
Hierarchical equations of motion: formalism and 
applications

Theory days

29/11/2023

Etienne MANGAUD, Michèle DESOUTER-LECOMTE

1

System

Bath



Introduction

They are particularly useful to describe some physico-
chemical processes:
- electron or proton transfers
- excitation transfer in photosynthetical complexes  
- conical intersections
and are used to compute
- linear and  non-linear spectroscopies
- laser optimal control
- non-equilibrium fluxes in molecular junctions.
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System

Hierarchical equations of motion are a powerful tool to describe quantum systems in interaction with an 
environment (also called a bath).

Bath

Quantum states
of interest

The bath can be a bath of phonons, 
electrons, photons and can include
some thermodynamical aspects.



An example: Intramolecular charge transfer

State State

e-

Transfer

Nuclear deformation

Mutual interplay

Nuclear deformation: Geometries of Donor and acceptor sites
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Model Hamiltonian

Let’s begin with the simplest model Hamiltonian, the 
spin-boson model. 

State 1

Ground State

Electronic states Vibrational DoF
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e- transfer

Bridge

Bridge

In the case of an intramolecular electron transfer,



Model Hamiltonian

Let’s begin with the simplest model Hamiltonian, the 
spin-boson model. 

State 1

Ground State

Electronic states Vibrational DoF

6

A system-bath partition arises here between the 
electronic states and the nuclei degrees of freedom:  

System Hamiltonian System-bath coupling Bath Hamiltonian
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Let’s begin with the simplest model Hamiltonian, the 
spin-boson model. 

Electronic states Vibrational DoF
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A system-bath partition arises here between the 
electronic states and the nuclei degrees of freedom:  

System Hamiltonian System-bath coupling Bath Hamiltonian

State 1

Ground State

Bath

System-bath 
coupling
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Quantum dissipation

Loss of energy to the 
environment

Quantum decoherence

Loss of coherence

Schrödinger equation is reversible.
Irreversible processes seems a priori
forbidden. However, if the state of the
overall system is reversible, we only
observe a small subsystem which
appears irreversible.

System
at T1

Bath at T2

Flow of 
energy

Why using open quantum system theory ?
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Quantum dissipation

Loss of energy to the 
environment

Quantum decoherence

Loss of coherence

System Bath 

Flow of 
energy

Electronic states

State State

e-

Vibrational modes

For an intramolecular
electron transfer,

Why using open quantum system theory ?
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Quantum dissipation

Loss of energy to the 
environment

Quantum decoherence

Loss of coherence

Coherence arises from the wave-like
nature of the matter. But many
quantum phenomena do not remain
at a macroscopic scale.

Why using open quantum system theory ?



Liouville-Von Neumann equation
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with

Time evolution of the density operator
Can be derived from the 
definition of the density

matrix and the Schrödingr
equation

We define the density matrix in interaction representation as:

In interaction representation,

In atomic units,

The system-bath  Hamiltonian can be split :

Interaction representation



Exact dynamical equations
State 2

State 1

Time evolution of the reduced density matrix with initial system-bath 
factorization writes in interaction representation:

Trace over the 
bath degrees
of freedom

Time-ordered
exponential

Liouvillian of the 
system-bath coupling

Bath density matrix at thermal equilibrium

System density
matrix in interaction 
representation
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Exact dynamical equations

Due to the special shape of the system-bath Hamiltonian (harmonic
oscillators with linear coupling), time evolution of the reduced system 
density matrix with initial system-bath factorization writes in interaction 
representation as an exact second order cumulant expansion :

with

Bath correlation function
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State 1

Ground State

Bath density matrix at 
thermal equilibrium



Second-order memory kernel

After a bit of algebra:  

How do we have access to the bath correlation function ?
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Bath correlation function



Bath coupling in interaction 
representation

Ladder operators in mass-
weighted coordinatesElimination of the bath

Let’s write the harmonic oscillators coordinates and momentum with ladder operators :

Bose distribution

System 
Hamiltonian

System-bath 
coupling

Bath Hamiltonian

The key ingredient is the system-bath correlation function:
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Elimination of the bath

We define the spectral density as :
with an odd parity

Fluctuation-dissipation  relation

If we assume a continuous distribution of modes, 

The bath correlation function writes as:
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for



Exact dynamical equations

Due to the special shape of the system-bath Hamiltonian (harmonic
oscillators with linear coupling), time evolution of the reduced system 
density matrix with initial system-bath factorization writes in interaction 
representation as an exact second order cumulant expansion :

with

Bath correlation function
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State 1

Ground State

Parametrization in HEOM

Bath density matrix at 
thermal equilibrium

Number of artificial decay
modes



Parameterization of the bath
State 2

State 1

One of the key step is to parameterize the bath correlation function
as a sum of complex exponentials :

- Prony decomposition
- Expansion on Chebyshev

or Bessel functions

From a bath correlation function From a spectral density

Fit of the spectral density with special
Lorentzian functions (Ohmic, super-
Ohmic…) and use of the quantum 
fluctuation-dissipation theorem:
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From discrete modes



Spectral density

with an odd parity

If we know the spectral density, we can compute the bath correlation function. 

Strategy 1: Build a linear vibronic model from ab initio

Strategy 2: Approximate the spectral density from its classical counterpart

20

The spectral density can be a mere
phenomenological model 



Strategy 1: Build a linear vibronic model

Vibrational partElectronic part

Equilibrium geometries for donor and 
acceptor

Calculation of displacements between
donor and acceptorCalculation of electronic coupling

Hessian matrix

+

Electron donor Electron acceptor

Organic mixed-valence compounds : Molecules DMP_n
(2,5-dimethoxy-4,methyl-phenylen cycles bound by an n-paraphenylens’ chain)
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Strategy 2: Chromoprotein cryptochrome

State 1

State 2

Environment : Protein + water molecules
State 3

W400

°+

Light

FAD* FAD°- W377

°+

W324

°+

FAD

Vibrational partElectronic part

Energy diff. between each pair of states ,     displ. and freq. with id i

cDFT (Constrained DFT) Classical Mechanics

330000M 

Electronic coupling DA
V Spectral density J 
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Diabatic electronic gap:

is the Boltzmann distribution of classical initial conditions

The diabatic electronic gap probes the 
fluctuation of the bath and might be
obtained with classical trajectories

where
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Diabatic electronic gap for QM/MM molecular
dynamics : 5 X ~25 ps for each transfer back and forth

[1] T. Firmino, E. Mangaud, F. Cailliez, A. Devolder, D. Mendive-Tapia, F. Gatti, C. Meier, M. Desouter-Lecomte, A. de la Lande, PCCP, 18,21442 (2016)
24[2] S. Valleau, A. Eisfeld, A. Aspuru-Guzik. J. Chem. Phys. (2012); 137 (22): 224103

Strategy 2: Computing spectral densities with QM/MM trajectories

Approximate the spectral density as:

The autocorrelation function of the diabatic gap gives a classical
analogue to the system-bath correlation function :

-

NB: Other schemes exist [2].



Strategy 2: Computing spectral densities with QM/MM trajectories
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Step 1:
Compute the 
autocorrelation
function of the diabatic
electronic gap

Autocorrelation function of the diabatic gap for several trajectories
with different initial conditions

Step 2:
Use Fourier transform
using the following
equation
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Spectral density

with an odd parity

If we know the spectral density, we can compute the bath correlation function. 

Strategy 1: Build a linear vibronic model from ab initio calculations

Strategy 2: Approximate the spectral density from its classical counterpart

Advantages Drawbacks

 Exact (up to the quality of the ab initio method) if 
we can deal directly with these discrete modes 

 Also used in other quantum dynamics methods
such as surface hopping or (ML-)MCTDH

 Only for molecule on which harmonic analysis is
doable

 Might need empirical broadening

Advantages Drawbacks

 Allows to deal with large molecules and 
environments

 Approximate
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Parameterization of the bath

D. Tannor
Source : Wikipédia

C. Meier
Source : LCAR website

Ohmic spectral density

Poles ai are singularities of a
complex function.

with

Step 1: Insert the spectral density in the fluctuation-dissipation theorem

Step 2: Determine the function poles

Step 3: Choose a contour Step 4: Use residue theorem
Matsubara frequencies: 27



Parameterization of the bath

D. Tannor
Source : Wikipédia

C. Meier
Source : LCAR website

Ohmic

with
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Parameterization of the bath

D. Tannor
Source : Wikipédia

C. Meier
Source : LCAR website

Ohmic

with

Weight coefficients
« Damping » coefficients

29



Parameterization of the bath
And for complex or realistic bath, how to write the bath 
correlation function ? 

Can be extracted from a  spectral density:

30

Spectral density of a bath for an 
electron transfer in a cryptochrome

with a fit of five Tannor-Meier 
Lorentzian function (in this case K=10)

T. Firmino, E. Mangaud, F. Cailliez, A. Devolder, D. Mendive-Tapia, F. Gatti, 
C. Meier, M. Desouter-Lecomte, A. de la Lande, PCCP, 18, 21442 (2018)

Weight Damping

with

Numerical fit of spectral density with

Number of artificial
decay modes



Hierarchical equations of motion

System density matrix

Auxilliary
density
matrices

After a bit of algebra, using the  one obtains an (a priori infinite) set of coupled differential equations : 

31

Truncation scheme for n at

R. Kubo
Source : Wikipédia

Y. Tanimura
Source : Kyoto Univ.



Hierarchical equations of motion

System density matrix

Auxilliary
density
matrices Number of matrices: 

32

Truncation scheme for n at

Level 1

Level 2

Max level =

Auxiliary matrices address different
occupation number for the « artificial » 
decay modes.



Hierarchical equations of motion

Advantages Drawbacks

 Non-Markovian
 Non-perturbative
 Numerically exact results.

 Can lead to heavy computations
 Fit of the spectral density ?
 Difficult to deal with low temperatures

Hierarchical equations of motion (1989)
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Applications
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T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship & G. R. Fleming, Nature, 434 (2005)

2D spectroscopy of FMO (Fenna-Matthews-Olson) complex

Y. Yan, Y. Liu, T. Xing, Q. Shi, WIREs Comput Mol Sci., 11:e1498 (2021)

Experiment

Simulation

Simulation of the non-linear response for 2D spectroscopy

Extension to molecular junctions

M. Thoss, F. Evers, J. Chem. Phys., 148, 030901 (2018)

Laser optimal control:
Electronic breaking symmetry
in a phenylene ethynylene
dimer
A. Jaouadi, J. Galiana, E. Mangaud, B. Lasorne, O. 
Atabek, and M. Desouter-Lecomte, Phys. Rev. 
A 106, 043121 (2022)



Tensor train decomposition
Realistic chemical systems might exhibit large system bath coupling and the values of  the indices 

can be very high to converge HEOM set of equations:   

As suggested by Q. Shi (2018) and later R.Borrelli (2019), for these high dimensional cases, one can resort to 
tensor train decomposition (also known as MPS (Matrix Product State) in the physics community):

Element of the system density matrix

Vector of indices

Cores

35

Example:

I.V. Oseledets, SIAM, 33, 5, 2295 (2011)



Tensor train decomposition

Linear increase with the tensor dimension 
Storage does not grow exponentially if ranks are low. 

Why such decomposition is interesting ?

As a (non-realistic) test case, let’s consider a tensor decomposition with the same
number nk and the same ranks r, for d dimensions:

Tensor decomposition

Naive approach

36



Tensor train decomposition HEOM
For the HEOM set of equations, we can decompose all the density matrices (system + auxiliary) as :

and solve : 

with a super Liouvillian operator: 

which can be « easily » defined in TT representation 37



Application: Oligothiophene-fullerene heterojunction

38

S
H H

4

Bath

Spectral density and its discretized counterpart
Electronic coupling

Energy excitation transfer in a oligothiophene-fullerene heterojunction [1] 

[1] H. Tamura, R. Martinazzo, M. Ruckenbauer, I. Burghardt,. J. Chem. Phys. 137(22), 22A540 (2012). 



Application: Oligothiophene-fullerene heterojunction
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S
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Diabatic population with simulation with discrete
and continuous spectral densities

Energy excitation transfer in a oligothiophene-fullerene heterojunction

Continuous Discrete

Number of decay
modes

10 80

Number of matrices 
elements(standard)

12 012 131 206 068

Number of matrices 
elements (TT)

18 180
(rank= 20)

2 528 720
(rank = 80)



40A. Jaouadi, J. Galiana, E. Mangaud, B. Lasorne, O. Atabek, and M. Desouter-Lecomte, Phys. Rev. A 106, 043121 (2022)

Metasubstituted dimer of phenylene ethynylene
(building block of treelike dendrimers)

C2v symmetry
Level of theory: CAM-B3LYP/6-31+G*

Parametrization of a linear vibronic coupling
model (LVC) with a fitting procedure

Transformation to the localized
diabatic representation

Application: Laser-controlled electronic symmetry 
breaking in a phenylene ethynylene dimer

Symmetric A1 motion: tuning mode

Antisymmetric B2 motion: coupling mode



Application: Laser-controlled electronic symmetry 
breaking in a phenylene ethynylene dimer

41
A. Jaouadi, J. Galiana, E. Mangaud, B. Lasorne, O. Atabek, and M. Desouter-
Lecomte, Phys. Rev. A 106, 043121 (2022)

Spectral densities for tuning (left panel) 
and coupling bath

In a delocalized basis representation, 



Application: Laser-controlled electronic symmetry 
breaking in a phenylene ethynylene dimer

42
A. Jaouadi, J. Galiana, E. Mangaud, B. Lasorne, O. Atabek, and M. Desouter-
Lecomte, Phys. Rev. A 106, 043121 (2022)

Optimized fields / Population and 
coherences obtained after optimal 
control theory optimisation of the 
pulses

Complex molecular system with a 
conical intersection
Aim: Creating a superposed state 
with equal weights which 
corresponds to a right or left 
electronic localization
Method: Optimal control of pulse 
fields on both polarizations
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Conclusion and perspectives
Perspectives

- Anharmonic extension for some relevant degrees
of freedom

- More efficient fitting schemes of bath correlation
function to deal with low temperature

- Extension to fermionic baths
- Reinforcement learning for pulses optimization

Conclusions
- Powerful tool for many physico-chemistry processes
- Gives access to many dynamical properties even for 

non-Markovian, non-perturbative cases
- Complex systems can be handled (if HEOM 

assumptions remain valid).
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