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Force-based Pose Regulation of a Cable-Suspended Load Using UAVs
with Force Bias

C. Gabellieri1, M. Tognon2, D. Sanalitro3,4, A. Franchi1,3,5

Abstract— This work studies how force measure-
ment/estimation biases affect the force-based cooperative
manipulation of a beam-like load suspended with cables
by two aerial robots. Indeed, force biases are especially
relevant in a force-based manipulation scenario in which
direct communication is not relied upon. First, we compute
the equilibrium configurations of the system. Then, we show
that inducing an internal force in the load augments the
robustness of the load attitude error and its sensitivity to
force-bias variations. Eventually, we propose a method for
zeroing the load position error. The results are validated
through numerical simulations and experiments.

I. INTRODUCTION

Physical interaction using aerial robots is widely studied
for its relevant applications, such as contact-based inspection,
construction, and delivery [1]–[3].

Different tools have been proposed, but cables are par-
ticularly advantageous in terms of weight and cost. The
manipulation of a cable-suspended load by a team of aerial
vehicles has been largely addressed [4]–[11]. Those works
study the differential flatness [4] and the control of payloads
suspended with cables below aerial robots; the controllers
are either centralized, based on common knowledge of the
object’s state, or relying on a communication network among
the robots. Moreover, the manipulation of beam-like loads
has received attention in the literature [12]–[17] for its
relevance to several real-world applications, especially in the
construction field, where elements like pipes, iron beams for
cement walls, and scaffolds are manipulated.

Indeed, multi-robot cooperation is often used to enhance
the overall payload [18]. While decentralized algorithms,
as [19], are robust to faults and scalable with the number of
robots, explicit communication represents a bottleneck [20].
Communication delays and packet loss undermine the per-
formance and stability of multi-robot systems. Furthermore,
the hardware and software complexity can be reduced by
confining explicit communication. For all these reasons, a
manipulation method not relying on explicit communication
has been proposed in [20] for mobile ground robots.
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Fig. 1: Two quadrotors connected through cables to a beam load.
A motion capture system is used for the robots’ localization.

On the other hand, aerial cooperative transportation not
relying on explicit communication has been performed in
[15] using vision. Alternatively, force feedback has been
proposed: [14] considers a cable-suspended beam-like load
and an admittance-based leader-follower scheme, and [21]
extends the results to more robots and provides a method for
gain-tuning which increases robustness against unmodeled
dynamics and parameter uncertainties. However, [14] and
[21] achieve transportation of the load disregarding its at-
titude. In addition, the leader-follower strategy is not used to
regulate the robots’ height, which is instead predetermined in
a centralized way. Another example of communication-less
force-based transportation where the velocity of a flexible
object is controlled by a group of aerial robots is [22].

The study of full-pose regulation, with analytical proof of
the system equilibrium configurations and their stability, has
been carried out for the first time in [23]. In [24], that work
has been extended to a generic load transported by more
than two robots. Recently, parameter uncertainties have been
addressed in [25]. [23]–[25] demonstrate how the regulation
of the load’s full pose is made possible by non-vertical cables
that induce an internal force in the load.

However, the literature has not yet tackled the biases in
the forces estimation/measurement that the robots use to
cooperate and, thus, on which the task execution largely
relies. That is especially interesting in practice, e.g., due to
the typical drift that affects the output of force sensors, which
are sensitive to temperature increase in repeated usage [26].

In this work, we address the aforementioned issue by
including in the analysis the realistic case in which the



external forces known by the robots and used for control
are affected by errors.

The main contributions of this work are: (i) derivation of
the new equilibrium configurations of the uncertain system
in the presence of force biases; (ii) formal study of the
effect of the load internal force in the robustness of the
attitude control when forces are affected by biases. It emerges
that the internal force is beneficial for the load control
robustness against force biases; (iii) study of the sensitivity
of the load attitude error to force bias variations. The load
internal force is also shown to be beneficial for the error
sensitivity; (iv) regulation of the load position in the presence
of force biases; (v) validation through numerical simulations
and experimental results.

II. MODEL

The considered system, reported in Fig. 1, consists of
a beam-like load attached to two aerial robots through
cables anchored to two non-coincident points on the load.
We summarize here the dynamic model of the closed-loop
system. Please note that more details about the modeling
can be found in [23] and [21], where similar assumptions
are made on the description of the system and the control
law, excluding the presence of force biases.

We define an inertial frame FW = {OW ,xW ,yW ,zW} with
zW oriented in the direction opposite to the gravity. The
beam-like load has mass mL ∈ R>0 and a positive definite
inertia JL ∈ R3×3. Rigidly attached to the load we define a
frame FL = {OL,xL,yL,zL}, where OL is centered in the
load CoM.

The position and orientation of FL w.r.t. FW , defined by
the vector1 WpL ∈ R3 and the rotation matrix RL ∈ SO(3),
respectively, describe the full configuration of the load.
Because the load is a beam, the yaw and pitch angles of
the beam, denoted by ψ and θ , respectively, are enough to
describe its entire attitude. We define qL = (pL,RL) and the
vector vL = [ṗ⊤

L
LωL

⊤
]⊤, where LωL ∈ R3 is the angular

velocity of FL w.r.t. FW expressed in FL.
Two cables are attached to the load through passive spher-

ical joints at points Bi with i = 1,2 with position Lbi ∈ R3.
Using basic kinematics, bi = pL +RL

Lbi. Moreover, we
assume without loss of generality that Lb1 = [b1 0 0]⊤ and
Lb2 = [−b2 0 0]⊤, where bi ∈R>0, for i= 1,2. We also define
the length L = b1 +b2.

The i-th cable is attached through a passive spherical joint
to the i-th aerial vehicle at the point Oi, coincident with
the robot’s CoM. Centered in this point, we define a frame
FRi = {Oi,xRi,yRi,zRi} rigidly attached to each vehicle. The
position of Oi in FW is pRi ∈R3. We define qR = [p⊤

R1 p⊤
R2]

⊤

and vR its time derivative. The i-th cable is modeled as a
spring as done in [27], [28]. Its parameters are the constant
elastic coefficient ki ∈ R>0 and the constant rest length
denoted by l0i ∈ R>0. Defining the vector li = pRi −bi, we
write the force acting on the load at Bi using the simplified
Hooke’s law: fi = ∥fi∥ li

∥li∥ , with ∥fi∥ = ki(∥li∥ − l0i) if

1The left superscript is the reference frame, equal to FW if omitted.

∥li∥− l0i > 0 and zero otherwise. The force produced on the
i-th robot at Oi, is equal to −fi. We assume, as commonly
done in the literature, that the cables are always taut during
the task execution [5], [7], [8].

Assuming that the cables are attached to each robot’s
CoM, and in virtue of the time-scale separation principle,
the rotational dynamics of the robots is decoupled from the
remaining dynamics and will be neglected in the theory. The
interested reader can find more details in [23], [1], [29].

As done in [14], [21], [23], we use an admittance filter
on the robots, which allows reshaping their translational
dynamics, at will, to mimic that of a desired second-order
system. Eventually, the closed-loop system dynamics can be
written as in [23]: v̇ = m(q,v,πA) where q = (qR, q⊤L ),
v = [v⊤

R v⊤
L ]

⊤ and

m(q,v,πA) =

[
M−1

A

(
−BAvR −KAqR − f̂+πA

)
M−1

L (−cL(vL)−gL +Gf)

]
, (1)

the first six equations being the robots’ translational dynam-
ics under the assumption of perfect tracking of the admittance
filter trajectory, and the latter six the load dynamics. We call
MA = diag(MA1,MA2), BA = diag(BA1,BA2) and KA =
diag(KA1,KA2), where MAi,BAi,KAi ∈ R3×3 are positive
definite symmetric matrices that are the gains of the admit-
tance controller. They correspond to, respectively, the virtual
inertia of the robot i−th, and the damping and stiffness
coefficients of a virtual spring-damper system that links the
robot to a desired reference [30]. πA = [π⊤

A1 π⊤
A2]

⊤ with
πAi ∈R3 an additional forcing input of robot i−th that must
be properly set to steer the load to the desired configuration,
as explained in the following. Differently from what is done
in previous works, f = [f⊤

1 f⊤
2 ]⊤ is not known to the robots.

Instead, f̂ = [f̂⊤
1 f̂⊤

2 ]⊤ contains the measured or observed
cable force affected by some errors and is used in the robots’
admittance controllers. Especially, we write f̂i := −fi + δi
(we recall that fi acts on the load by definition, so −fi
acts on the robot), with δi ∈ R3 denoting an unknown bias.
We have that δi = δidi, where δi ∈ R>0 is the bias intensity
and di := δi/δi the unit vector denoting the bias direction.
ML = diag(mLI3,JL) with I3 ∈ R3×3 the identity matrix,
mL the mass of the load, and JL ∈R3×3 its rotational inertia;
gL = [mLge⊤3 0]⊤, where g is the gravitational acceleration
and ei is the canonical unit vector with a 1 in the i-th
entry. Coriolis and centrifugal terms and the grasp matrix
are, respectively,

cL =

[
0

S(ωL)JLωL

]
,G=

[
I3 I3

S(Lb1)R
⊤
L S(Lb2)R

⊤
L

]
.

where S(⋆) is the skew operator.
Remark 1. The admittance controller only requires local
information: the robot’s own state (pRi, ṗRi) and the force
applied by its own cable, which can be measured by a force
sensor or estimated by model-based observers as in [14],
[31]. Therefore, the proposed control method is decentralized
and does not require explicit communication between the
robots. Note that the state of the load is generally not needed
by the proposed controller.

Preprint version, final version at http://ieeexplore.ieee.org/ 2 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2023)



A leader-follower approach is used, choosing, without
loss of generality, robot 1 as leader and robot 2 as fol-
lower. In mathematical terms, this is expressed by set-
ting KA1 ̸= 0 and KA2 = 0 [14], [21], [23]. In this way,
only the designated leader drags the load while the fol-
lower moves by following the force, compensating for
part of the load weight, dampening oscillations, and con-
tributing to the load attitude control. The load internal
force tL is defined as tL := 1

2f
⊤ [I3 −I3

]⊤
RLe1, where[

I3 −I3
]⊤

RLe1 ∈ null(G)2. We have that if tL > 0, the
internal force causes a tension in the load; if tL < 0, the
internal force causes a compression.

III. EQUILIBRIUM STUDY

In this Section, we present the study of the equilib-
rium configurations when system parameters are uncertainly
known and force biases affect the information available to
the controller. A desired load configuration q̄L is given, and
⋆̄ indicates the desired value of ⋆ in general.

Theorem 1 (Equilibrium Inverse Problem). Consider the
closed-loop system (1) and assume that the load is at a
given desired configuration qL = q̄L = (p̄L,R̄L). For each
internal force tL ∈ R, there exists a unique constant value
of the forcing input πA = π̄A (and a unique position of the
robots qR = q̄R) such that q̄ = (q̄L, q̄R) is an equilibrium of
the system: for i = 1,2,

π̄A(q̄L, tL) =KAq̄R + f̄(q̄L, tL)−δ (2)

p̄Ri(q̄L, tL) = p̄L + R̄L
Lbi +

(
∥f̄i∥

ki
+ l0i

)
f̄i

∥f̄i∥
,with (3)

f̄(q̄L, tL) =
[
f̄1
f̄2

]
=

[ b2mLg
L

b1mLg
L

][
I3
I3

]
e3 + tL

[
I3
−I3

]
R̄Le1.

(4)

The proof is here omitted for the sake of space but the
interested reader can find a similar proof in [23]. However,
differently from what emerged in previous works and as
suggested by intuition, here the forcing input that brings the
system to the desired configuration, π̄A, must compensate for
the force biases δ= [δ⊤1 ,δ

⊤
2 ]

⊤, see (2). The user chooses the
parameter tL in (4) to make q̄L an equilibrium. Nevertheless,
consider the case when the controller has only access to the
uncertain values, defined as m̂L, b̂1, L̂, l̂0i, k̂i, k̂i, instead of the
corresponding real ones, mL, b1, L, l0i, and ki, respectively.
We shall indicate as ∆⋆ the difference between the uncertain
and real value, namely, ⋆̂−⋆. In such realistic conditions, π̄A
cannot be exactly applied because (3) and (4) are unknown
due to parametric uncertainties, and (2) is unknown because
the force bias δ.

Hence, we shall study the equilibrium configurations of
the system when ˆ̄πA is applied, where ˆ̄πA indicates π̄A
computed with the uncertain values of the system parameters
and without the use of the unknown force bias.

2null(⋆) indicates the nullspace of ⋆.

Theorem 2 (Equilibrium Direct Problem). Given q̄L =
(p̄L,R̄L) and the internal force tL ∈ R, compute the forcing
input ˆ̄πA from (2) using the uncertain parameters ⋆̂ and
without using δ. Applying then ˆ̄πA(q̄L, tL) to the closed
loop system (1), the following conditions describe the sole
equilibrium configurations:

pR1 = ˆ̄pR1 −K−1
A1 (∆mge3 +(δ1 +δ2)) := peq

R1 (5)

Req
L s.t.S(e1)R

eq
L

⊤ [
ξ ge3 + tLR̄Le1 −δ2

]
= 0 (6)

f1 = mLge3 −
m̂Lb̂1g

L̂
e3 + tLR̄Le1 −δ2 := f eq

1 (7)

f2 =
b̂1m̂Lg

L̂
e3 − tLR̄Le1 +δ2 = ˆ̄f2 +δ2 := f eq

2 (8)

pL = peq
R1 −Req

L
Lb1 −

(
∥f eq

1 ∥
k1

+ l01

)
f eq

1
∥f eq

1 ∥
:= peq

L , (9)

where ˆ̄⋆ indicates the reference value of ⋆ but computed using
the uncertain parameters and ξ = b1mL

L − b̂1m̂L
L̂

is a term that
depends on the uncertain load parameters.

The proof is similar to that in [25], but Theorem 2
leads to new interesting results when force biases are taken
into account. Note that, formally, the system reaches an
equilibrium only if δi is constant at the equilibrium. In the
following, we thus assume that the force bias variation is
negligible at steady state.

The first fact that clearly emerges from Theorem 2, and es-
pecially from (6), is that the load equilibrium attitude is only
affected by the bias in the follower robot’s force, δ2. This
is also reflected in (7) and (8) since the equilibrium forces,
which determine the load equilibrium attitude, only depend
on δ2. On the other hand, from (5), δ1 affects the leader robot
equilibrium position, and so the load position—see (9). This
result suggests to the user that, e.g., to maximize the accuracy
of the load attitude control when using force sensors, a better
sensor on the follower robot may be preferred.

Let us now choose a parametrization of δ2 that high-
lights the vector components along a basis described by
R̄Le1, e3, and R̄Le2. This is a valid representation as
long as R̄Le1 ̸= e3, always true in reality as a vertical
load would not be practically realizable. Hence, we write
δ2 = δLR̄Le1 +δyR̄Le2 +δve3, where δL, δy, and δv are the
components of δ2 along the respective directions, and (6)
becomes

S(e1)R
⊤
L
[
(ξ g−δv)e3 +(tL −δL)R̄Le1 −δyR̄Le2

]
= 0.

(10)
Consequently, we have that δv has the same effect on the
load attitude equilibrium as the uncertainty on the load
parameters. Moreover, δL has an interesting effect on the
system behavior as it adds to the internal force tL. So, an
equivalent internal force can be defined as tL −δL. We have
shown in [25] that the best choice to guarantee stability and
robustness of the sought equilibrium state is tL > 0. As a
result, selecting an appropriate value of tL is essential to
ensure that tL −δL > 0

Unlike parameter uncertainties, the force bias has the
unique effect of not only affecting the pitch of the load at
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the equilibrium but also the yaw. This is because δy has an
effect on the system equilibrium that none of the parameter
uncertainties has, as shown in (10). Specifically, by solving
(6) one has

ψ
eq = atan

δycψ̄ +(tL −δL)cθ̄
sψ̄

−δysψ̄ + tc
θ̄

cψ̄

, (11)

where t := (tL − δL) and c⋆ and s⋆ are the cosine and sine
functions, respectively. Note that (11) confirms that ψeq =
ψ̄ + kπ if δy = 0. Note also that δv does not appear in (11)
as it does not influence the yaw angle at the equilibrium
but only the pitch angle. For completeness, we report the
expression for θ eq, provided that θ eq ̸= π/2+ kπ:

θ
eq = atan

ξ g−δv − ts
θ̄

−cψeq(δysψ̄ + tc
θ̄

cψ̄)+ sψeq(δycψ̄ − tc
θ̄

sψ̄)
(12)

This analysis has shown that the force bias contributes to the
load pose error at the equilibrium. In the following, we shall
propose methods to mitigate such an effect.

A. Uncertainty solely on the estimated or measured forces

This section studies the case where the only uncertainty
in the system is on the measured or estimated cable force.
This can be of interest in all cases in which the system
parameters are accurately known and, thus, the bias on the
force represents the main source of uncertainty. In this case,
at the equilibrium

pR1 = p̄R1 −K−1
A1 (δ1 +δ2) (13)

S(e1)R
eq
L

⊤
(tLR̄Le1 −δ2) = 0 (14)

f1 =
L−b1

L
mge3 + tLR̄Le1 −δ2 = f̄1 −δ2 (15)

f2 =
b1

L
mge3 − tLR̄Le1 +δ2 = f̄2 +δ2. (16)

Specifically, at steady state, the leader robot could esti-
mate δ2 from (15), being f̄1 known to the robot. Once it
retrieves δ2, it can also compute δ1 using (13), being p̄R1
known. Analogously, the follower robot is able to estimate
δ2 from (16). Hence, the robots could independently correct
their references and thus bring the system to the desired con-
figuration. Nevertheless, this does not hold true in the more
general and realistic cases when parameter uncertainties and
force biases are simultaneously present.

IV. THE ROLE OF THE INTERNAL FORCES

In this section, we provide a method to mitigate the effect
of force biases on the load error. Especially, we propose a
formal analysis of the role that the internal force plays in the
load pose at the equilibrium in the presence of force biases
and parameter uncertainties.

A. Load attitude error

Theorem 3. The maximum value of the load attitude error
eRL caused by given parameter uncertainties and force
biases is inversely proportional to tL. Furthermore, the same
holds for the error sensitivity w.r.t the intensity of the force

bias δ2, defined as
∂eRL

∂δ2
, while

∂eRL

∂δ1
= 0

Proof: Consider the following definition of the attitude
error:

eRL = ∥Req
L e1 × R̄Le1∥2. (17)

Note that RLe1 is enough to describe the entire attitude of the
beam-like load. Moreover, the definition in (17) is a suitable
metric for the attitude error as it is ∥Req

L e1×R̄Le1∥2 = 0 for
Req

L = R̄L, and it increases with the displacement between
the last two vectors, at least locally (for displacements
smaller than π/2). Rewrite now (6) in FW as:

Req
L e1 ×

[(
b1mL − b̂1m̂L

)
ge3 +LtLR̄Le1 −Lδ2

]
= 0. (18)

Define also:
(b1 −∆b)(mL −∆m)−b1mL

tLL
(Req

L e1 ×ge3)+
1
tL
(Req

L e1 ×δ2)

=
α

tLL
(Req

L e1 ×ge3)+
1
tL
(Req

L e1 ×δ2) := x (19)

with α := (b1 −∆b)(mL −∆m)(ℓ−∆ℓ)−mLb1. From (18),
we have that Req

L e1 ×R̄Le1 = x and, from (17), that eRL =
x⊤x= ||x||2. Hence, we analize the upper bound of ||x|| to
find that of eRL . From (19),

||x||= || α

tLL
(Req

L e1 ×ge3)+
1
tL
(Req

L e1 ×δ2)|| ≤ (20)

|| α

tLL
(Req

L e1 ×ge3)||+ || 1
tL
(Req

L e1 ×δ2)|| ≤
||α||g
tLL

+
δ2

tL
where all terms in the last line are inversely proportional to
tL. This completes the first part of the proof. Regarding the
sensitivity, we can write it as:

∂eRL

∂δ2
= 2x⊤ ∂x

∂δ2
=

= 2
(

αReq
L e1

LtL
×ge3

)⊤(
Req

L e1

tLL
×d2

)
+

2
(
R̄Le1

tL
×δ2

)⊤(
Req

L e1

tLL
×d2

)
Eventually, recalling that, given three vectors a,b, and c:

(a×b)⊤(a×c) = |a|2(b⊤c)− (a⊤b)(a⊤c),

we can write

∂eRL

∂δ2
= 2

(
gα(−sinθ cosβ1 + cosβ2)

Lt2
L

+
δ2 cosβ1

2

t2
L

)
,

where β1 is the angle between Req
L e1 and δ2, and β2 that

between e3 and δ2. The application of analogous steps as in
(20) finalizes the proof. □

Theorem 3 shows that a positive tL increases the attitude
error robustness and is beneficial for the error sensitivity to
variations of the force bias intensity. The larger the internal
force the smaller the maximum error and sensitivity, given
the uncertainties and the force biases.

In other words, thanks to Theorem 3, one knows that a
large value of tL > 0 is beneficial to maintain the expected
load attitude error low and constant over different task
executions in which the value of the force biases may have
changed.
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B. Load position error

Differently from the load attitude error, the load position
error at the equilibrium does not necessarily decrease when
increasing tL [25]. However, changing solely the reference
position of the leader robot is enough to bring to zero the
load position error even in the presence of force biases. To
see that, substitute (5) into (9) explicitly writing ˆ̄pR:

peq
L = p̄L + R̄L

L
b̂1 +

(
∥ ˆ̄f1∥

k̂1
+ l̂01

)
ˆ̄f1

∥ ˆ̄f1∥
−K−1

A (∆mge3+

δ1 +δ2)−
(
∥f eq

1 ∥
k1

+ l01

)
f eq

1
∥f eq

1 ∥
−Req

L b1. (21)

From (21) we have an expression of peq
L − p̄L := epL. Now, if

the sole leader robot knows the load position, it can adjust its
reference, such that the new reference, is: 2p̄R1 = p̄R1 −epL.
This implies peq

R1 =
2p̄R1 −K−1

A (∆m +δ1 +δ2) and, thus, (21)
gives peq

L = p̄L.
Moreover, the leader robot position does not influence the

attitude of the load at the equilibrium, which only depends
on the cable forces—see the last three lines of (1). In other
words, the leader robot corrects the position error of the load,
while the cooperatively generated internal force acts on the
attitude error.

The previous result can be exploited also in the case that
a user wishes to manually command the position of the load.
The reference forces necessarily generated by the combined
action of the robots take care of correcting the load final
attitude, while the user can have intuitive control over the
load position through the leader robot position alone.

V. NUMERICAL RESULTS

Extensive numerical tests have been carried in Gazebo
ODE physics engine using a URDF description of the
system. A realistic numerical simulation model has been
preferred to one complying with all simplifying assumptions
used to derive the theoretical results. In particular: (i) un-
deractuated quadrotors are deliberately chosen because they
represent the worst-case scenario in terms of the validity
of the theoretical assumptions; (ii) cables are composed of
multiple links, thus they are subject to sagging; (iii) there is
no guarantee of perfect trajectory tracking as assumed in the
theory but a standard position controller [32] is implemented
for each robot; (iv) the wrench observer proposed in [33] is
used to produce an estimate of the external force applied on
each robot.

The control software has been implemented in Matlab-
Simulink using the Generator of Modules GenoM3. Matlab-
Gazebo is also managed by a Gazebo-genom3 plugin4. A
state machine is used to simulate all phases of a physical
experiment, beginning with takeoff, to ensure that the results
mimic a real full-length operation. The robots lift the load
after takeoff, and the admittance controller is activated.

The robots have a mass of 1.03 Kg each and every pro-
peller can exert up to 6 N thrust. The bar has a mass of

3https://git.openrobots.org/projects/genom3
4https://git.openrobots.org/projects/mrsim-gazebo

TABLE I

Scenario1: ∆m
m =−6.9%

∆b1
b1

= ∆L
L = 9.3%

∆l0i
l0i

= 9.2%

Scenario2: ∆m
m = 0.94%

∆b1
b1

= ∆L
L =−4.4%

∆l0i
l0i

=−8.0%

Scenario3: ∆m
m =−8.1%

∆b1
b1

= ∆L
L =−9.1%

∆l0i
l0i

=−4.5%

0.5 kg and a length of 1 m. Without loss of generality, the
robots are asked to bring the load to p̄L = [1 1 1]⊤ m with
θ̄ = ψ̄ = 0 deg.

First, Fig. 2 contains the results from 27 runs obtained
as follows. Three different scenarios have been defined,
each of which is characterized by different parametric un-
certainties. Specifically, for each scenario, each uncertain
parameter has been randomly generated between ±10%
of the corresponding real parameter value. Then, for each
scenario, the same manipulation task as described above
has been carried out 9 times: 3 times for each different
value of tL ∈ {0.5, 1.5, 2}N. Indeed, for each value of the
internal reference force, 3 different biases on the robots’
estimated forces have been tested. Specifically, for i= {1,2},
δi = a[1 1 1]⊤ with a = {0.1, 0.2, 0.3}N, which means
δi = 0.173N, 0.346N, and 0.520 N, respectively. The results
clearly show the beneficial effect of higher values of tL in
terms of the accuracy of load attitude control. Please note
that in the chosen setup, δL is such that the equivalent
internal force at the equilibrium is tL − δL > 0. However,
large values of δ2 and small values (0.5 N) of tL result in
a small equivalent internal force and, thus, in a large load
attitude error at the equilibrium (e.g., 100 deg in Scenario2).
Furthermore, the data shows that the variation of the load
attitude error against the force bias, e.g., the error sensitivity
to parameter variation, is lower for larger values of internal
force, given the same uncertainties. This emerges from the
slope of the lines fitting the evolution of eRL in Fig. 2.
For the sake of repeatability, we report in Table I the
randomly generated values of the uncertainties. Without loss
of generality, no uncertainty on ki has been set as it has an
equivalent effect to the one on l0i [25].

In Fig. 3, the screenshots from a simulation showing the
unstable nature of the desired equilibrium when tL = 0 N but
δL = 0.1 N so that the equivalent internal force is negative,
equal to −0.1 N. Hence, the scenario is equivalent to that
described in [23] for tL < 0. This shows the important role
of the internal force especially when there are biases in the
estimated forces.

Eventually, Fig. 4 shows the results of a simulation in
which the leader robot changes its reference position based
on the load position equilibrium error, as in Sec. IV-B,
and corrects the load position error. The last two plots
of Fig. 4 are the force biased estimations and the dotted
lines the robots’ references, − ˆ̄fi. Note that, from (8) the
follower’s estimated force at the equilibrium is −f eq

2 +δ2 =

− ˆ̄f2. Instead, according to (7), the leader robot estimates
−f eq

1 + δ1 = − ˆ̄f1 +∆mge3 + δ1 + δ2 ̸= − ˆ̄f1, in accordance
with the plots.
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Fig. 2: Each plot contains 9 different simulations with random parameter values, 3 simulations for each value of tL. eRL has been computed
as ||ψeq − ψ̄||+ ||θ eq − θ̄ ||. The lines are the linear fitting that approximates the error values (indicated by an asterisk) obtained for each
tested tL; the goodness of each fit is shown in the legend by the R-squared value, indicated as R2.

Fig. 3: tL = 0 but the equivalent internal force is negative due to δL. The system does not converge to the desired equilibrium (red bar)
but goes to the other one with flipped load attitude (see [23]), and tension in the load. The leader has a red arm, the follower a blue one.

Fig. 4: tL = 1.5 N, δi = [0.2 0.2 0.2]⊤ N, ∆m
m =−3.6%,

∆b1
b1

= ∆L
L =

9.4%, and
∆l0i
l0i

= 6.4%. After 42s, the leader changes its position
reference and pL goes to p̄L. Other quantities are unaffected.

VI. EXPERIMENTAL RESULTS

This section describes the experiments, and the setup is
in Figure 1. Two quadrotors, with a mass of 1.03 Kg and
a maximum thrust for each propeller of 6 N, have been
equipped with two lightweight cables of length equal to 1 m
attached at the endings of a 2-meter-long bar with a mass of
0.2 Kg. These components are shown in Fig. 1. Each robot
has an onboard PC and 4 electronic speed controllers that
control the propeller speed in closed loop [34]. State-of-the-
art UKF-based state estimation fusing the motion capture
system measurements at 120 Hz with the IMU measurements
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Fig. 5: On the right, pitch (top) and yaw (bottom) errors in 3 tests
for different values of tL. On the left, box plots of the mean value
of eRL = ||θ − θ̄ ||+ ||ψ − ψ̄|| over the last 20 seconds of the 3
tests. With tL = 1, θ is still increasing towards the equilibrium.

at 1 kHz and a geometric control [32] run onboard.
Three different task executions have been carried out with

p̄L = [0.5 0 1.5]⊤ m, ψ̄ = 0.2 rad, and θ̄ = −0.12 rad and
three different values of the internal force tL ∈ {1, 2, 3}N.
In each run, a force bias was present and the controller knew
the load parameters with a 10% error. The force bias has
been estimated by bringing the position-controlled robots
vertically on top of their cables during an initialization phase
at the beginning of each task execution. Because of the short
task duration in the laboratory conditions, we assumed the
force bias constant throughout the execution. The yaw angles
of the robots are controlled to be constantly equal to zero.

We had each component of δ2 equal to ∼ 0.2±0.1N,
∼ 0.4±0.1N, and ∼ 0.1±0.1N in the execution with tL
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equal to 1, 2, and 3 N, respectively. Fig. 5 shows the load
attitude resulting from the three task executions. Please note
that, although the force biases are not exactly the same in the
three tests, they are such that the equivalent internal force is
higher in the tests with a higher value of tL. The main result
to be noted is how the final value of the pitch and yaw
errors as well as the overall load attitude errors are smaller
for higher values of the internal force.

VII. CONCLUSIONS

This work studied the force-based manipulation of cable-
suspended loads using non-communicating UAVs in the
presence of biased force estimates/measurements. The equi-
librium points of the closed-loop system have been studied.
It has been shown that a load internal force induced by non-
vertical cables at the equilibrium is beneficial for the robust-
ness of pose control and for the error sensitivity to force bias
variations. Numerical and experimental results have been
presented. Interesting future directions are the extension of
the robustness analysis to general rigid bodies manipulated
by more than two robots and the outdoor experiments.
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