particularly exposed to cyber threats. As a result,
the automatic processing of cybersecurity text is in need of
a robust and trustworthy framework. Cybersecurity terms are
either unusual in standard English (e.g., web attacks, HTTP
requests, and keylogger) or have a variety of implications
(homographs) depending on the target domain (e.g., virus,
patch, handshake and honeypot) [7]. These differences in
the structure of language and semantic contexts complicate
text processing and suggest that the standard language model
trained on general corpus may not be able to accommodate
the vocabulary of cybersecurity texts, resulting in a limited or
restricted understanding of the implications of cybersecurity.

SecBERT [6] is a pre-trained cybersecurity language model
with a fundamental comprehension of both the character-level,
word-level and sentence-level semantics in the cybersecurity
field, and therefore effective in automating many crucial
cybersecurity tasks which would otherwise require expertise
from humans and time-consuming laborious efforts. A vast
corpus of cybersecurity-related text has been used to train
SecBERT. To make SecBERT effective not only at retaining
general English comprehension, but also when implemented to
text with cybersecurity consequences, [6] developed a custom
tokenizer and a method for modifying pre-trained weights. The
SecBERT is evaluated using the standard Masked Language
Model (MLM) test in addition to two other standard NLP tasks.
The evaluation studies demonstrate that SecBERT outperforms
comparable existing models, validating its capacity to solve
crucial NLP-related cybersecurity tasks.

Unless modified by adversaries, a typical HTTP request has
a standard format. In the literature, URLs are treated as regular
sentences in order to analyze their standard structure. As a
result, analysis of HTTP requests (e.g., word prediction, word
classification) can be carried out using the extensive repertoire
of NLP techniques. Word embedding techniques are among



the most efficient NLP methods [10]. In this work, we leverage
the capacity of SecBERT pre-trained model to extract features
from HTTP requests in order to learn contextual embeddings
for HTTP sequences.

B. Adversarial Domain Adaptation (ADA)
The primary objective of ADA is to optimize the performance

of both the labeled source domain and the unlabeled target
domain. In our work, the training dataset represents the source
domain, while the dataset that contains new types of anomalous
HTTP requests represents the target domain. Due to the
possibility of a domain shift between the source and target
domains, this method attempts to reconcile the marginal feature
distributions independently of labels for both domains.

Therefore, we train the classification module and the
SecBERT encoder module to maximize the probability of
source labels given source inputs. In addition, in order to
optimize the model’s performance in the target domain, we
train the SecBERT encoder to confuse a discriminator that
attempts to estimate the domain of a data sample and functions
as a density model.

Fig. 2. An example of a domain shift in which the distribution of the
unlabeled target domain differs from the labeled source domain distribution
despite the fact that both distributions have similar structural characteristics.
The supervised task’s decision boundary (shown by color) is better aligned
across both domains by aligning the two domains.

The marginal feature distributions of the source and target
domains are aimed at being aligned during the adversarial
training phase. The conditional distributions given the labels are
implicitly aligned as a result of the partial structural similarity
between the two domains. As a result, as shown in Figure
2, ADA improves the accuracy of a supervised module with
decision bounds adapted for the training domains by aligning
the distributions.

Figure 1 depicts the division of our proposed architecture
into two functional components known as the SecBERT
Encoder Module and Classifier Module. Let E : Rn → Rm

represent the encoder that converts a vector embedding fi from
an input HTTP request ii, which is then used as input for both
HTTP classifier phase S : Rm → Rc for determining label li
and the domain classifier phase D : Rm → R for producing
domain label di. We can omit the domain classifier while
testing since it is essentially an extra module that determines
the encoder objective, hence reducing the memory footprint of
the model.

The model is optimized to minimize HTTP classifier and
adversarial losses, respectively LS and LA, simultaneously. The
adversarial loss is further subdivided into encoder LAE loss
and domain classifier LAD loss (Equations 1 and 3). The goal
of the HTTP classifier is to minimize the cross-entropy loss
calculated by Equation 2. While both the adversarial encoder
and domain classifier losses rely on the encoder parameters wE

and the domain parameters wD, each loss only gets utilised
to the corresponding component to implement the adversarial
training procedure. The filters of the HTTP classifier wS are
only optimized with respect to the loss of the HTTP classifier
for the data of the source domain. The strength ratio between
the HTTP classifier and the adversarial target is determined by
the factor λ. In this setting, the encoder is motivated to derive
features that strike a balance between the HTTP classifier task
and maximizing domain invariance.

The adversarial training approach is realized by applying
each loss exclusively to the corresponding module, despite
the fact that the adversarial encoder and discriminator losses
simultaneously rely on the encoder parameters wE and the
discriminator parameters wD. Only the HTTPS classifier loss
for data from the source domain is taken into account when
optimizing the filters of the HTTP classifier wS . The HTTP
classifier and adversarial objectives’ respective strengths are
determined by the factor λ. This structure allows the encoder
to extract features that strike a compromise between the HTTP
classifier task’s relevance and the maximization of domain
invariance.

L(wS , wD, wE) = LS(wS , wE) + λLA(wD, wE) (1)

LS(wS , wE) = El=S(E(i,wE),wS),i∼S [− log(l)] (2)

LA(wD, wE) = LAD(wD) + LAE(wE) (3)

LAD(wD) = Ef=E(i),i∼S [− log(D(f, wD))]+

Ef=E(i),i∼T [− log(1−D(f, wD))]
(4)

This work characterises the adversarial encoder loss LAE

independently of the domain classifier loss using two prevalent
formulations. Similar to the initial generator loss in the GAN
framework [13], the encoder can be learned to maximize
domain confusion in ADA:

LAE(wE) = −Ef=E(i,wE),i∼S [log(1−D(f))]−
Ef=E(i,wE),i∼T [log(D(f))]

(confusion loss)
In contrast to the GAN framework, this loss is applicable

to samples from both domains, not just generated samples.
A comparable approach is the minimax formulation, which
negates the discriminator loss [12]. Minimax loss can be
represented as follows when gradient reversal [12] is utilized:

LAE(wE) = −LAD

= Ef=E(i,wE),i∼S [log(D(f))]+

Ef=E(i,wE),i∼T [log(1−D(f))]

(minimax loss)

In our work, minimax loss is used in Adversarial Domain
Adaptation to improve performance.



C. System Architecture

The architecture proposed for web attack detection using
BERT and Transfer Learning is shown in Figure 1. The
Encoder Module is based on the SecBERT pre-trained model
to capture the method, absolute path and query parameters
from the HTTP/HTTPS requests. Both labeled data from
source domain and unlabeled data from target domain are
fed into the SecBERT encoder module with the same weights
for feature extraction. After that, features of source domain
and target domain data are transmitted to Classifier Module.
There are two classifiers with different objectives in the
classification Module: HTTP Classifier and Domain Classifier.
All the features of the source data and their corresponding
labels are fed into the HTTP Classifier to detect normal
requests and multiple anomalous requests. In our work, we
incorporated a feed-forward neural network (i.e. MLP) for
requests classification task. In contrast, Domain Classifier
receives both source features and target features to distinguish
the target domain input from the source domain input. It is
trained with a gradient reversal layer that multiplies the gradient
by a particular negative constant during backpropagation. This
is executed in order to create the feature representation domain
invariant. Finally, with this training strategy, our model not
only recognizes the attack pattern in the source dataset, but
also in the target dataset.

IV. EXPERIMENTS

In this section, we evaluate the proposed method compared
to multiple baseline methods including machine learning and
deep learning models along with different feature extraction
techniques for text data. All our experiments were carried out
on a machine running Ubuntu 20.04 LTS having 10 cores,
16 threads Intel(R) Core(TM) i5-13400F CPU at 2.50GHz,
64GB of RAM and NVIDIA RTX 3080 graphics card. Source
code of the present work uses Python, Scikit-learn and Pytorch
libraries.

A. Data specification

The proposed method is evaluated and benchmarked on
the CAPEC dataset [3]. The dataset consists of web requests
collected during 12 days in July 2020 by a web server
(WordPress) deployed on a virtual machine and accessible via
Internet. CAPEC is a multi-label dataset designed specifically
for web attack detection, containing 907,814 requests, of
which 525,195 are normal requests and 382,619 are anomalous
requests, with each record containing 24 distinct features and a
set of 13 labels. Table I shows the detailed of typical attributes
of normal web request and attack web request on CAPEC
dataset.

However, for the purpose of transfer learning phase, CAPEC
dataset is converted to a multi-class dataset. We achieve
this by removing multi-label class samples. This trick had
no significant impact on the dataset beacause these samples
represent only 1% of the total dataset. Additionally, similar
attack patterns are grouped together and represented by a single
label. We identify similar attack patterns by determining the

correlation between each attack’s behavior (e.g. OS Command
Injection and SQL Injection are combined and represented as
Injection attacking type). By combining the relevant attacking
types, we can generate source and target datasets for evaluation
in transfer learning task (e.g. SQL Injection in source domain,
OS Command Injection in target domain). Table II provides
detailed information about how often a web request is classified
under a specific CAPEC heading in both source and target
datasets. Note that for the final result, duplicate requests have
been eliminated from the original CAPEC dataset. In our
experiment, the CAPEC source dataset was used to train all
models, while the CAPEC target dataset was used to evaluate
the performance of these models on the Transfer Learning task.

B. Evaluation measures

In general, a classifier can be evaluated based on the overall
accuracy. However, in multiclass imbalanced data, this metric is
no longer applicable, as the dominant classes have much greater
impacts than the minor ones. This paper adopts precision, recall,
and F1-score metrics to give a better idea of the accuracy
achieved within a given class. These measures are calculated
using True Positive (TP), True Negative (TN), False Positive
(FP), and False Negative (FN) values.

Precision is a metric that indicates how many of the predicted
positive values are actually positive, as shown in Equation 5.

Precision =
TP

TP + FP
(5)

Recall is used to quantify what proportion of anticipated
positive values are actually predicted as positive, as presented
in Equation 6.

Recall =
TP

TP + FN
(6)

As shown in Equation 7, the F1-score is the harmonic mean
of the Precision and Recall values.

F1 = 2 ∗ Precision ∗Recall

Precision+Recall
(7)

C. Results

In this section, we discuss our experimental results for both
request classification task and Transfer Learning task.

1) Request classification performance: In table III, we
compare our proposed method with other baseline methods, in-
cluding ModSecurity engine [5] and many ML/DL approaches.
ModSecurity engine [5] was the first method we used as a
benchmark. The OWASP ModSecurity Core Rule Set (CRS) is a
collection of signatures that can defend web applications against
a wide range of attacks. The ModSecurity Core Rule Set (CRS)
can take action based on the anomaly scores associated with
every HTTP request. The action may be passing or declining the
request. In our experiment, ModSecurity performs the worst on
the CAPEC dataset compared to other methods. The precision,
recall and F1-score are respectively 0.8175, 0.7284 and 0.7704.
In fact, ModSecurity relies on a predefined core rule set not
covering the whole CAPEC dataset, which explains the poor
results achieved by the system.



TABLE I
DETAILED OF TYPICAL ATTRIBUTES OF NORMAL WEB REQUEST AND ATTACK WEB REQUEST ON CAPEC DATASET.

Attribute Normal web request Attack web request
method value GET POST

http request value /blog/index.php/comments/feed/ /blog/index.php/my-account/edit-profile/post.php/
?action=edit&post=%7B%7B%20data.id%20%7D%7D

agent value Mozilla/5.0 (Windows NT 5.1;...) Mozilla/5.0 (X11; Linux x86 64,...)
host value test-site.com test-site.com
content type value nan application/x-www-form-urlencoded

body value nan
username=drearySyrup7&
password=0C20y&
user-registration-login-nonce=6eac0e2d5f...

http status code value 200 200
http status message value OK OK
response content length value 424 58110

TABLE II
NUMBER OF WEB REQUESTS IN CAPEC SOURCE DATASET AND CAPEC TARGET DATASET.

Label CAPEC source CAPEC target
Number of web requests % of total requests Number of web requests % of total requests

Normal 225423 38.37% 1086 7.63%
Injection 261885 44.58% 9168 64.45%
Fake the source of Data 54574 9.29% 1408 9.90%
HTTP splitting 18748 3.19% 920 6.46%
Path traversal 16824 2.86% 938 6.59%
Manipulation 7993 1.36% 318 2.27%
Scanning software 1998 0.35% 384 2.70%
TOTAL 587445 14222

TABLE III
THE PRECISION, RECALL AND F1-SCORE OF OUR PROPOSED METHOD AND

OTHER BASELINE METHODS ON THE MULTICLASS CAPEC DATASET.

Method Precision Recall F1-score
BOW + Naive Bayes 0.8471 0.8323 0.8396
BOW + Decision Tree 0.9632 0.9544 0.9588
BOW + Random Forest 0.9665 0.9602 0.9633
BOW + Logistic Regression 0.9575 0.9493 0.9534
BOW + GRU 0.9698 0.9681 0.9689
BOW + LSTM 0.9702 0.9711 0.9706
TF-IDF + Naive Bayes 0.8771 0.8719 0.8745
TF-IDF + Decision Tree 0.9594 0.9587 0.9590
TF-IDF + Random Forest 0.9693 0.9631 0.9662
TF-IDF + Logistic Regression 0.9554 0.9488 0.9521
TF-IDF + GRU 0.9667 0.9699 0.9683
TF-IDF + LSTM 0.9771 0.9723 0.9747
Word2Vec + Naive Bayes 0.4848 0.4972 0.4909
Word2Vec + Decision Tree 0.9493 0.9401 0.9447
Word2Vec + Random Forest 0.9604 0.9552 0.9578
Word2Vec + Logistic Regression 0.8021 0.7972 0.7996
Word2Vec + GRU 0.9796 0.9705 0.9750
Word2Vec + LSTM 0.9792 0.9748 0.9780
ModSecurity + CRS 0.8175 0.7284 0.7704
SecBERT + MLP + DA (Proposal) 0.9904 0.9878 0.9890

We have also experimented with multiple traditional ML
and DL methods on the CAPEC dataset. Since the HTTP
request input is a special kind of text form, we make use of
NLP techniques for feature extraction. We implement three
popular feature extraction methods in NLP: Bag-of-Words
(BOW), Term frequency–inverse document frequency (TF-IDF)
and Word2Vec algorithms. Feature extraction is performed
at the character level instead of the word level to meet the
input particularity. For each of the previously mentioned

feature extraction techniques, multiple classifiers, including
both traditional ML and DL approaches, were integrated to
form a comprehensive system. Table III shows results of the
preceding techniques. In general, the integration of NLP feature
extraction techniques with conventional ML classifiers (e.g.
Naive Bayes, Decision Tree,...) yields comparable results. The
integration of the TF-IDF feature extractor with the Random
Forest classifier gives the most accurate results, with precision,
recall, and F1-score values of 0.9693, 0.9631, and 0.9662
respectively. In addition, the use of feature extractors with DL
models (e.g. GRU, LSTM) in HTTP request classification
task leads to superior results compared to traditional ML
classifiers. In our experiments, DL classifiers achieve slightly
higher accuracy than ML classifiers. Concretely, the precision,
recall, and F1-score are respectively 0.9792, 0.9748, and 0.9780
for the Word2Vec feature extractor with LSTM classifier. More
specifically, the DL classifiers outperform the ML classifiers in
detecting all categories of attacks, while ML classifiers seem
to be biased towards attack types with large training data.

Table IV shows the detailed result of detecting multiple
web application security vulnerabilities on the CAPEC dataset
using typical ML, DL, rules-based ModSecurity and our
proposed method. With a precision, recall, and F1-score of
0.4823, 0.2054, and 0.2881 for the Manipulation attack, the
ML classifier having the best accuracy (e.g. TF-IDF extractor
with Random Forest classifier) gives limited performance. In
contrast, best classifier of DL method (e.g. Word2Vec extractor
with LSTM classifier) outperforms the traditional method in
detecting Manipulation attack, with precision, recall, and F1-
score of 0.8793, 0.4098 and 0.5395 respectively. The poor



TA
B

L
E

IV
P

R
E

C
IS

IO
N

(P
),

R
E

C
A

L
L

(R
),

F
1-

S
C

O
R

E
(F

1)
,F

O
R

E
A

C
H

A
T

TA
C

K
,O

F
M

L
,D

L
,A

N
D

O
U

R
P

R
O

P
O

S
E

D
M

E
T

H
O

D
.

A
tta

ck
s

In
je

ct
io

n
Fa

ke
th

e
so

ur
ce

of
da

ta
H

T
T

P
sp

lit
tin

g
Pa

th
tr

av
er

sa
l

M
an

ip
ul

at
io

n
Sc

an
ni

ng
so

ft
w

ar
e

P
R

F1
P

R
F1

P
R

F1
P

R
F1

P
R

F1
P

R
F1

B
O

W
+

N
ai

ve
B

ay
es

0.
98

0.
95

0.
97

0.
98

0.
92

0.
95

0.
98

0.
98

0.
98

0.
98

0.
90

0.
94

0.
44

0.
16

0.
24

0.
86

0.
96

0.
91

B
O

W
+

D
ec

is
io

n
Tr

ee
0.

97
0.

96
0.

97
0.

97
0.

91
0.

94
0.

98
0.

97
0.

98
0.

97
0.

91
0.

94
0.

42
0.

14
0.

22
0.

87
0.

95
0.

91
B

O
W

+
R

an
do

m
Fo

re
st

0.
99

0.
96

0.
98

0.
98

0.
91

0.
94

0.
99

0.
98

0.
99

0.
98

0.
92

0.
95

0.
45

0.
20

0.
26

0.
88

0.
98

0.
93

B
O

W
+

L
og

is
tic

R
eg

re
ss

io
n

0.
97

0.
95

0.
96

0.
98

0.
92

0.
95

0.
98

0.
96

0.
97

0.
98

0.
98

0.
98

0.
43

0.
17

0.
24

0.
85

0.
95

0.
90

B
O

W
+

G
R

U
0.

97
0.

97
0.

97
0.

99
0.

90
0.

94
0.

99
0.

98
0.

99
0.

96
0.

94
0.

95
0.

84
0.

38
0.

52
0.

91
0.

93
0.

92
B

O
W

+
L

ST
M

0.
98

0.
97

0.
98

0.
99

0.
91

0.
95

0.
99

0.
99

0.
99

0.
97

0.
95

0.
96

0.
86

0.
39

0.
53

0.
92

0.
94

0.
93

T
F-

ID
F

+
N

ai
ve

B
ay

es
0.

99
0.

96
0.

98
0.

99
0.

93
0.

96
0.

99
0.

99
0.

99
0.

99
0.

92
0.

96
0.

48
0.

20
0.

28
0.

88
0.

98
0.

93
T

F-
ID

F
+

D
ec

is
io

n
Tr

ee
0.

98
0.

95
0.

97
0.

98
0.

92
0.

95
0.

98
0.

98
0.

98
0.

97
0.

92
0.

95
0.

46
0.

17
0.

27
0.

87
0.

97
0.

92
T

F-
ID

F
+

R
an

do
m

Fo
re

st
0.

99
0.

95
0.

97
0.

98
0.

93
0.

96
0.

99
0.

99
0.

99
0.

98
0.

93
0.

95
0.

45
0.

21
0.

26
0.

89
0.

98
0.

93
T

F-
ID

F
+

L
og

is
tic

R
eg

re
ss

io
n

0.
96

0.
96

0.
96

0.
98

0.
91

0.
94

0.
98

0.
95

0.
96

0.
98

0.
97

0.
98

0.
42

0.
18

0.
24

0.
85

0.
95

0.
90

T
F-

ID
F

+
G

R
U

0.
96

0.
96

0.
96

0.
99

0.
93

0.
96

0.
98

0.
98

0.
98

0.
97

0.
93

0.
95

0.
85

0.
34

0.
53

0.
91

0.
92

0.
92

T
F-

ID
F

+
L

ST
M

0.
97

0.
98

0.
98

0.
99

0.
90

0.
94

0.
99

0.
99

0.
99

0.
96

0.
95

0.
96

0.
85

0.
38

0.
52

0.
92

0.
92

0.
92

W
or

d2
V

ec
+

N
ai

ve
B

ay
es

0.
98

0.
96

0.
97

0.
98

0.
92

0.
95

0.
99

0.
98

0.
99

0.
98

0.
91

0.
95

0.
44

0.
16

0.
24

0.
86

0.
96

0.
91

W
or

d2
V

ec
+

D
ec

is
io

n
Tr

ee
0.

98
0.

97
0.

98
0.

97
0.

91
0.

94
0.

98
0.

96
0.

97
0.

97
0.

90
0.

93
0.

42
0.

15
0.

22
0.

87
0.

95
0.

91
W

or
d2

V
ec

+
R

an
do

m
Fo

re
st

0.
99

0.
96

0.
98

0.
98

0.
94

0.
96

0.
99

0.
99

0.
99

0.
97

0.
92

0.
94

0.
45

0.
20

0.
25

0.
89

0.
97

0.
92

W
or

d2
V

ec
+

L
og

is
tic

R
eg

re
ss

io
n

0.
98

0.
95

0.
97

0.
98

0.
93

0.
96

0.
98

0.
96

0.
97

0.
98

0.
97

0.
98

0.
43

0.
18

0.
23

0.
85

0.
95

0.
90

W
or

d2
V

ec
+

G
R

U
0.

99
0.

97
0.

98
0.

99
0.

91
0.

95
0.

99
0.

99
0.

99
0.

96
0.

96
0.

96
0.

85
0.

39
0.

53
0.

92
0.

93
0.

93
W

or
d2

V
ec

+
L

ST
M

0.
99

0.
98

0.
99

1.
00

0.
93

0.
96

1.
00

1.
00

1.
00

0.
98

0.
96

0.
97

0.
87

0.
40

0.
55

0.
94

0.
96

0.
95

M
od

Se
cu

ri
ty

+
C

R
S

0.
83

0.
76

0.
79

0.
82

0.
74

0.
77

0.
81

0.
73

0.
76

0.
80

0.
71

0.
75

0.
62

0.
51

0.
56

0.
78

0.
72

0.
74

Se
cB

E
R

T
+

M
L

P
+

D
A

(P
ro

po
sa

l)
0.

99
0.

99
0.

99
1.

00
0.

95
0.

98
1.

00
1.

00
1.

00
0.

99
0.

98
0.

99
0.

96
0.

89
0.

95
0.

98
0.

97
0.

98

performance of the ML classifier can be explained by the
fact that the Manipulation attack covers only 1.4% of the
training data set. In fact, ML classifiers are biased towards
attack categories having the largest number of training samples,
whereas DL models are optimized over the entire data set,
including attack types with few samples. Finally, our proposed
model achieves the best results, with precision, recall, and
F1-score values of 0.9904, 0.9878, and 0.9890, respectively.
This result demonstrates that using SecBERT pre-trained model
for extracting features of HTTP requests is extremely efficient.
SecBERT is capable of capturing the specificities of each HTTP
request, providing an optimal input for the MLP classifier. A
reminder that we evaluated with other learning architectures
other than MLP. For instance, we constructed CNN-based
models of different configurations and obtained an average
F1-score of 0.9887. Nevertheless, when compared to other
classifiers, the MLP-based model that we developed offers the
best accuracy.

2) Transfer Learning performance: The transfer learning
performance of different methods is presented in Table V.
As a baseline, we evaluated the performance of naive zero-
shot transfer of multiple ML and DL methods. Each method
is trained until convergence using only source domain data,
and then zero-shot transferred to the target domain. While
these models typically obtain high performance on data from
the source domain, their zero-shot performance on the target
domain can be considerably limited. For transfer from the
CAPEC source domain to the CAPEC target domain, naive
zero-shot can result in more than 60% of decrease in F1 score
when compared to in-domain supervised training. Concretely,
ML methods such as TF-IDF feature extractor with the Random
Forest classifier have an F1-score of only 0.3697 on the CAPEC
target domain, whereas the F1-score on the CAPEC source
is 0.9662. DL approaches such as Word2Vec with LSTM
classifier also witnessed a significant decrease, with an F1-
score of 0.9780 and 0.3778 respectively on the CAPEC source
and target domains. In our experiment, ModSecurity performs
the Transfer Learning task with the lowest accuracy compared
to other methods with an F1-score of only 0.2531 on the
CAPEC target domain. This low result can be explained by the
fact that ModSecurity detects web attacks using rules, therefore
allowing new types of attacks to easily circumvent this system.

These experiments above demonstrates that models without
Domain Adaptation techniques and rules-based method have
a limited accuracy in detecting new attack patterns that are
correlated with attack requests in the training dataset. Therefore,
by leveraging Adversarial-based Domain Adaptation strategy,
our proposed method significantly outperforms the naive zero-
shot baselines in all the transfer tasks without degrading
accuracy on the source domain. Our model achieves an F1-
score of 0.6150 on the CAPEC target domain and keeps an
F1-score of 0.9890 on the CAPEC source domain. Our method
improved best result in baseline methods, represented by an
F1-score of 0.4124 (TF-IDF feature extractor with Naive Bayes
classifier), by around 49%.



TABLE V
THE F1-SCORE OF OUR PROPOSED METHOD AND OTHER BASELINE

METHODS ON THE TRANSFER LEARNING TASK.

Method CAPEC source → CAPEC target
BOW + Naive Bayes 0.4013
BOW + Decision Tree 0.3945
BOW + Random Forest 0.3563
BOW + Logistic Regression 0.3774
BOW + GRU 0.3891
BOW + LSTM 0.3812
TF-IDF + Naive Bayes 0.4124
TF-IDF + Decision Tree 0.3871
TF-IDF + Random Forest 0.3697
TF-IDF + Logistic Regression 0.3733
TF-IDF + GRU 0.3896
TF-IDF + LSTM 0.3983
Word2Vec + Naive Bayes 0.2965
Word2Vec + Decision Tree 0.3555
Word2Vec + Random Forest 0.3378
Word2Vec + Logistic Regression 0.2874
Word2Vec + GRU 0.3880
Word2Vec + LSTM 0.3778
ModSecurity 0.2531
SecBERT + MLP + DA (Proposal) 0.6150

V. CONCLUSION

Web application vulnerabilities are exploited by adversaries
through web requests. In this study, we proposed a novel
approach for the detection of web attacks based on BERT
model and DL techniques. SecBERT is a variant of BERT
model trained on cybersecurity texts, making it effective
at learning and representing cybersecurity knowledge. We
used the SecBERT pre-trained model to have an appropriate
representation of URLs and the MLP classifier to distinguish
between normal and anomalous requests of different types. To
go further, our system leverages Transfer Learning to detect
unseen abnormal requests or new attack patterns that correlate
with training requests. Our approach significantly outperforms
the baseline models on both web attack classification and
Transfer Learning tasks with an F1 score of 98.90% and
61.50% respectively. This promising result demonstrates the
effectiveness of both feature extraction using a SecBERT pre-
trained model and the Adversarial-based Domain Adaptation
strategy. In future work, we will investigate different Domain
Adaptation strategies and more complex classifiers to further
improve the overall system accuracy. Additionally, we will
have an emphasis on deploying and assessing the system in
production.

REFERENCES

[1] Abdulsalam, Y. S., and Hedabou, M. (2021). Security and privacy in
cloud computing: technical review. Future Internet, 14(1), 11.

[2] Top OWASP. 10. Application Security Risks-2021. Open Web Application
Security Project (OWASP).

[3] Riera, T. S., Higuera, J. R. B., Higuera, J. B., Herraiz, J. J. M., and
Montalvo, J. A. S. (2022). A new multi-label dataset for Web attacks
CAPEC classification using machine learning techniques. Computers and
Security, 120, 102788.

[4] Salih, A., Zeebaree, S. T., Ameen, S., Alkhyyat, A., and Shukur, H. M.
(2021, February). A survey on the role of artificial intelligence, machine
learning and deep learning for cybersecurity attack detection. In 2021
7th International Engineering Conference “Research and Innovation amid
Global Pandemic”(IEC) (pp. 61-66). IEEE.

[5] ModSecurity. https://github.com/SpiderLabs/ModSecurity (accessed April.
11, 2023).

[6] “SecBERT: pretrained BERT model for cyber security text, learned Cyber-
security Knowledge. https://github.com/jackaduma/SecBERT (accessed
April. 12, 2023).

[7] Aghaei, E., Niu, X., Shadid, W., and Al-Shaer, E. (2022, October).
SecureBERT: A Domain-Specific Language Model for Cybersecurity.
In International Conference on Security and Privacy in Communication
Systems (pp. 39-56). Cham: Springer Nature Switzerland.

[8] Khan, A. R., Kashif, M., Jhaveri, R. H., Raut, R., Saba, T., and Bahaj, S.
A. (2022). Deep learning for intrusion detection and security of Internet of
things (IoT): current analysis, challenges, and possible solutions. Security
and Communication Networks, 2022.

[9] Devlin, J., Chang, M. W., Lee, K., and Toutanova, K. (2018). Bert: Pre-
training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805.

[10] Naseem, U., Razzak, I., Khan, S. K., and Prasad, M. (2021). A
comprehensive survey on word representation models: From classical to
state-of-the-art word representation language models. Transactions on
Asian and Low-Resource Language Information Processing, 20(5), 1-35.

[11] Wilson, G., and Cook, D. J. (2020). A survey of unsupervised deep
domain adaptation. ACM Transactions on Intelligent Systems and
Technology (TIST), 11(5), 1-46.

[12] Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H.,
Laviolette, F., ... and Lempitsky, V. (2016). Domain-adversarial training
of neural networks. The journal of machine learning research, 17(1),
2096-2030.

[13] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio.
Generative adversarial nets. In Advances in neural information processing
systems, pages 2672–2680, 2014.

[14] Mac, H., Truong, D., Nguyen, L., Nguyen, H., Tran, H. A., and Tran,
D. (2018, December). Detecting attacks on web applications using
autoencoder. In Proceedings of the 9th International Symposium on
Information and Communication Technology (pp. 416-421).

[15] Tian, Z., Luo, C., Qiu, J., Du, X., and Guizani, M. (2019). A distributed
deep learning system for web attack detection on edge devices. IEEE
Transactions on Industrial Informatics, 16(3), 1963-1971.

[16] Tekerek, A. (2021). A novel architecture for web-based attack detection
using convolutional neural network. Computers and Security, 100,
102096.

[17] Chen, D., Yan, Q., Wu, C., and Zhao, J. (2021). Sql injection attack
detection and prevention techniques using deep learning. In Journal of
Physics: Conference Series (Vol. 1757, No. 1, p. 012055). IOP Publishing.

[18] Liu, X., Yoo, C., Xing, F., Oh, H., El Fakhri, G., Kang, J. W., and
Woo, J. (2022). Deep unsupervised domain adaptation: A review of
recent advances and perspectives. APSIPA Transactions on Signal and
Information Processing, 11(1).

[19] Rozantsev, A., Salzmann, M., and Fua, P. (2018). Beyond sharing weights
for deep domain adaptation. IEEE transactions on pattern analysis and
machine intelligence, 41(4), 801-814.

[20] Kang, G., Jiang, L., Yang, Y., and Hauptmann, A. G. (2019). Contrastive
adaptation network for unsupervised domain adaptation. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition
(pp. 4893-4902).

[21] Tzeng, E., Hoffman, J., Saenko, K., and Darrell, T. (2017). Adversarial
discriminative domain adaptation. In Proceedings of the IEEE conference
on computer vision and pattern recognition (pp. 7167-7176).




