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Abstract: This study measured the concentrations of Hg, As, Ni, Cd, and Pb in six fish species
commonly consumed in Kendari. Samples were bought within local markets from 2012 to 2017
at the end of the dry season. Results showed that mercury concentrations fluctuated between
years and within species, except in the Caranx sexfasciatus, which showed no significant differences
(Kruskall–Wallis, p-value > 0.05, df = 5) and an average concentration of 0.371 ± 0.162 µg g−1 DW.
Arsenic was found in high concentrations across species and years and varied widely in C. sexfasciatus,
the lowest value being 0.32 ± 0.01 µg g−1 DW in 2012 and the highest was 5.63 ± 1.89 µg g−1

DW in 2017. The highest nickel concentrations were found in 2016 across four of the six species.
The fish samples displayed very low cadmium and lead concentrations throughout the study. In
addition, the potential human health risk due to fish consumption was assessed. This showed that
mercury is the only one of the five metals present in concentrations high enough to individually pose
a potential hazard, the only metal likely to be accumulated beyond a safe concentration in Kendari.
Chanos chanos never posed a toxicological risk based on the results of this research.

Keywords: monitoring; heavy metals; fish; hazard quotient; hazard index; Sulawesi

1. Introduction
1.1. Background

Heavy metal contamination poses significant health risks to people worldwide be-
cause of their bioaccumulation up to toxic concentrations in living organisms, their impact
on cellular functions even at low doses, and their persistence over time [1,2]. Their physico-
chemical characteristics enable metals to be absorbed, accumulated and transformed by
biological functions in living organisms [3–5]. Although some metals are essential for
metabolic processes, such as copper and iron, others have no known role in humans and
can become toxic even at low concentrations, e.g., arsenic, cadmium, mercury or lead.
Arsenic-contaminated groundwater in Bangladesh, for example, has affected millions of
people over the last two decades [6–8].

Coastal communities are particularly at risk of environmental contaminants and
heavy metal pollution that impact the health of both aquatic environments and human
populations [9,10]. Anthropogenic activities such as urbanization, dredging for coastal
development, the deforestation of mangroves and mining activities have increased the
number of contaminants present in the marine environment. These contaminants and
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naturally occurring metals become bio-available for accumulation by marine organisms,
which live in continuous contact with pollutants in the water [11–13]. These marine
organisms, in turn, make the accumulated contaminants available for human absorption
when caught and eaten [1,2]. Anthropogenic activities therefore have cascading effects
that impact all trophic levels and lead to significant health risks, especially to coastal
populations, through the consumption of contaminated seafood products [14,15]. Living
organisms can absorb environmental elements such as metals from the air, water, sediments
and the food they eat, whether they are beneficial or harmful. Although fish and seafood
offer many health benefits, the pollutants present in this category of food can also seriously
endanger the health of consumers [16]. For example, fish living near sediments and feeding
on detrital organic matter and benthic invertebrates accumulate heavy metals [17].

The coastal communities of Indonesia are large fish consumers and local demand for
fish is growing [18]. Indonesia is severely affected by anthropogenic pollution and envi-
ronmental degradation, setting the population at high risk of heavy metal poisoning [19].
Fish offers many benefits to humans as a source of low-fat protein, minerals, vitamins
and unsaturated fatty acids essential for cellular functions and organs [2,20]. Fish are also
abundantly available in Indonesia and form a major part of the local diet. Yet, as marine
organisms are in constant contact with pollutants, fish are also potential vehicles of heavy
metal toxicity and a threat to human health. Average fish consumption in Indonesia has
increased by more than 30% within a span of four years, from 12.78 kg pers−1 year−1 in
2011 to over 16.66 kg pers−1 year−1 in 2015 [18]. This increase may seem moderate but is
buffered by the relatively low fish consumption by the vast population of the central Java
region. In most parts outside Java, fish consumption is much higher, including the province
of Southeast Sulawesi, the region of our study.

Regarding surface area, Indonesia is the largest archipelagic state [21,22]. Indonesia
is also the fourth most populated country in the world with a population spreading over
17,500 islands, of which 6000 islands were recorded to be inhabited by over 264 million
people in 2017 [23]. The nation has experienced substantial demographic and economic
growth over recent decades [24]. The population increased by 2.79 between 1950 and
2017 [23]. The Indonesian government therefore needs to address the problems of meeting
the nutritional needs of the growing population [18]. The GDP per capita has risen from
USD 617 in 1985 to over USD 3570 in 2016 [24]. Fishing represented almost 21% of the
Indonesian agricultural economy in 2012, almost 3% of the country’s GDP [22]. The
country produced nearly 9 million tons of fish, 95% from artisanal activity [25]. In 2012,
the Indonesian fishing industry supplied two-thirds of these fish products, while about
one-third came from aquaculture [26]. Fishery products (cephalopod fish, crustaceans, etc.)
accounted for 54% of the Indonesian population [25]. Indonesia’s strong economic growth
may contribute to the growing demand for fish through an increase in the buying power of
the local population.

Our study was conducted in the Kendari agglomeration, which lies at the head of a
bay in Southeast Sulawesi, Indonesia (Figure 1). The people of Sulawesi are Indonesia’s
second largest fish consumers, consuming an average of 24.9 kg pers−1 year−1 of marine
fish [18]. This area has also displayed remarkable economic growth through palm grove
development [27,28], resource exploitation mining [29] and fisheries [25]. The local popula-
tion is at risk of exposure to heavy metals due to their increasing fish consumption, a risk
amplified by the growing economy and demography [30,31].
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Figure 1. Location of Kendari city, Province of Sulawesi Tenggara, Indonesia.

1.2. Mechanisms, Sources and Effects of Heavy Metal Contamination

The concentration of heavy metals accumulated by fish depends on the trophic level
of the species [5,32,33] and the conditions of its habitat [12]. Fish, as the most important
component of the food chain in aquatic environments, may absorb Heavy metals (HMs)
from water and sediment and other species through respiration, feeding and body surface
penetration [34]. Pollution by heavy metals and therefore their availability to organisms
may vary over the years and seasons [35]. Among aquatic fauna, highly motile fish are
not considered good indicators of metallic pollution in marine ecosystems because fish
muscle tissue does not readily accumulate contaminants [36,37]. However, muscle tissue
effectively indicates a potential toxicological risk to human health because of its substantial
presence in most global diets [15,38]. Scientists increasingly present seafood products as
a significant source of heavy metal contamination for humans [15,39,40]. In the face of
these toxicological risks, global health organizations have established limits on heavy metal
concentrations ingested before deleterious effects are developed in humans [23,41]. The
dose of heavy metals absorbed depends on the concentration of the element in the source
and the modalities of exposure [42]. The duration of exposure and the chemical form of the
trace elements are also essential to consider [23,41,43]. It is therefore necessary to monitor
the actions of heavy metals, even at low doses, on biological functions and the evolution of
concentrations present in commonly consumed fish over time to evaluate potential risks
to populations.

We monitor the five metals most harmful to human health with an oral reference dose
(RfD) of less than 0.02 mg kg−1 body weight, namely arsenic, cadmium, mercury, nickel
and lead [44]. The sources of contamination in coastal environments and the effects of each
of these metals are outlined below.

1.2.1. Mercury (Hg)

Mercury pollution in the coastal environment is caused mainly by anthropogenic ac-
tivities, predominantly mining [45,46]. Its toxicity varies according to its chemical form [13]
and methyl mercury is one of the most toxic forms for humans and is introduced by fish
consumption [43]. Organisms methylate mercury and accumulate along the food web,
particularly in predators such as fish [10]. Several factors, such as size, composition of food
in the fish gut, and habitat, had the greatest influence on the mercury levels found in the
fish [47]. TRefs. [48,49] suggest that 95% or more of the mercury present in fish muscle is
in the form of methyl mercury. A total mercury study therefore provides a conservative
approach and assumes—as we have in this paper—that all of the mercury consumed is
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converted by the species to methylmercury [10]. Mercury is very persistent in the body and
it is mainly eliminated via the bile duct. Mercury poisoning causes harmful effects on the
liver [50], kidney [51] and brain [52]. Severe neurological symptoms and increased levels of
mercury are possibly caused by exposure to inorganic mercury in air, and the consumption
of mercury-contaminated fish [53]. The oral reference dose of mercury is 0.0005 mg per kg
body weight [41].

1.2.2. Arsenic (As)

Arsenic is a by-product of metal mining [54] but is also one of the earth’s crust’s
most common naturally occurring elements [43,55]. The routes of infection for humans are
principally water and diet [56]. Arsenic has no known function in human physiological
activities and causes fetal malformations and infant mortality [43] (WHO—arsenic). The
level of toxicity depends on the form of this element. Chronic exposure to inorganic arsenic
has carcinogenic effects, and exposure to the organic form deleteriously impacts organs
(WHO—arsenic). Acute exposure can lead to gastrointestinal disorders, muscle pain and,
in severe cases, death. It is reported by the authors of [57] that only 3% of the total arsenic
measured in fish is storable and potentially toxic to humans. The oral reference dose of
arsenic is 0.003 mg per kg body weight [41].

1.2.3. Nickel (Ni)

There are multiple sources of nickel contamination in the coastal environment, both
anthropogenic and natural. According to the Priority List of Hazardous Substances estab-
lished by the Agency for Toxic Substances and Disease Registry [58], the order of heavy
metals in descending order of threat to human health is: As > Pb > Cd > Ni > Zn > Cr >
Cu > Mn [59]. Anthropogenic sources include pyrometallurgy and the burning of fossil
fuels [60]. Nickel is also released through volcanic ash [61], natural soil erosion and runoff
from streams to the sea [62]. Nickel is involved in in lipid metabolism and intensifying
hormonal activities [63]. However, nickel inhibits DNA repair and promotes cancer under
certain conditions of solubility and bond affinities [43]. The oral reference dose of nickel is
0.02 mg per kg body weight.

1.2.4. Cadmium (Cd)

Cadmium has no known physiological role in humans. It does not exist alone in nature
and is frequently bonded with zinc or lead sulfides. Cadmium binds with hemoglobin in
erythrocytes and is transported to the liver and the renal cortex. The half-life of cadmium
is ±30 years. Detoxification is only possible after completely removing long-term contam-
ination sources [43]. Cadmium poisoning can cause acute renal or pulmonary function
disruption and can be lethal. Since cadmium affects mainly the kidneys, the exclusive
consumption of muscle tissue limits the exposure and risk of poisoning [64]. The oral
reference dose of cadmium is 0.001 mg per kg body weight [41].

1.2.5. Lead (Pb)

There are no known metabolic functions of lead in the human body. The digestive
system easily absorbs lead: the active transport of lead increases intestinal absorption, am-
plified by calcium and iron deficiencies because of intense competition with their mucosal
receptors [43]. The brain is worst affected because calcium is essential in many neurological
processes. In the brain, lead can interfere with mitochondrial function in neurons, prevent-
ing cells from functioning correctly. It can also affect the release of neurotransmitters, the
way neurons communicate with each other, and change the structure of blood vessels in
the brain. Together, these defects can lead to a decreased IQ, learning disabilities, decreased
growth, hyperactivity, poor impulse control, and even hearing loss. This is why lead
exposure in children is deeply concerning [65]. Pb can cause blood and brain diseases and
stomach–intestinal colitis [66–68]. In addition, lead reduces the lifespan of red blood cells
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by altering their membranes [43]. The oral reference dose of lead is 0.004 mg per kg body
weight [41].

1.3. Objective

This study aimed to determine the levels of metallic contamination in fish commonly
consumed in the Kendari region of Indonesia and to characterize the toxicological risk of
the five metals that pose the most significant toxic risk to humans at low concentrations.
We assessed the toxicological risks using internationally recognized indicators: the target
hazard quotient (USEPA hazard quotient) and the hazard index (USEPA hazard index). As
the first multi-year study of this kind, these quantities will serve as reference levels for the
area and can be used to propose recommendations for local health authorities.

2. Materials and Methods
2.1. Study Species

Six fish species commonly eaten by locals in Kendari were included in this study:
Caranx sexfasciatus (kuwe as local name), Chanos chanos (bandeng), Epinephelus hexagonatus
(kerapu), Lethrinus ornatus (lencam), Lutjanus gibbus (kakap) and Variola albimarginata (sunu
merah). Information on their feeding habits, habitat, trophic level and range was obtained
from the Global Fish Information System (Fish Base System) and is summarized in Table 1.
The trophic level of each species was estimated from data on their diet.

Table 1. General information about the sampled species, including the habitat of the species, the
estimated trophic level and the feeding habits.

Species Common Name Habitats Trophic Level Feeding Habits

Caranx sexfasciatus Bigeye trevally Pelagic, oceanic and coastal
waters, coral reefs 4.5 ± 0.6 Fishes, crustaceans

Chanos chanos Milkfish Benthopelagic, coastal waters 2.4 ± 0.2 Plankton

Epinephelus hexagonatus Starspotted grouper Epibenthic, coastal waters 4.1 ± 0.7 Fishes, crustaceans

Lethrinus ornatus Ornate emperor
Demersal, various habitats
(sandy, sea-grass meadows,
coral reefs)

3.4 ± 0.4 Fishes, crustaceans,
mollusks, annelids

Lutjanus gibbus Humpback red snapper Benthopelagic in coral reefs 3.1 ± 0.3
Fishes, crustaceans,

cephalopods,
echinoderms.

Variola albimarginata White-edged lyretail Benthopelagic in coral reefs 4.5 ± 0.8 Fishes

According to [32], the trophic level of a fish species is strictly herbivorous (level 2.0–2.1)
and carnivorous with a preference for fishes and crustaceans (between 4.0 and 4.5). Thus,
V. albimarginata, C. sexfasciatus and E. hexagonatus are carnivorous species; L. ornatus and
L. gibbus are omnivorous species with a carnivorous preference, consuming a wide variety
of prey; and C. chanos is an omnivore with an herbivorous preference [33]. These species
are distributed broadly throughout the Indo-Pacific, allowing the comparison of our results
with other studies in this region.

2.2. Sample Selection and Treatment

Fish were purchased at the Kendari central market to obtain samples that represent
those eaten by the locals. Samples were bought every year from 2012 to 2017 at around
mid-October, the end of the dry season. The analyses of the samples were carried out
annually but following exactly the same protocol from sampling to analysis with the same
equipment. Three individuals of similar and marketable size were purchased per species
and treated separately (Table 1). We selected fish according to size rather than age to mimic
the buying habits of locals and therefore gain a more accurate estimation of risk to the
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population. A muscle sample was taken from the dorsal part of each fish fillet, a part of the
fish that is eaten entirely. The muscle samples were dried in an oven at 45 ◦C for at least
48 h and ground into a fine homogeneous powder. We used manual grinding with a pestle
and mortar for fine homogeneous powder. The powdered samples were stored in inert jars
to avoid contamination and placed in a desiccator until analysis to prevent any rehydration
of the samples.

2.3. Determining Heavy Metal Concentrations

Mercury concentrations in the powdered muscle samples (between 5 and 20 mg dry
weight, DW) were determined by 254 nm atomic absorption spectrophotometry (Altech
AMA-254 made in Czech Republic). Analyses of As, Ni, Cd, Pb were performed with
a Varian Vista-Pro ICP-OES made in Australia and a Thermofisher Scientific XSeries 2
ICP-MS made in USA; to this end, aliquots weighing between 60 and 200 mg were di-
gested using a 6:2 (v/v) 67–70% HNO3/34–37% HCl mixture (Fisher, trace metal quality).
Acidic digestion of the samples was carried out overnight at room temperature and then
in a Milestone microwave oven (30 min with constantly increasing temperature up to
120 ◦C, then 15 min at this temperature). Each sample was made with up to 50 mL of
ultrapure quality water. For samples with a weight of <100 mg, the mixture used was
3:1 (v/v) 67–70% HNO3/34–37% HCl, and the samples were made with up to 25 mL of
ultrapure water. Two certified reference materials (CRMs) and one blank, treated and
analyzed in the same way as the samples, were included in each analytical batch [69].
A standard certified value sample, TORT-3 (lobster hepatopancreas, NRC, National Re-
search Council Canada), was used to validate the analytical method. Average recovery
percentages over the six years of study (2012 to 2017) were compared with the certified
values for the five metals. These mean percentages of recovery ranged between 88.7 ± 14.5
for Pb and 105.0 ± 9.4 for As. These values validate the analyses protocol followed. We
calculated the averages and standard deviations of the concentrations, expressed in µg g−1

DW, and verified their normality using the Shapiro–Wilk test. The data were not normally
distributed (p-values < 0.05); therefore, nonparametric tests were applied to determine
significant differences between samples (Kruskall–Wallis test and Tukey HSD).

2.4. Calculating the Target Hazard Quotients (THQs)

The target hazard quotient (THQ) is a risk index representing the ratio of the daily
intake amount to the maximum ingestible amount of metal (the oral reference dose (RfD))
determined by the World Health Organization [70]. This method was available in the
USEPA Region III-based concentration table. We evaluated the THQs according to the
method used by [71]. The [18] reports that people in Sulawesi consume an average of
23.6 kg of fresh fish per person per year (64.66 g per day). We estimated that they eat fish
at least once a day (direct observation of eating habits). The average life expectancy in
Indonesia is 73 years for women and 69 for men [72]. The average weight is 52.5 kg for
women and 59.1 kg for men. Based on these assumptions, THQ is defined as follows:

THQ = (EF × ED × FIR × C)/(RfD × BW × AT) × 10−3 (1)

where EF = exposure frequency (365 days/year); ED = exposure duration over a lifetime
(average life expectancy, 73 years for women and 69 for men); FIR = fish intake rate
(64.66 g per person per day); C = concentration of metal in the sample (mg kg−1 fresh weight);
RfD = oral reference dose (mg kg−1 day−1); BW = average body weight (52.5 kg for women
and 59.1 kg for men) and AT = total exposure time over lifetime (EF × ED). A THQ value
greater than one indicates that the metal poses a potential risk of adverse health effects in
the population (USEPA hazard quotient) [40].
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2.5. Calculating Hazard Indexes (HIs)

The hazard index (HI) is an integrative index that accounts for the simultaneous
exposure to different elements in food [73]. Metals can have synergistic effects within the
body [40]. To account for these synergistic effects, we evaluated the cumulative health risk
by adding the THQs of the metals. The HI in this study is defined as follows:

HI = THQAs + THQCd + THQHg + THQNi + THQPb (2)

An HI value greater than or equal to one indicates a potential for deleterious effects
on human health [74,75] (USEPA hazard index).

3. Results
3.1. Metal Concentrations

Mean metal concentrations per species are reported in Table 2. Mercury concentra-
tions fluctuated between years and within species except in the Caranx sexfasciatus, which
shows no significant differences (Kruskall–Wallis, p-value > 0.05, DL = 5) and an average
concentration of 0.371 ± 0.162 µg g−1 DW over the study period. The mean mercury
concentration in Chanos chanos peaked in 2012 at 0.139 ± 0.033 µg g−1 DW, is low, not
significantly different from 2014 to 2016 (0.053 ± 0.008 µg g−1 DW), and was slightly higher
in 2017 (0.095 ± 0.009 µg g−1 DW). Epinephelus hexagonatus had the highest concentrations
in 2014 and 2015 with 0.547 ± 0.292 µg g−1 DW and 0.620 ± 0.178 µg g−1 DW, respectively.
The two highest mean mercury concentrations among all species were found in Lethrinus
ornatus in 2014 (0.872 ± 0.069 µg g−1 DW) and Lutjanus gibbus in 2015 (0.829 ± 0.278 µg g−1 DW).
These two species had relatively high intermediate values in 2012, 2013 and 2016 with
an average concentration of 0.572 ± 0.054 µg g−1 DW. Mercury concentration in Variola
albimarginata was the greatest in 2013 (0.477 ± 0.280 µg g−1 DW).

Arsenic was found in the highest concentrations of all six metals across species and years.
Concentrations varied widely in C. sexfasciatus, the lowest value being 0.32 ± 0.01 µg g−1 DW
in 2012 and the highest was 5.63 ± 1.89 µg g−1 DW in 2017. Concentrations were also
high in 2013 (3.49 ± 0.24 µg g−1 DW) and in 2015 (4.09 ± 0.58 µg g−1 DW). C. chanos and
E. hexagonatus had very high concentrations in 2013 with 16.20 ± 7.50 µg g−1 DW and
14.91 ± 8.65 µg g−1 DW, respectively. L. ornatus and L. gibbus had the highest arsenic
concentrations among the six species: 19.47 ± 6.41 µg g−1 DW and 39.10 ± 21.39 µg g−1 DW,
respectively, both in 2014. In V. albimarginata, concentrations were comparable over the
entire period, averaging 7.96 ± 5.15 µg g−1 DW.

The highest concentrations of nickel were found in 2016 across four of the six species:
C. chanos (4.33 ± 1.76 µg g−1 DW), E. hexagonatus (2.56 ± 1.42 µg g−1 DW), L. ornatus
(0.97 ± 0.15 µg g−1 DW) and V. albimarginata (1.69 ± 1.09 µg g−1 DW). Nickel concentrations
in C. sexfasciatus and L. gibbus were not significantly higher than in other years in 2016
because of high variability around relatively high means (6.00 ± 6.25 µg g−1 DW and
2.81 ± 3.14 µg g−1 DW, respectively).

The fish samples contained very low concentrations of cadmium and lead throughout
the study period, and some concentrations might have been below the detection limit.
There is no significant difference between the mean concentrations across the years in any
species, except for cadmium concentrations in 2012, which was significantly different in all
six species.
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Table 2. Mean metal concentrations (±SD, n = 3, in µg g−1 DW) according to species. Bold values are
mean values significantly higher from each other’s (Kruskall-Wallis, p < 0.05). a, b, c, d: homogeneous
groups after a Tukey-test for species and years.

Year Hg As Ni Cd Pb

Caranx sexfasciatus

2012 0.279 ± 0.072 a 0.32 ± 0.01 a ND (0.02) 0.04 ± 0.02 b ND (0.03)
2013 0.421 ± 0.082 a 3.49 ± 0.24 bcd 0.24 ± 0.18 a ND (0.02) ND (0.02)
2014 0.126 ± 0.032 a 1.57 ± 0.55 ab 0.09 ± 0.09 a ND (0.02) ND (0.02)
2015 0.318 ± 0.002 a 4.09 ± 0.58 cd 0.05 ± 0.03 a 0.01 ± 0.00 a 0.01 ± 0.00 a

2016 0.601 ± 0.476 a 2.76 ± 0.45 ac 6.00 ± 6.25 a 0.03 ± 0.04 a 0.01 ± 0.00 a

2017 0.484 ± 0.306 a 5.63 ± 1.89 d 0.11 ± 0.06 a ND (0.01) ND (0.01)

Chanos chanos

2012 0.139 ± 0.033 c 0.33 ± 0.01 a ND (0.02) 0.03 ± 0.00 b 0.18 ± 0.14 a

2013 0.011 ± 0.001 a 16.20 ± 7.50 b 0.81 ± 0.23 a ND (0.02) 0.05 ± 0.07 a

2014 0.055 ± 0.008 ab 2.82 ± 1.27 a 0.22 ± 0.03 a ND (0.02) 0.03 ± 0.01 a

2015 0.052 ± 0.003 ab 3.47 ± 0.73 a 0.11 ± 0.07 a 0.01 ± 0.00 a 0.03 ± 0.01 a

2016 0.051 ± 0.014 ab 1.14 ± 0.11 a 4.33 ± 1.76 b 0.01 ± 0.00 a 0.04 ± 0.01 a

2017 0.095 ± 0.009 bc 4.54 ± 0.28 a 0.45 ± 0.07 a ND (0.01) 0.04 ± 0.01 a

Epinephelus hexagonatus

2012 0.242 ± 0.095 ab 5.10 ± 5.68 a ND (0.02) 0.07 ± 0.07 a ND (0.03)
2013 0.359 ± 0.120 ab 14.91 ± 8.65 b 0.39 ± 0.27 a ND (0.02) ND (0.02)
2014 0.547 ± 0.292 ab 9.03 ± 3.26 ab 0.10 ± 0.04 a ND (0.02) ND (0.02)
2015 0.620 ± 0.178 b 5.27 ± 0.73 a 0.09 ± 0.07 a 0.01 ± 0.00 a 0.01 ± 0.00 a

2016 0.112 ± 0.018 a 1.27 ± 1.42 a 2.56 ± 1.42 b ND (0.01) ND (0.03)
2017 0.312 ± 0.078 ab 1.88 ± 0.24 a 0.06 ± 0.02 a 0.01 ± 0.00 a 0.01 ± 0.00 a

Lethrinus ornatus

2012 0.601 ± 0.046 bc 5.19 ± 3.47 a ND (0.02) 0.06 ± 0.04 b ND (0.03)
2013 0.360 ± 0.107 ab 7.28 ± 7.99 ac 0.43 ± 0.08 a ND (0.02) ND (0.02)
2014 0.358 ± 0.128 ab 19.47 ± 6.41 c 0.27 ± 0.35 a ND (0.02) ND (0.02)
2015 0.872 ± 0.069 d 16.75 ± 1.49 bc 0.08 ± 0.00 a ND (0.01) 0.01 ± 0.00 a

2016 0.718 ± 0.065 cd 6.01 ± 2.16 ab 0.97 ± 0.15 b ND (0.01) ND (0.01)
2017 0.351 ± 0.100 a 3.03 ± 0.57 a 0.10 ± 0.03 a 0.01 ± 0.00 a 0.01 ± 0.00 a

Lutjanus gibbus

2012 0410 ± 0.067 a 4.16 ± 2.70 a ND (0.02) 0.06 ± 0.01 b ND (0.03)
2013 0.433 ± 0.135 ab 22.53 ± 10.47 ab 0.50 ± 0.65 a ND (0.02) ND (0.02)
2014 0.829 ± 0.278 b 39.10 ± 21.39 b 0.09 ± 0.05 a ND (0.02) ND (0.02)
2015 0.189 ± 0.008 a 10.27 ± 1.98 a 0.26 ± 0.13 a 0.01 ± 0.00 a 0.01 ± 0.00 a

2016 0.210 ± 0.021 a 10.92 ± 4.14 a 2.81 ± 3.14 a 0.01 ± 0.00 a 0.02 ± 0.00 a

2017 0.386 ± 0.162 a 21.52 ± 3.89 ab 0.30 ± 0.41 a 0.01 ± 0.00 a ND (0.01)

Variola albimarginata

2012 0.148 ± 0.011 a 0.86 ± 0.71 a LD (0.02) 0.05 ± 0.02 b 0.14 ± 0.20 a

2013 0.477 ± 0.280 b 7.94 ± 7.43 a 1.35 ± 1.00 ab ND (0.02) ND (0.02)
2014 0.163 ± 0.018 a 7.47 ± 3.26 a 0.07 ± 0.02 a ND (0.02) ND (0.02)
2015 0.229 ± 0.036 ab 9.15 ± 6.01 a 0.09 ± 0.04 a ND (0.01) 0.01 ± 0.00 a

2016 0.261 ± 0.075 ab 10.93 ± 7.76 a 1.69 ± 1.09 b 0.01 ± 0.00 a 0.02 ± 0.00 a

2017 0.214 ± 0.030 ab 11.40 ± 5.73 a 0.11 ± 0.04 a ND (0.01) ND (0.01)
ND = Not detected.

3.2. Targeted Risk Quotients (THQs)

Reports of the average targeted risk quotients (THQs) of metals according to species
were obtained. We combined the average THQs of men and women since we did not find
significant differences (Kuskall–Wallis, p-value = 0.12, df = 1) (see Figure 2).
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Mercury is the only metal which has THQ values exceeding the threshold of 1,
which occurs at least twice in all species except C. chanos. This species has the lowest
THQ for mercury across the years. The maximum THQ for mercury in C. chanos was
0.32 ± 0.07 (2012) and the minimum was 0.02 ± 0.00 (2013). The THQs for mercury in
V. albimarginata do not show a pattern of evolution over the years; the two years in which
the THQ was significant were four years apart (2013: 1.11 ± 0.09 and 2017: 0.90 ± 0.34).
However, a chronological succession of THQ Hg within species was observed in some
cases. Over the first period, from 2012 to 2014, risks increased successively in L. gibbus
(0.95 ± 0.15, 1.01 ± 0.08, 1.93 ± 0.59). Then, from 2014 to 2016, L. ornatus (0.83 ± 0.27,
2.03 ± 0.19, 1.67 ± 0.17) presented the highest risk. Over the last period, the greatest THQs
were represented in C. sexfasciatus (2016 with 1.40 ± 0.99 and 2017 with 1.40 ± 0.99) and
E. hexagonatus (2014: 1.27 ± 0.61; 2015: 1.44 ± 0.38; 2017: 1.12 ± 0.64).

The THQs of the other metals were well below the threshold of 1. The THQs of arsenic
are well below the recommended limit probably because the calculation considered only
3% of the total concentration, i.e., the fraction of bioavailability to organisms [57]. The
lowest THQs values for arsenic were measured in C. sexfasciatus and C. chanos in 2012
(<0.01 µg g1 DW), while the highest value was in L. gibbus in 2014 (0.35 ± 0.18). As for the
THQ of nickel, 2013 and 2016 are the only years that stand out, with higher values than in
other years. The maximum THQs of nickel were in V. albimarginata in 2013 (0.41 ± 0.21)
and C. sexfasciatus in 2016 (0.35 ± 0.33). The THQs of cadmium and lead present no risks
across species and years.
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3.3. Hazard Indexes (HIs)

The average hazard index (HI) values per year for each species are shown in Table 3.
All species had potential risk values greater than 1 for at least one year, except C. chanos,
which has a very low-risk potential regardless of the year (an overall average of 0.32 ± 0.10).
The years 2012, 2014 and 2015 represent low-risk periods because only two species per year
presented high risks: in 2012, L. ornatus (1.53 ± 0.11) and L. gibbus (1.07 ± 0.18); in 2014,
E. hexagonatus (1.34 ± 0.62) and L. gibbus (2.29 ± 0.52); and in 2015, E. hexagonatus (1.52 ± 0.38)
and L. ornatus (2.23 ± 0.22). The year 2017 presents an intermediate risk because half
of the fish species presented risks higher than the threshold: C. sexfasciatus (0.89 ± 0.21),
E. hexagonatus (1.17 ± 0.65) and V. albimarginata (1.04 ± 0.38). Finally, 2013 and 2016 posed
the highest risks; two-thirds of the species had high HIs greater than 1. For both these
years, C. sexfasciatus (1.08 ± 0.13, 1.82 ± 1.02), L. gibbus (1.37 ± 0.25, 0.80 ± 0.20) and
V. albimarginata (1.59 ± 0.33, 0.85 ± 0.26) had high cumulative health risks, while only
E. hexagonatus (1.10 ± 0.13) in 2013 and L. ornatus (1.80 ± 0.18) in 2016.

Table 3. HI mean values for species and years. Bold values are higher than reference value of 1
considering the SD (n = 3); a, b, c, d: homogeneous groups after a Tukey test for species and years.
CSE = Caranx sexfasciatus; CCH = Chanos chanos; EHE = Epinephelus hexagonatus; LOR = Lethrinus
ornatus; LGI = Lutjanus gibbus; VAL = Variola albimarginata.

Years CSE CCH EHE LOR LGI VAL

2012 0.70 ± 0.16 a 0.42 ± 0.11 b 0.70 ± 0.17 ab 1.53 ± 0.11 b 1.07 ± 0.18 b 0.45 ± 0.09 a

2013 1.08 ± 0.13 ab 0.36 ± 0.30 ab 1.10 ± 0.13 ac 1.02 ± 0.19 a 1.37 ± 0.25 b 1.59 ± 0.33 d

2014 0.34 ± 0.08 a 0.20 ± 0.04 a 1.34 ± 0.62 bc 0.97 ± 0.26 a 2.29 ± 0.52 c 0.50 ± 0.08 ab

2015 0.81 ± 0.07 a 0.19 ± 0.02 a 1.52 ± 0.38 c 2.23 ± 0.22 c 0.59 ± 0.04 a 0.65 ± 0.05 ab

2016 1.82 ± 1.02 b 0.41 ± 0.10 b 0.42 ± 0.07 a 1.80 ± 0.18 b 0.80 ± 0.20 ab 0.85 ± 0.26 bc

2017 0.89 ± 0.21 a 0.31 ± 0.02 ab 1.17 ± 0.65 ac 0.78 ± 0.17 a 0.78 ± 0.08 ab 1.04 ± 0.38 c

The contribution of each metal’s THQ to the total potential risk to human health (HI)
is shown in Figure 3. Mercury is by far the most significant risk contributor across all years
and species except in C. chanos in 2013 and 2016 where it is exceeded by nickel. The risk
posed by nickel is present in variable percentages across species but in higher proportions
in these two years. The THQ of arsenic is also variable across all years and all species but
its contribution to HI is the highest in C. chanos in 2013 and 2015 (>20%). Arsenic contri-
buted increasingly to the HI of L. gibbus over the years, exceeding 20% in 2015 and 2017. In
E. hexagonatus, L. ornatus and V. albimarginata, however, a relative decrease in the percentage
contribution of arsenic is observed from 2014. A similar trend exists in C. sexfasciatus, except
for a notable increase in 2017. The percentage contributions of cadmium and lead are minor,
relative to the other metals. The contribution to the HI by cadmium is significant only
in 2012 (±10%) for all species. The contribution to the HI by lead is only noticeable in
C. chanos (±5%) across all years, and in V. albimarginata in 2012 (10%).

3.4. Trophic Level and Hazard Indexes (HIs)

Figure 4 shows the relationship between the trophic level of each species and the
corresponding mean HI values. We found no significant correlation between the mean
HI (over the six years) and the trophic level of each species (Spearman, p-value = 0.27,
DL = 5, r2 = 0.007). C. chanos has the lowest trophic level (2.4 ± 0.2, Table 3) and the lowest
mean HI value (0.31 ± 0.13) of all species. C. sexfasciatus, E. hexagonatus and V. albimarginata
form a group in which the mean HI values are intermediate (0.92 ± 0.65, 1.12 ± 0.57 and
0.75 ± 0.67, respectively) but trophic levels are highest (4.5 ± 0.6, 4.1 ± 0.7, 4.5 ± 0.8,
respectively; Table 1). L. ornatus has the highest average HI value (1.43 ± 0.56) but an
intermediate trophic level (3.4 ± 0.4, Table 1). L gibbus has an intermediate HI (1.12 ± 0.65)
and an intermediate trophic level (3.1 ± 0.3, Table 1).
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4. Discussion

The mercury (Hg) concentrations measured in our studies are (effectively) lower than
those recommended by authorities such as the FAO (2003) or certain reviews [76]. For
example, our results on mercury presented a maximum concentration of 2.5 µg g−1 DW that
is twice weaker than the recommended maximum value (5 µg g−1 DW) even though, here,
a more integrative approach considering toxicological parameters (RfD; oral refe-rence
dose), but also human biology and sociology indicators, have been deliberately chosen.
Thus, we believe that these toxicological indices better represent the risk of these foods for
the health of these populations. Of all the metals, the Kendari population is most at risk of
mercury poisoning. Mercury is the only one of the five metals present in concentrations
high enough to pose a potential hazard individually, the only metal likely to accumulate
beyond a safe concentration in the average Kendari. This was not the case in similar studies,
which reported only concentrations within safe limits [33,77,78]. The THQs of mercury
exceed the threshold of one several times in all but one species, Chanos chanos, which never
exceeds the threshold and poses relatively little risk of mercury toxicity. When considered
individually, no other metal poses a toxic risk; the THQs of arsenic, cadmium, nickel and
lead are below the recommended limit. The peaks of nickel THQs in years 2013 and 2016
coincide with an increase in mining activities in Indonesia and a change in nickel mining
policies in recent years.
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The differences in their diet can partially explain the differences in toxicity between
fish species. The size of fish was our reference to slightly homogenize the age of the
sampled individuals. Metal concentrations can be confirmed through factors such as the
level of environmental contamination and the duration based on [79]. As a result, as the
organization grows, larger individuals (i.e., older individuals) are expected to accumulate
higher metal concentrations than smaller individuals (i.e., younger individuals). Another
factor potentially affecting metal bioaccumulation is the species richness and biomass of
the recipient environment [80]. Their diet and trophic level determine the accumulation
rate of heavy metals and therefore the biomagnification of these elements throughout the
food web [35]. Polychaetes are very good bioaccumulators of metals and can be used in
environmental biomonitoring studies [36]. Crustaceans and echinoderms are also good
indicators of the bioaccessibility of heavy metals in the environment [81]. Heavy metals
can be accumulated by fish from food, water and sediments [82]. The fish are reliable
indicators of the levels of heavy metal contamination in aquatic environments [83] because
the concentrations of metals in fish often correspond with the levels in the soil and water
of a specific aquatic environment from where they are sourced [84] and their duration of
exposure [85]. In this study, we did not use data on heavy metal concentrations within
water and sediment because the main purpose of this research protocol is to assess the
toxic risk samples of fish that were sold in traditional Kendari markets and not to study
the correlation between water and sediment parameters and heavy metal content in fish in
the Kendari area. Fish have a higher risk of accumulating heavy metals when they prey
on good bioaccumulators, like polychaetes, crustaceans and echinoderms. However, we
found no significant correlation between the trophic level and the risk of harmful effects
on human health (Figure 4). Diet therefore does not identify species at risk, except in the
case of C. chanos, a low trophic-level herbivore, which undoubtedly poses no risk to human
health in the Kendari area throughout the follow-up period—with THQ and HI values
remaining well below the risk threshold. Of the six species studied, C. chanos is the only
one that can be bred in captivity through aquaculture and therefore be reared on a food
supply of controlled quality [86].

To understand the potential impact of the consumption of the various fish species by
the locals in Kendari, it is necessary to consider their cost to household income. The gross
domestic product (GDP) per capita has increased by an annual average of 2.9% between
1999 and 2005 [87], which has led to an increase in fish consumption in Indonesia [18].
However, it remains likely that the cost of buying a species limits its consumption. The fish
species with high toxic risks were more expensive and less accessible to many consumers.
Lutjanus gibbus, for example, presents substantial risks and was sold for IDR 45,000 each in
2022. C. chanos has a low potential risk and costs only IDR 25,000 per individual in 2023.
Species with a high-risk index were not only the most expensive, but most desired for their
taste by the Kendari population.

Aside from the cost of fish and local preferences, we must consider the possibility
of reducing the intake of metal elements in food. Many studies support that cooking is
the best way to minimize food-contaminant intake. Cooking methods have been shown
to have varying effects on meat quality, leading to differences in nutrient composition
and trace element concentration [88]. A study by the authors of [89] evaluated the impact
of various cooking methods on total mercury concentration in fish and found significant
differences between roasting, boiling and frying. Scavenging and carnivorous fish lose a lot
of mercury when cooked. Omnivorous and herbivorous fish experienced a sharp decline in
mercury concentration when grilled. Several studies have shown the effects of different
types of cooking on the bioavailability of trace elements in two farmed marine species,
L. japonicus and P. majo. Boiling, steaming, frying and broiling reduced the bioavailability
of arsenic, cadmium, copper, iron, selenium and zinc [90]. The last two methods are more
efficient than the second. Studies on the effects of cooking on C. gariepinus supports the
findings of [90,91], which report that all cooking methods reduce the availability of heavy
metals in the flesh. The preferred cooking method depends on the trace elements to be
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guarded against and the concentrations present in the species. Omnivorous species pose
the most significant risk in our study because of their high mercury concentration; therefore,
according to [89], the most effective cooking method to reduce toxic risk is grilling. In this
publication, we admit that the cooking method does not influence the metal concentrations
in the samples [92].

The accumulation of dangerous levels of heavy metals can be averted by cooking fish
well and diversifying protein sources [93], taking care to eat fish of lower trophic levels. The
species to be favored are the primary consumers (planktivorous and microphages), usually
available at lower costs. In this study, C. chanos presented negligible risks, regardless of
the year. This species is accessible at a low price for the population, due to the species
being bred in aquaculture facilities [86]. This reduces the accumulation of heavy metals
and contaminants through isolation from marine environments and better food quality
control. Predators with varied diets, such as Lethrinus ornatus, are to be limited because
their diverse prey types and sites increase the risk of heavy metal accumulation [94,95].
Nevertheless, fish are not the only source of heavy metal toxicity; other foods can also
contain high concentrations, including rice, which is found in most Asian diets [73,96].
More comprehensive analyses of population diets, beyond the scope of this work, are
necessary for the assessment of overall risks associated with the consumption of common
foods in high-risk areas.

Heavy Metal Concentrations in the Context of Other Studies

A comparison of heavy metal concentrations (mg kg−1 DW) found in fish from other
study areas in the Indo-Pacific region are presented in Table 4.

Table 4. Comparison of heavy metal concentrations (mg kg−1 DW) found in fish from other study
areas in the Indo-Pacific region.

Heavy Metals
(HMs) Species Study Area Concentration HMs

(mg kg−1 DW) References

Mercury (Hg) Caranx sexfasciatus Kendari, Indonesia 0.370 This study
Malaysia 0.290 [33]

Caranx ignobilis Malaysia 0.210 [97]
Chanos chanos Kendari, Indonesia 0.139 This study

Philippines 0.013 [98]
Epinephelus hexagonatus Kendari, Indonesia 0.620 This study
Epinephelus sexfaciatus Straits of Malacca 0.015 [77]
Epinephelus quoyanus India 0.237 [94]
Lethrinus ornatus Kendari, Indonesia 0.872 This study
Lethrinus lentjan India 0.212 [94]

Malaysia 0.048 [99]
Lutjanus gibbus Kendari, Indonesia 0.829 This study

Malaysia 0.436 [33]
Lutjanus argentimeculatus Straits of Malacca 0.007 [77]

Arsenic (As) Lethrinus ornatus Kendari, Indonesia 19.47 This study
Flores, Indonesia 8.54 Unpublished study, 2014

Lethrinus laticaudis New Calidonia 16.70 [100]
Lethrinus argentimeculatus New Calidonia 7.70 [100]

Straits of Malacca 1.55 [77]
Lutjanus gibbus Kendari, Indonesia 39.10 This study

Flores, Indonesia 10.87 Unpublished study, 2014
Taiwan 9.04 [101]

Cadmium (Cd) Lethrinus ornatus Kendari, Indonesia 0.060 This study
Lethrinus rubrioperculatus Hainan, China 0.006 [4]
Lethrinus lentjan India 0.130 [94]

Lead (Pb) Chanos chanos Kendari, Indonesia 0.050 This study
Jakarta, Indonesia 1.447 [102]
Philippines 0.164 [103]
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Total mercury concentrations fluctuate in our study depending on the species studied
and the year except for Caranx sexfasciatus, which shows no significant difference between
2012 and 2017 (Table 2). This species contains on average 0.37 ± 0.26 µg g−1 DW, a similar
concentration to that obtained in the same species in Malaysia with 0.29 µg g−1 DW [33].
However, the study by the authors of [97] reported a mercury concentration ten times
higher for Caranx ignobilis with 2.01 ± 0.82 µg g−1 DW, also in Malaysia. For Chanos
chanos, the highest concentration, measured in 2012 (0.139 ± 0.033 µg g−1 DW), is ten times
higher than that obtained by the authors of [98] in the Philippines, with 0.013 µg g−1 DW.
Their result was similar to the concentration level we found in C. chanos the following
year (2013, 0.011 ± 0.001 µg g−1 DW). Epinephelus hexagonatus had the highest mercury
concentrations in 2015 with 0.620 ± 0.178 µg g−1 DW. This value is an order of magni-
tude greater than the concentration measured for E. sexfasciatus in the Strait of Malacca
(0.015 µg g−1 DW; [77]) and two to three times higher than that of E. quoyanus on the east
coast of India (0.237 ± 0.003 µg g−1 DW; [94]). Lethrinus ornatus had a high mercury con-
centration in 2015, 0.872 ± 0.069 µg g−1 DW, a value four times higher than that measured
by the authors of [94] for L. lentjan on the east coast of India (0.212 ± 0.002 µg g−1 DW).
A lower concentration of 0.48 ± 0.08 µg g−1 DW for L. lentjan was found by the authors
of [103] on the east coast of Malaysia. The species with one of the highest concentrations
is Lutjanus gibbus with 0.829 ± 0.278 µg g−1 DW in 2014. This concentration is double
that of the concentration obtained by the authors of [33] in the same species in Malaysia
(0.436 µg g−1 DW). Similarly, the concentration obtained by the authors of [77] in the
Strait of Malacca for L. argentimeculatus is more than twenty-three times lower than the
concentration in this study (0.007 ± 0.000 µg g−1 DW).

Compared to others references, arsenic was found in the highest concentration in our
study, which is not surprising given that arsenic is one of the most common naturally occur-
ring elements in the earth’s crust (see Section 1.2.2; [43,55]). Lethrinus ornatus and Lutjanus
gibbus had the highest concentrations of all species in 2014 with 19.47 ± 6.41 µg g−1 DW
and 39.10 ± 21.39 µg g−1 DW, respectively. These concentrations are similar to those ob-
tained by the authors of [99] in New Caledonia for L. laticaudis (16.7 ± 5.75 µg g−1 DW) but
are five times higher for L. argentimaculatus (7.70 ± 0.76 µg g−1 DW) in the same study. Sim-
ilarly, the authors of [77] obtained values nearly 40 times lower than for L. argentimaculatus
in the Strait of Malacca (1.55 ± 0.07 µg g−1 DW). Arsenic concentrations were 2 to 4 times
lower than results from an unpublished study of ours, which found 8.54 ± 3.52 µg g−1 DW
in L. ornatus and 10.87 ± 5.13 µg g−1 DW in L. gibbus.

The average nickel concentration is high in all of the samples from 2016. C. chanos in
2014 in Flores, Indonesia has the highest mean concentration with 4.33 ± 1.76 µg g−1 DW
in 2016, which is nearly ten times higher than that obtained by the authors of [101] on the
east coast of Java (0.48 ± 0.09 µg g−1 DW) but only half of that measured by [102] on the
west coast of Taiwan (9.04 ± 8.08 µg g−1 DW). The high concentrations obtained in 2016
can be explained by the adjustments of operating policies where new nickel extraction
sites were being set up on the islands of Indonesia, particularly in Sulawesi. It takes over a
year to observe the effects of implemented environmental policies, such as waste reduction
and the treatment of water used for extraction [29]. Changes in nickel extraction policies
were enacted, starting from 2015 and continued until 2019; environmental programs have
put forward management plans for the resulting waste [29]. New mining standards were
implemented to reduce the ecological impact of extractions, and the number of inspectors
implementing waste management requirements was increased [29].

The maximum concentration of cadmium was measured in 2012 for L. ornatus with
0.06 ± 0.04 µg g−1 DW. This is relatively low value but is almost twice that which
was obtained in L. rubrioperculatus by the authors of [4] on the Hainan coast in China
(0.006 ± 0.003 µg g−1 DW) and half of the concentration obtained by the authors of [78] in
L. lentjan on the east coast of India (0.13 ± 0.01 µg g−1 DW).

All species have low lead concentrations, many even below the lead detection limit.
The lead concentrations of C. chanos are much lower than those measured by the authors
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of [103], whereby their lowest concentration was 1.447 µg g−1 in the north of Jakarta.
Similarly, lead concentrations obtained by the authors of [104] in C. chanos in the Philippines
were double that of our findings, with 0.164 ± 0.003 µg g−1 DW.

5. Conclusions

According to the results presented here, mercury is the only metal of the five studied
currently showing toxicological risks for consumers. The concentration and toxicological
index (THQ) values of mercury exceeded the threshold value in most fish species, indicating
that the average person living in Kendari is at risk of accumulating enough mercury over
their lifetime to cause harmful effects on their health. Fish with higher trophic levels
presented more significant toxicological risks than the primary consumer, Chanos chanos
(Forsskål, 1775). Since no significant and clear relationship was found between the same
trophic levels and fish toxicity, we recommend that the consumption of omnivorous and
carnivorous fish (mid to high trophic levels) be varied and kept to a minimum. Fish of low
trophic levels should be favored. The exploitation of fishery resources and aquaculture
development, which supplement the production of fish of lower trophic levels and therefore
of lower toxic risks, can help meet the fish demands in the growing population of Kendari
and the Sulawesi region. The aquaculture of milkfish (C. chanos) has been proposed by the
FAO as an option to address food security and meet the increasing food protein demand in
the Pacific Island countries and territories (PICTs) [105]. It is one of many species raised to
ensure food security and to meet the current demand for dietary protein in the Western
Pacific region [106]. Monitoring the abundance and availability of potentially toxic elements
in the environment and prominent food sources is essential to understand the risks to both
humans and the environment and, therefore, to make informed recommendations and
actions to protect the health of both consumers and the environment which they depend on.
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Arendarczyk, N. Cadmium, lead and mercury concentrations in pathologically altered human kidneys. Environ. Geochem.
Health 2017, 39, 889–899. [CrossRef]

52. Pletz, J.; Sánchez-Bayob, F.; Tennekesa, H.A. Dose-response analysis indicating time-dependent neurotoxicity caused by organic
and inorganic mercury—Implications for toxic effects in the developing brain. Toxicology 2016, 347–349, 1–5. [CrossRef]

53. Bose-O’Reilly, S.; Schierl, R.; Nowak, D.; Siebert, U.; William, J.F.; Owi, F.T.; Ir, Y.I. A preliminary study on health effects in
villagers exposed to mercury in a small-scale artisanal gold mining area in Indonesia. Environ. Res. 2016, 149, 274–281. [CrossRef]

54. Williams, M. Arsenic in Mine Waters: An International Study. Environ. Geol. 2001, 40, 12. [CrossRef]
55. Matschullat, J. Arsenic in the Geosphere—A Review. Sci. Total Environ. 2000, 249, 297–312. [CrossRef]
56. Bhowmick, S.; Pramanik, S.; Singh, P.; Mondal, P.; Chatterjee, D.; Nriagu, J. Arsenic in groundwater of West Bengal, India: A

review of human health risks and assessment of possible intervention options. Sci. Total Environ. 2018, 612, 148–169. [CrossRef]

https://www.esdm.go.id/assets/media/content/content-renstra-sekretariat-jenderal-kesdm-tahun-2015-2019.pdf
https://www.esdm.go.id/assets/media/content/content-renstra-sekretariat-jenderal-kesdm-tahun-2015-2019.pdf
https://openjicareport.jica.go.jp/pdf/11881372_02.pdf
https://openjicareport.jica.go.jp/pdf/11881372_02.pdf
https://www.econjournals.com/index.php/ijefi/article/view/3988
https://doi.org/10.1023/A:1020556722822
https://doi.org/10.1007/s11356-014-3538-8
https://www.ncbi.nlm.nih.gov/pubmed/25256581
https://doi.org/10.1016/j.eti.2019.100554
https://doi.org/10.1016/j.foodcont.2016.05.040
https://doi.org/10.1016/0025-326X(95)00116-5
https://doi.org/10.1016/j.ejbas.2014.06.001
https://doi.org/10.1016/j.envint.2003.08.002
https://doi.org/10.1016/j.marpolbul.2004.02.029
https://doi.org/10.1016/j.fct.2008.05.011
https://www.ncbi.nlm.nih.gov/pubmed/18584931
https://semspub.epa.gov/work/05/930045.pdf
https://semspub.epa.gov/work/05/930045.pdf
https://doi.org/10.1016/j.scitotenv.2011.09.006
https://doi.org/10.1016/j.chemosphere.2017.10.160
https://www.ncbi.nlm.nih.gov/pubmed/29154117
https://doi.org/10.1016/j.rsma.2022.102795
https://doi.org/10.1007/s10646-008-0273-2
https://doi.org/10.3923/pjn.2005.276.281
https://doi.org/10.1186/s12940-017-0228-2
https://doi.org/10.1007/s10653-016-9860-y
https://doi.org/10.1016/j.tox.2016.02.006
https://doi.org/10.1016/j.envres.2016.04.007
https://doi.org/10.1007/s002540000162
https://doi.org/10.1016/S0048-9697(99)00524-0
https://doi.org/10.1016/j.scitotenv.2017.08.216


Toxics 2023, 11, 592 18 of 20

57. Pétursdóttir, Á.H.E. Determination of Toxic and Non-Toxic Arsenic Species in Icelandic Fishmeal. Ph.D. Thesis, The University
of Iceland, Reykjavík, Iceland, 2010. Available online: https://skemman.is/bitstream/1946/6357/1/MasterThesis-final.pdf
(accessed on 3 March 2023).

58. ATSDR. 2013. Available online: https://www.atsdr.cdc.gov/spl/resources/2013_atsdr_substance_priority_list.html (accessed on
10 April 2018).

59. Mesa Pérez, M.A.; Díaz Rizo, Ó.; García Acosta, H.; Alarcón Santos, O.A.; Tavella, M.J.; Bagué, D.; Sánchez-Pérez, J.M.; Guerrero
Domínguez, L.; Hernández Rodríguez, D.; Díaz Almeida, C.M. Heavy metals bioaccumulation and risk estimation in edible
freshwater fish from pedroso reservoir (Mayabeque, Cuba). Rev. Int. Contam. Ambient. 2021, 37, 527–537. [CrossRef]

60. Alloway, B.J. Heavy Metals and Metalloids as Micronutrients for Plants and Animals. In Heavy Metals in Soils; Alloway, B., Ed.;
Springer: Berlin/Heidelberg, Germany, 2013; pp. 195–209. Available online: https://link.springer.com/book/10.1007/978-94-0
07-4470-7 (accessed on 3 March 2023).

61. Canion, B.; Landsberger, S.; Jacques, C.; Taftazani, A. Trace analysis of Indonesian volcanic ash using thermal and epithermal
neutron activation analysis. Nukleonik 2012, 57, 585–589. Available online: https://www.researchgate.net/publication/288666387
(accessed on 3 March 2023).

62. Yi, Y.J.; Zhang, S.H. The relationship between fish heavy metals concentrations and fish size in the upper and middle reach of
Yangtze River. Procedia Environ. Sci. 2012, 13, 1699–1707. [CrossRef]

63. Zdrojewicz, Z.; Popowicz, E.; Warniarski, J. Nickel—Role in Human Organism and Toxic Effects. Pollut. Merkur Lek. 2016, 41,
115–118. Available online: https://pubmed.ncbi.nlm.nih.gov/27591452/ (accessed on 2 February 2023).

64. Teck Metals Ltd. Cadmium: Fiche de Données de Sécurité (FDS). 2015. Available online: https://docplayer.fr/15282497
-Cadmium-fiche-de-donnees-de-securite-fds.html (accessed on 2 February 2023).

65. Shalat, S. Toxic Lead Can Stay in the Body for Years after Exposure. 2016. Available online: https://theconversation.com/toxic-
lead-can-stay-in-the-body-for-years-after-exposure-53607 (accessed on 2 February 2023).

66. Flora, G.; Gupta, D.; Tiwari, A. Toxicity of lead: A review with recent updates. Interdiscip. Toxicol. 2012, 5, 47–58. [CrossRef]
67. Gidlow, D.A. Lead toxicity. Occup. Med. 2015, 65, 348–356. [CrossRef]
68. Fakhri, Y.; Mohseni-Bandpei, A.; Oliveri Conti, G.; Ferrante, M.; Cristaldi, A.; Jeihooni, A.K.; Karimi Dehkordi, M.; Alinejad, A.;

Rasoulzadeh, H.; Mohseni, S.M.; et al. Systematic review and health risk assessment of arsenic and lead in the fished shrimps
from the Persian Gulf. Food Chem. Toxicol. 2018, 113, 278–286. [CrossRef]

69. Breitwieser, M.; Viricel, A.; Churlaud, C.; Guillot, B.; Martin, E.; Stenger, P.-L.; Huet, V.; Fontanaud, A.; Thomas-Guyon, H. First
data on three bivalve species exposed to an intra-harbour polymetallic contamination (La Rochelle, France). Comp. Biochem.
Physiol. Part C Toxicol. Pharmacol. 2017, 199, 28–37. [CrossRef] [PubMed]

70. WHO. Health criteria and other supporting information. In Guidelines for Drinking Water Quality 2, 2nd ed.; World Health
Organization: Geneva, Switzerland, 1996. Available online: https://apps.who.int/iris/handle/10665/38551 (accessed on
25 March 2023).

71. Ullah, A.K.M.A.; Maksud, M.A.; Khan, S.R.; Lutfa, L.N.; Quraishi, S.B. Dietary intake of heavy metals from eight highly consumed
species of cultured fish and possible human health risk implications in Bangladesh. Toxicol. Rep. 2017, 4, 574–579. [CrossRef]
[PubMed]

72. Statistik. Badan Statistik Indonesia; BPS—Statistics Indonesia Publisher: Jakarta, Indonesia, 2013; ISSN 0126-2912. Available
online: https://www.bps.go.id/publication/2013/05/01/c15e0fccfd3d035e6746a3b4/statistik-indonesia-2013.html (accessed on
15 May 2018).

73. Antoine, J.M.R.; Hoo Fung, L.A.; Grant, C.N. Assessment of the potential health risks associated with the aluminium, arsenic,
cadmium and lead content in selected fruits and vegetables grown in Jamaica. Toxicol. Rep. 2017, 4, 181–187. [CrossRef] [PubMed]

74. Walsh, P.J.; Killough, G.G.; Rohwer, P.S. Composite hazard index for assessing limiting exposures to environmental pollutants:
Formulation and derivation. Environ. Sci. Technol. 1978, 12, 799–802. [CrossRef]

75. Adams, V.H.; McAtee, M.J.; Johnson, M.S. Implementation of the basic hazard index screening for health risks associated with
simultaneous exposure to multiple chemicals using a standardized target organ and systems framework. Integr. Environ. Assess.
Manag. 2017, 13, 852–860. [CrossRef]

76. De Witte, B.; Coleman, B.; Bekaert, K.; Boitsov, S.; Botelho, M.J.; Castro-Jiménez, J.; Duffy, C.; Habedank, F.; McGovern, E.;
Parmentier, K.; et al. Threshold values on environmental chemical contaminants in seafood in the European Economic Area. Food
Control 2022, 138, 108978. [CrossRef]

77. Alina, M.; Azrina, A.; Mohd Yunus, A.S.; Mohd Zakiuddin, S.; Mohd Izuan Effendi, H.; Muhammad Rizal, R. Heavy Metals
(Mercury, Arsenic, Cadmium, Plumbum) in Selected Marine Fish and Shellfish along the Straits of Malacca. Int. Food Res. J. 2012,
19, 135–140. Available online: http://www.ifrj.upm.edu.my/19%20(01)%202011/(18)IFRJ-2010-235%20Alina.pdf (accessed on
3 January 2022).

78. Rameshkumar, S.; Prabhakaran, P.; Radhakrishnan, K.; Rajaram, R. Accumulation of Heavy Metals in Some Marine Fisheries
Resources Collected from Gulf of Mannar Marine Biosphere Reserve, Southeast Coast of India. Proc. Zool. Soc. 2016, 71, 294–298.
[CrossRef]
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