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Two-term large-time asymptotic expansion of the

value function for dissipative nonlinear optimal

control problems

Veljko Ašković∗ Emmanuel Trélat† Hasnaa Zidani‡

Abstract

Considering a general nonlinear dissipative finite dimensional optimal
control problem in fixed time horizon T , we establish a two-term asymp-
totic expansion of the value function as T Ñ `8. The dominating term
is T times the optimal value obtained from the optimal static problem
within the classical turnpike theory. The second term, of order unity, is
interpreted as the sum of two values associated with optimal stabilization
problems related to the turnpike.

1 Introduction

The long-term asymptotic properties of the value function have been extensively
explored from the perspective of partial differential equations (PDE), primarily
within the framework of Hamilton-Jacobi-Bellman (HJB) equations ([1], [2],
[3]) and ergodic theory ([4]). For instance, in [1, Chapter VII], the authors
investigate the optimal control problem with discounted Lagrange cost over
an infinite time horizon. To characterize the ergodic behavior of the value
function, the authors take the limit as the discount factor tends to zero and
identify the limit value function as the viscosity solution of the limiting equation.
In [2], assuming suitable conditions, including periodicity assumptions on the
Hamiltonian, the authors characterize the large-time behavior of the solution
to the first-order HJB equation as the solution of a stationary equation. The
extension of these results to deterministic zero-sum differential games with two
conflicting controllers has been studied, as seen in [3]. It is worth noting that
more general results are available, such as those presented in [5], where the
authors demonstrate that, under appropriate assumptions, there exists at most
one potential accumulation point (in the uniform convergence topology) of the
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values. This occurs when the time horizon of Cesaro means converges to infinity
or the discount factor of Abel means converges to zero.

From the classical optimal control perspective, the large-time behavior of the
value function is typically inferred as a consequence of a property satisfied by
a broad class of optimal control problems when the time horizon is sufficiently
large. This property is known as the turnpike property, indicating that, for
certain optimal control problems with a sufficiently large time horizon, any
optimal solution tends to remain close to the optimal solution of an associated
static optimization problem for the majority of the time. This optimal static
solution is referred to as the turnpike (the term originates from the concept that
a turnpike represents the fastest route between two distant points, even if it is
not the most direct route; see Figure 1).

Figure 1: Turnpike illustration: (a) small time case (b) large time case

The turnpike phenomenon was initially observed and investigated by economists
for discrete-time optimal control problems (see [6], [7]). Various notions of turn-
pike properties exist, with some being stronger than others (see [8]). Exponen-
tial turnpike properties have been established in [9], [10], [11], [12] and [13] for
the optimal triple resulting of the application of Pontryagin’s Maximum Prin-
ciple (PMP), ensuring that the extremal solution (state, adjoint and control)
remains exponentially close to an optimal solution of the corresponding static
controlled problem, except at the beginning and at the end of the time inter-
val, when the time horizon T is sufficiently large. As unravelled in [12] this
phenomenon is closely related to hyperbolicity properties of the Hamiltonian
flow. For discrete-time problems it has been shown for instance in [14], [15] that
the exponential turnpike property is also closely related to a strict dissipativ-
ity property. Measure-turnpike is a weaker notion of turnpike, meaning that
any optimal solution, along the time frame, remains close to an optimal static
solution except during a subset of times with small Lebesgue measure. It has
been proved in [16], [17] that measure turnpike follows from strict dissipativity
or from strong duality properties.

Based on the turnpike property, an equivalent as T Ñ `8 of the value
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function has been derived in [11] or [12], (see Figure 2):

1

T
.vpT, x, zq „

TÑ`8
v̄ if v̄ ‰ 0 (1)

where vpT, x, zq is the optimal cost to steer the system from x to z in time T
and v̄ is the “steady” cost at the turnpike.

Figure 2: Turnpike phenomenon

Significant insights have been achieved in [18] and [19], where the authors
explore variations of the linear quadratic (LQ) problem. Assuming certain con-
trollability conditions, they derive the large-time expansion of the value function
at the order of one in 1{T . In [18], the various aspects are identified, and some
are interpreted within the framework of the Hamilton-Jacobi-Bellman (HJB)
theory. Meanwhile, in [19], all the terms are characterized as functions of the
solutions of the Riccati algebraic equation, initial/final states, and the Lagrange
multiplier of the static optimization problem.

In this manuscript, we extend the results of [18, 19] to the class of dissipative
nonlinear systems. The concept of (strict) dissipativity, as introduced in [21],
is defined in a broad context, accompanied by related notions like the available
storage function and the supply rate function. In cases where a system exhibits
dissipativity with a specified supply rate function, the inquiry into identifying a
suitable storage function has been extensively investigated (refer to, e.g., [32]).
This inquiry bears resemblance to the task of determining an appropriate Lya-
punov function in the Lyapunov second method, which ensures the stability of a
system. A precise mathematical definition will be provided later in this paper.
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2 Setting of the problem

We consider the finite-dimensional optimal control problem, consisting of mini-
mizing the cost functional

JT,x,zpuq “

ż T

0

f0pyptq, uptqqdt (2)

over the time interval r0, T s, T ą 0 being fixed under the constraints

9yptq “ fpyptq, uptqq, (3a)

yp0q “ x, ypT q “ z, (3b)

where f : Rn ˆ Rp ÝÑ Rn and f0 : Rn ˆ Rp ÝÑ R are of class C1. The
associated value function defined by

vpT, x, zq :“ min
up¨qPUΩ

T

JT,x,zpuq (4)

where u P UΩ
T :“ L8 pr0, T s,Ωq, Ω being a fixed compact subset of Rp. In the

sequel, we assume that Ω Ă Bp0, cq for some c ą 0.

Remark 2.1. Since Ω does not depend on T , the space of controls UΩ is
independent of T . This is because, beyond the time horizon T , the controls can
be trivially extended within Ω and consequently, the space of controls will be
denoted by UΩ.

We assume that for T large enough, (2)-(3)-(4) admits an optimal solution,
denoted by ppyT p¨q, puT p¨qq. The conditions ensuring the existence of such a so-
lution are well known (see for instance [20], [37]). For instance, if the set of
velocities tfpy, uq |u P Ωu is a convex subset of Rn for any y P Rn, with mild
growth at infinity and if the epigraph of f0 is convex, then there exists at least
one optimal solution. These conditions are for example satisfied if the dynamics
are control-affine and if the cost functional is convex with respect to u

By the Pontryagin maximum principle ([20]-[35]), there exist λ0 ď 0 and

an absolutely continuous mapping pλT : r0, T s ÝÑ Rn (called adjoint vector)

satisfying ppλT p¨q, λ
0q ‰ p0, 0q such that:

9
pyT ptq “

BH

Bλ

´

pyT ptq, pλT ptq, λ
0, puT ptq

¯

9
pλT ptq “ ´

BH

By

´

pyT ptq, pλT ptq, λ
0, puT ptq

¯

BH

Bu

´

pyT ptq, pλT ptq, λ
0, puT ptq

¯

“ 0

(5)

for almost every t P r0, T s, where the Hamiltonian H is defined by

Hpy, λ, λ0, uq :“ xλ, fpy, uqy ` λ0f0py, uq (6)

4



and x , y is the Euclidean scalar product in Rn. We assume throughout that
the abnormal case does not occur, and we set λ0 “ ´1. Moreover, we assume
the existence and uniqueness of the solution (denoted by pȳ, ūq) to the static
optimization problem

v̄ :“ min
fpy,uq“0

f0py, uq. (7)

This is a usual nonlinear constrained optimization problem settled in Rn ˆRp.
Note that the minimizer exists and is unique in the linear quadratic case.

By the Karush Kuhn Tucker (KKT) optimality conditions, assuming that
the abnormal case does not occur, there exists λ̄ P Rn such that

fpȳ, ūq “ 0

´
Bf0

By
pȳ, ūq ` xλ̄,

Bf

By
pȳ, ūqy “ 0

´
Bf0

Bu
pȳ, ūq ` xλ̄,

Bf

Bu
pȳ, ūqy “ 0

(8)

In the Hamiltonian formalism, the first-order optimality system (8) is equivalent
to

BH

Bλ
pȳ, λ̄,´1, ūq “ 0

´
BH

By
pȳ, λ̄,´1, ūq “ 0

BH

Bu
pȳ, λ̄,´1, ūq “ 0

(9)

Because of the turnpike property (see further), since it is expected that the
dominating term in the asymptotic expansion of vp¨q is T.v̄, we ”absorb” it
by subtracting it to the cost JT,x,z and consider the ”shifted” optimal control
problem defined as

min
up¨qPUΩ

CT pu, x, zq :“ min
up¨qPUΩ

ż T

0

wpyptq, uptqq dt (10a)

´

Px,z
r0,T s

¯

9yptq “ fpyptq, uptqq, @t P r0, T s (10b)

yp0q “ x, ypT q “ z (10c)

where wp¨q is the ”shifted cost” defined by

wpy, uq :“ f0py, uq ´ f0pȳ, ūq. (11)

The readers acquainted with the notion of dissipativity in nonlinear optimal
control will recognize in (11) a classical storage function. This is where the link
with dissipativity appears.

We introduce also the shifted infinite-time optimal control problems

pPx8f q vf pxq :“ min
up¨qPUΩ

ż `8

0

wpyptq, uptqq dt

9yptq “ fpyptq, uptqq, yp0q “ x

(12)
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and

pPz8bq vbpzq :“ min
up¨qPUΩ

ż `8

0

wpyptq, uptqq dt

9yptq “ ´fpyptq, uptqq, yp0q “ z

(13)

In our notations the index “f” stands for “forward” while the index “b” stands
for “backward”. We assume the existence of optimal solutions to pPx8f q and
pPz8bq with a finite cost.

Remark 2.2. The function vf p¨q (resp. vbp¨q) is the optimal cost of the infinite-
time optimal control problem consisting in steering the system from x (resp. z)

forward (resp. backward) in time and minimizing the cost functional
ş`8

0
wpyptq, uptqq dt.

3 Assumptions

Assumptions of global nature :

pA1q: (Regularity of f and f0): We assume that f and f0 are of class C1.

pA2q: (Existence and uniqueness of optimal solutions): There exists T0 ą 0 such

that for any T ě T0 each of the optimal control problems
´

Px,z
r0,T s

¯

, pPx8f q and

pPz8bq admits a unique optimal solution denoted respectively by ppyT p¨q, puT p¨qq,
ppy8f p¨q, pu8f p¨qq and ppy8bp¨q, pu8bp¨qq.

pA3q: (Boundedness of the optimal trajectories): The optimal trajectories of
´

Px,z
r0,T s

¯

, pPx8f q and pPz8bq are bounded uniformly with respect to T ě T0:

Db ą 0, | @t ě 0, }pyptq} ď b. (14)

pA4q: (Boundedness of the optimal costs): The optimal costs of
´

Px,z
r0,T s

¯

, pPx8f q
and pPz8bq are bounded uniformly with respect to T ě T0.

pA5q: The minimizer pȳ, ūq of (7) is unique and there exists a unique Lagrange

multiplier λ̄ satisfying (8). Moreover, we assume that ū P
˝

Ω (interior of Ω).

In the sequel, we will also need a concept of strict dissipativity. We recall
that (10a)-(10b) is dissipative at pȳ, ūq with respect the the supply rate function
w if there exists a bounded function S : Rn ÝÑ R, called storage function such
that for any admissible pair pyp¨q, up¨qq and any T ą 0:

Spyp0qq `

ż T

0

wpyptq, uptqq dt ě SpypT qq. (15)

The system is strictly dissipative if, in addition, there exists some function αp¨q
of class K (i.e., α : r0,`8q ÝÑ r0,`8q continuous, increasing, and such that
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αp0q “ 0) and for any T ą 0 we have:

Spyp0qq `

ż T

0

wpyptq, uptqq dt ě SpypT qq `

ż T

0

α

ˆ
›

›

›

›

yptq ´ ȳ
uptq ´ ū

›

›

›

›

˙

dt. (16)

In this work we assume the following.

pA6q: (Strict dissipativity property): The family of optimal control problems
(10a)-(10b) indexed by T is strictly dissipative at pȳ, ūq with respect to the
supply rate function w defined by (11) with a storage function S.

The notion of strict dissipativity was introduced in [21] and already used in [14],
[22], [16] and [15] to derive turnpike properties.

Assumption of local nature :

pA7q: Setting A :“
Bf

By
pȳ, ūq, B :“

Bf

Bu
pȳ, ūq, the pair pA,Bq satisfies the Kalman

rank condition, i.e, the linearized control system at pȳ, ūq is controllable.

pA8q: (Local boundedness of the minimum time trajectories and controls near the
turnpike): There exists r ą 0 such that for any x P B̄pȳ, rq the minimum time
trajectory to ȳ starting from x, denoted by y

τf
x p¨q and the associated control,

denoted by uτf p¨q remain in the neighbourhood of respectively ȳ and ū uniformly
with respect to x, i.e.,

Dr,Kr ą 0 | @x P B̄pȳ, rq @t P r0, τf pxqs }y
τf
x ptq ´ ȳ} ` }u

τf ptq ´ ū} ď Kr

(17)
where τf p¨q is the minimum time function to reach ȳ with the dynamics f .

4 Comments

The assumptions pA1q and pA7q together imply that there exists r ą 0 such that
for any x P Bpȳ, rq, there exists an admissible trajectory steering the control
system from x to ȳ in finite time. Thus the minimum time function τf p¨q is
well defined on Bpȳ, rq and is continuous at ȳ. This is classical result that can
be found, for instance, in [1]. The result remains true for the minimum time
function associated to the backward-in-time dynamics ´f , denoted by τ´f p¨q.

The assumption pA8q requires the local boundedness of the minimum time
trajectories and controls for any trajectory starting in the previously defined
neighbourhood of the turnpike. This assumption is satisfied if the minimum
time function is C1 in the neighbourhood of ȳ. We highlight here that the reg-
ularity of the minimum time function has been widely studied in the literature:
it is well known that under appropriate controllability type conditions the min-
imum time function has an open domain of definition and is locally Lipschitz
on it, see for instance [1]-[23]. It is thus differentiable almost everywhere on
its domain. The value function fails in general to be differentiable at points
that are reached by at least two minimum time trajectories and its differen-
tiability at a point does not guarantee continuous differentiability around this
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point. In [24], the authors show that, under some assumptions on the regularity
and target smoothness (which excludes the singleton case), the nonemptiness of
the proximal subdifferential of the minimum time function at a point implies its
continuous differentiability in a neighborhood of this point. An analogous result
has been proved for the value function of the Bolza problem in [25] in the case
where the initial state is a prescribed point and the final state is let free. In [26],
the author gives a survey of results on the regularity of the minimum time map
for control-affine systems with prescribed initial and final points. Finally, for
results on the set where the value function is differentiable we refer the reader
to [27], [28], [29], [30], [31] and references therein.

The (strict) dissipativity property pA6q is certainly the less intuitive assump-
tion to check in practice. In general, when the system is dissipative, storage
functions are closely related to some viscosity sub-solutions of partial differen-
tial inequalities called Hamilton-Jacobi inequalities. We refer the reader to [32,
Chapter 4] for more details on this subject. One can remark that, under suit-
able regularity and boundedness assumptions on the dynamics and the cost, the
value function (its opposite more precisely) can be taken as a storage function,
and the dissipativity inequality is then deduced from the Dynamic Program-
ming Principle (DPP). Note also that the infinitesimal form of the (non-strict)
dissipativity inequality (15), with α “ 0, is the Hamilton-Jacobi inequality:

H1py,∇Spyq, uq ď ´f0pȳ, ūq

where H1 is the maximized normal Hamiltonian (indeed, divide by t1 ´ t0 ą 0
and take the limit t1´t0 Ñ 0). The existence of C1 solutions is therefore related
to the so-called weak KAM theory (see [38]). In this context, the singleton
tpȳ, ūqu is the Aubry set and f0pȳ, ūq is the Mañé critical value.

Remark 4.1. The strict dissipativity inequality (16) remains true for the dy-
namics ´f , provided that one switches the initial and final states. The corre-
sponding storage function is ´Sp¨q.

5 Main result

Theorem 5.1. Under Assumptions pA1q´pA8q, the value function (4) satisfies

vpT, x, zq “ T.v̄ ` vf pxq ` vbpzq ` op1q (18)

as T Ñ `8.

In order to prove Theorem 5.1, we need some preliminary lemmas.

5.1 Some useful lemmas

Lemma 5.2 (Barbalat’s lemma). Assume that f : r0,`8q ÝÑ R is uniformly

continuous and that lim
tÑ`8

ż t

0

fpτqdτ exists and is finite, then lim
tÑ`8

fptq “ 0.
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Proof. A proof can be found for instance in [36]. By contradiction, take ε ą 0
and assume that fptq does not converge to 0 as t Ñ `8. In this case, there
exists an increasing sequence ptnqnPN in R` such that |fptnq| ą ε. By the
uniform continuity of f there exists δ ą 0 such that, for any n P N, and any
t P R

|t´ tn| ď δ ùñ |fptq ´ fptnq| ď
ε

2
.

So for any t P rtn, tn ` δs and any n P N, one has

|fptq| “ |fptnq ´ pfptnq ´ fptqq| ě |fptnq| ´ |fptnq ´ fptq| ě
ε

2
.

Therefore,

ˇ

ˇ

ˇ

ˇ

ˇ

ż tn`δ

0

fptqdt´

ż tn

0

fptqdt

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ż tn`δ

tn

fptqdt

ˇ

ˇ

ˇ

ˇ

ˇ

“

ż tn`δ

tn

|fptq|dt ě
δ.ε

2
.

The latter inequality contradicts the convergence of

ż t

0

fpτqdτ as t Ñ `8 and

the lemma follows.

Lemma 5.3. The optimal trajectory pyT p¨q of pPx,z0,T q satisfies

DtpT q P r0, T s | pyT ptpT qq ÝÑ ȳ as T Ñ `8. (19)

Proof. For T ě T0, the strict dissipativity inequality applied to the optimal pair
ppyT p¨q, puT p¨qq implies

f0pȳ, ūq ď
1

T

ż T

0

f0ppyT psq, puT psqqds`
Spxq ´ Spzq

T

´
1

T

ż T

0

α

ˆ
›

›

›

›

pyT psq ´ ȳ
puT psq ´ ū

›

›

›

›

˙

ds.

(20)

Let us prove that

1

T

ż T

0

α

ˆ
›

›

›

›

pyT psq ´ ȳ
puT psq ´ ū

›

›

›

›

˙

ds ÝÑ 0 as T Ñ `8. (21)

Let us assume by contradiction that this is not true: then there exists η ą 0
and a sequence Tk ÝÑ `8 such that

1

Tk

ż Tk

0

α

ˆ
›

›

›

›

pyTk
psq ´ ȳ

puTk
psq ´ ū

›

›

›

›

˙

ds ě η. (22)

By multiplying the inequality (20) by Tk one gets

ż Tk

0

α

ˆ
›

›

›

›

pyTk
psq ´ ȳ

puTk
psq ´ ū

›

›

›

›

˙

ds ď

ż Tk

0

wppyTk
psq, puTk

psqqds` Spxq ´ Spzq (23)
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which implies from (22)

Tk.η ď

ż Tk

0

wppyTk
psq, puTk

psqqds` Spxq ´ Spzq. (24)

Assumption pA4q leads to a contradiction in the above inequality when k Ñ `8.

Then we have
1

T

ż T

0

α

ˆ
›

›

›

›

pyT ptq ´ ȳ
puT ptq ´ ū

›

›

›

›

˙

ds ě
1

T

ż T

0

α p}pyT ptq ´ ȳ}q ds ÝÑ 0 as

T Ñ `8 which implies, using the mean value theorem, that

DtpT q P r0, T s | α p}pyT ptpT qq ´ ȳ}q ÝÑ 0 as T Ñ `8. (25)

From the properties of αp¨q, this leads to

pyT ptpT qq ÝÑ ȳ as T Ñ `8. (26)

The lemma is proved.

Remark 5.4. As noted in [33], if one makes the change of variable s “
t

T
, in

(21) then

1

T

ż T

0

α

ˆ
›

›

›

›

pyT ptq ´ ȳ
puT ptq ´ ū

›

›

›

›

˙

dt “

ż 1

0

α

ˆ
›

›

›

›

pyT pT.sq ´ ȳ
puT pT.sq ´ ū

›

›

›

›

˙

ds ÝÑ 0 as T Ñ `8

which implies, by the converse Lebesgue theorem (see [34, Theorem IV.9])
that there exists an increasing sequence of time horizons pTkqkPN such that
pyTk
pTk.sq ÝÑ ȳ and puTk

pTk.sq ÝÑ ū as k Ñ `8 for almost every s P r0, 1s.
The latter looks like a measure turnpike result. However we did not exploit this
result in our paper.

Lemma 5.5. The optimal trajectory py8f p¨q of pPx8f q satisfies

py8f ptq ÝÑ ȳ as tÑ `8 (27)

Proof. From (16) we have

ż T

0

α

ˆ
›

›

›

›

py8f ptq ´ ȳ
pu8f ptq ´ ū

›

›

›

›

˙

dt ď

ż T

0

wppy8f ptq, pu8f ptqqdt`Spxq´Sppy8f pT qq (28)

the right-hand side of the inequality being bounded uniformly with respect to
T one gets

ż T

0

α p}py8f ptq ´ ȳ}q dt ď

ż T

0

α

ˆ
›

›

›

›

py8f ptq ´ ȳ
pu8f ptq ´ ū

›

›

›

›

˙

dt “
TÑ`8

Op1q (29)

which implies

ΦpT q :“

ż T

0

α p}py8f ptq ´ ȳ}q dt “
TÑ`8

Op1q. (30)
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First, we remark that (30) and the positivity of αp¨q imply the convergence of
ΦpT q as T Ñ `8.

On the other hand, from pA1q and pA3q we know that f is of class C1 on
the compact set Bp0, bq ˆ Bp0, cq thus bounded by a global constant, denoted
by k ą 0. Therefore py8f p¨q is globally Lipschitz continuous in time t, and
consequently t ÞÑ }py8f ptq ´ ȳ} as well.

From the boundedness of py8f p¨q (see pA3q) and the continuity of αp¨q, we deduce
the uniform continuity of t ÞÑ αp}py8f ptq ´ ȳ}q over r0`8q. Indeed, αp¨q being
continuous on a compact set, it is uniformly continuous (Heine theorem).

Applying Barbalat’s lemma (see 5.2), one has αp}py8f ptq´ ȳ}q ÝÑ 0 as tÑ `8,
which implies py8f ptq Ñ ȳ as tÑ `8 and the proof is over.

Corollary 5.6. Lemma 5.5 remains true for the optimal trajectory of pPz8bq
problem (with the backward-in-time dynamics ´f).

5.2 Proof of the main result

Proof. For T ě T0, let us consider the respective optimal solutions ppyT p¨q, puT p¨qq,

ppy8f p¨q, pu8f p¨qq and ppy8bp¨q, pu8bp¨qq of
´

Px,z
r0,T s

¯

, pPx8f q and pPz8bq.

We split the optimal cost CT ppuT , x, zq as

CT ppuT , x, zq “

ż T

0

wppyT ptq, puT ptqq dt (31)

“

ż tpT q

0

wppyT ptq, puT ptqq dt
loooooooooooooomoooooooooooooon

Cf
T

`

ż T

tpT q

wppyT ptq, puT ptqq dt
looooooooooooomooooooooooooon

Cb
T

(32)

where tpT q is defined by (19).

We perform the proof in two steps. We first prove that

Step 1: vf pxq ` vbpzq ď lim inf
TÑ`8

CT ppuT , x, zq (33)

Then we prove that:

Step 2: lim sup
TÑ`8

CT ppuT , x, zq ď vf pxq ` vbpzq (34)

which will prove the required result.

The real number r being defined in Assumption pA8q, we first remark that
py, uq ÞÑ wpy, uq is continuous on Ωr :“ Bpȳ, KrqˆBpū,Krq which is a compact
set of Rn ˆ Rp. Consequently,

DMr ą 0 | @py, uq P Ωr, |wpy, uq| ďMr. (35)

11



Let ε ą 0. The continuity of τf p¨q at ȳ gives:

Dη ą 0 s.t }x´ ȳ} ď η ñ |τf pxq| ď
ε

2.Mr
. (36)

The continuity of τ´f p¨q at ȳ gives:

Dν ą 0 s.t }x´ ȳ} ď ν ñ |τ´f pxq| ď
ε

2.Mr
. (37)

We set γ :“ minpη, ν, rq ą 0, and we denote by B :“ Bpȳ, γq.

Ź Step 1: From Lemma 5.3, we know that:

DT1 ě 0 s.t @T ě T1, pyT ptpT qq P B. (38)

We select a time horizon T such that T ě maxpT0, T1q and construct qup¨q
admissible control for the pPx8f q problem as follows:

quptq :“

$

’

’

&

’

’

%

puT ptq if t P r0, tpT qs

pu0ptq if t P rtpT q, tpT q ` τ0s

ū if t ě tpT q ` τ0

where τ0 :“ τf ppyT ptpT qqq is the minimum time to reach ȳ from pyT ptpT qq and
pu0p¨q the associated optimal control.

We infer from (36) and (38) that

vf pxq ď

ż `8

0

w pqyptq, quptqq dt

ď

ż tpT q

0

w ppyT ptq, puT ptqq dt`

ż tpT q`τ0

tpT q

wppy0ptq, pu0ptq
looooomooooon

PΩr

qdt`

ż `8

tpT q`τ0

wpȳ, ūq
loomoon

0

dt

ď CfT ` τ0.Mr

ď CfT `
ε

2
(39)

For the second term CbT , we first remark that

CbT “

ż T

tpT q

w ppyT ptq, puT ptqq dt “

ż T´tpT q

0

w ppryT ptq, ruT ptqq dt (40)

where pryT ptq, ruT ptqq :“ ppyT pT ´ tq, puT pT ´ tqq is such that

9
ryT ptq “ ´fpryT ptq, ruT ptqq with ryT p0q “ z (41)

Noting that the ryT pT ´ tpT qq “ pyT ptpT qq, we construct ŭp¨q the admissible
control for the pPz8bq problem as follows

ŭptq :“

$

’

’

&

’

’

%

ruT ptq if t P r0, T ´ tpT qs

pu1ptq if t P rT ´ tpT q, T ´ tpT q ` τ1s

ū if t ě T ´ tpT q ` τ1

12



where τ1 :“ τ´f pryT pT ´ tpT qqq is the minimum time to reach ȳ from ryT pT ´ tpT qq
and pu1p¨q the associated optimal control.

We infer from (37) and (38) that

vbpzq ď

ż `8

0

wpy̆ptq, ŭptqq dt

ď

ż T´tpT q

0

wpryT ptq, ruT ptqq dt

`

ż T´tpT q`τ1

T´tpT q

wppy1ptq, pu1ptq
looooomooooon

PΩr

q dt`

ż `8

T´tpT q`τ1

wpȳ, ūq
loomoon

0

dt

ď CbT ` τ1.Mr

ď CbT `
ε

2
(42)

Combining (39) and (42), we obtain

vf pxq ` vbpzq ď CfT ` C
b
T ` ε “ CT ppuT , x, zq ` ε (43)

and thus
vf pxq ` vbpzq ď lim inf

TÑ`8
CT ppuT , x, zq (44)

Ź Step 2: From Lemma 5.5 and Corollary 5.6, we have py8f ptq ÝÑ ȳ and
py8bptq ÝÑ ȳ as tÑ `8. Consequently:

DT2 ą 0 s.t @T ě T2,

›

›

›

›

py8f

ˆ

T

2
´ 1

˙

´ ȳ

›

›

›

›

ď γ (45)

and

DT3 ą 0 s.t @T ě T3,

›

›

›

›

py8b

ˆ

T

2
´ 1

˙

´ ȳ

›

›

›

›

ď γ (46)

Take T ě max pT2, T3q and denote:

• τ3 :“ τf

ˆ

py8f

ˆ

T

2
´ 1

˙˙

and pu3p¨q the associated optimal control;

• τ4 :“ τ´f

ˆ

py8b

ˆ

T

2
´ 1

˙˙

and pu4p¨q the associated optimal control.

We construct the admissible control uT p¨q for pP0,T qx,z as follows (see Figure

13



Figure 3: Construction of an admissible trajectory for
´

Px,z
r0,T s

¯

3):

uT ptq :“

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

pu8f ptq if t P

„

0,
T

2
´ 1



pu3ptq if t P

„

T

2
´ 1,

T

2
´ 1` τ3



ū if t P

„

T

2
´ 1` τ3,

T

2
` 1´ τ4



pu4pT ´ tq if t P

„

T

2
` 1´ τ4,

T

2
` 1



pu8bpT ´ tq if t P

„

T

2
` 1, T



We have then the upper bound for the optimal cost:

CT ppuT , x, zq ď

ż T

0

wpy
T
ptq, uT ptqq dt ď A`B ` C `D ` E (47)

where

A :“

ż T
2 ´1

0

w ppy8f ptq, pu8f ptqq dt

E :“

ż T

T
2 `1

w ppy8bpT ´ tq, pu8bpT ´ tqq dt “

ż T
2 ´1

0

wppy8bptq, pu8bptqq dt

14



B :“

ż T
2 ´1`τ3

T
2 ´1

wppy3ptq, pu3ptq
looooomooooon

PΩr

q dt ď τ3.Mr ď
ε

2

C :“

ż T
2 `1´τ4

T
2 ´1`τ3

w pȳ, ūq
loomoon

0

dt “ 0

D :“

ż T
2 `1

T
2 `1´τ4

w ppy4pT ´ tq, pu4pT ´ tqq dt “

ż T
2 ´1`τ4

T
2 ´1

wppy4ptq, pu4ptq
looooomooooon

PΩr

q dt ď τ4.Mr ď

ε

2
Finally, we obtain

CT ppuT , x, zq ď

ż T
2 ´1

0

w ppy8f ptq, pu8f ptqq dt`

ż T
2 ´1

0

wppy8bptq, pu8bptqq dt` ε

(48)
Noting that the integrals A and E converge, we take the limit superior as T Ñ
`8 of the above inequality and we obtain:

lim sup
TÑ`8

CT ppuT , x, zq ď vf pxq ` vbpzq. (49)

Ź Conclusion: By combining (44) and (49), we obtain the required result:

lim
TÑ`8

CT ppuT , x, zq “ vf pxq ` vbpzq. (50)

Remark 5.7. In the LQ case, a two-term large-time expansion of the value
function has been derived in [19] solely under the Kalman condition. Assump-
tions such as the strict dissipativity property and the existence/uniqueness of
the solution of the static optimization problem are automaticaly satisfied in this
case. For the proof, see [19].

6 Conclusions

Considering a general nonlinear dissipative optimal control problem in finite di-
mension and fixed time T , we have established a two-term asymptotic expansion
of the value function as T Ñ `8. Essentially based on the strict dissipativ-
ity property, the result is a generalization of the expansion established in the
variants of the linear quadratic case treated in [18] and [19]. We highlight here
that a generalization of [19] to the infinite dimensional case is currently being
finalized. The infinite dimensional nonlinear case remains open.
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[19] V. Askovic, E. Trélat, H. Zidani, On the asymptotic behavior of the value
function in large time optimal control problems, IFAC Papers 55(16), pp.
38–43, 2022
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