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Two-term large-time asymptotic expansion of the value function for dissipative nonlinear optimal control problems

Considering a general nonlinear dissipative finite dimensional optimal control problem in fixed time horizon T , we establish a two-term asymptotic expansion of the value function as T Ñ `8. The dominating term is T times the optimal value obtained from the optimal static problem within the classical turnpike theory. The second term, of order unity, is interpreted as the sum of two values associated with optimal stabilization problems related to the turnpike.

Introduction

The long-term asymptotic properties of the value function have been extensively explored from the perspective of partial differential equations (PDE), primarily within the framework of Hamilton-Jacobi-Bellman (HJB) equations ( [START_REF] Bardi | Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations[END_REF], [START_REF] Barles | On the Large Time Behavior of Solutions of Hamilton-Jacobi Equations[END_REF], [START_REF] Alvarez | Ergodic Problems in Differential Games[END_REF]) and ergodic theory ( [START_REF] Arisawa | Ergodic problem for the Hamilton Jacobi-Bellman equation i. existence of the ergodic attractor[END_REF]). For instance, in [1, Chapter VII], the authors investigate the optimal control problem with discounted Lagrange cost over an infinite time horizon. To characterize the ergodic behavior of the value function, the authors take the limit as the discount factor tends to zero and identify the limit value function as the viscosity solution of the limiting equation. In [START_REF] Barles | On the Large Time Behavior of Solutions of Hamilton-Jacobi Equations[END_REF], assuming suitable conditions, including periodicity assumptions on the Hamiltonian, the authors characterize the large-time behavior of the solution to the first-order HJB equation as the solution of a stationary equation. The extension of these results to deterministic zero-sum differential games with two conflicting controllers has been studied, as seen in [START_REF] Alvarez | Ergodic Problems in Differential Games[END_REF]. It is worth noting that more general results are available, such as those presented in [START_REF] Buckdahn | On Representation Formulas for Long Run Averaging Optimal Control Problem[END_REF], where the authors demonstrate that, under appropriate assumptions, there exists at most one potential accumulation point (in the uniform convergence topology) of the values. This occurs when the time horizon of Cesaro means converges to infinity or the discount factor of Abel means converges to zero.

From the classical optimal control perspective, the large-time behavior of the value function is typically inferred as a consequence of a property satisfied by a broad class of optimal control problems when the time horizon is sufficiently large. This property is known as the turnpike property, indicating that, for certain optimal control problems with a sufficiently large time horizon, any optimal solution tends to remain close to the optimal solution of an associated static optimization problem for the majority of the time. This optimal static solution is referred to as the turnpike (the term originates from the concept that a turnpike represents the fastest route between two distant points, even if it is not the most direct route; see Figure 1). The turnpike phenomenon was initially observed and investigated by economists for discrete-time optimal control problems (see [START_REF] Samuelson | Linear Programming and Economic Analysis[END_REF], [START_REF] Mckenzie | Turnpike theorems for a generalized leontief model[END_REF]). Various notions of turnpike properties exist, with some being stronger than others (see [START_REF] Zaslavski | Turnpike theory of continuous-time linear optimal control problems[END_REF]). Exponential turnpike properties have been established in [START_REF] Grune | Exponential sensitivity and turnpike analysis for linear quadratic optimal control of general evolution equations[END_REF], [START_REF] Porretta | Remarks on long time versus steady state optimal control[END_REF], [START_REF] Porretta | Long time versus steady state optimal control[END_REF], [START_REF] Trélat | The turnpike property in finite-dimensional nonlinear optimal control[END_REF] and [START_REF] Trélat | Steady-state and periodic exponential turnpike property for optimal control problems in Hilbert spaces[END_REF] for the optimal triple resulting of the application of Pontryagin's Maximum Principle (PMP), ensuring that the extremal solution (state, adjoint and control) remains exponentially close to an optimal solution of the corresponding static controlled problem, except at the beginning and at the end of the time interval, when the time horizon T is sufficiently large. As unravelled in [START_REF] Trélat | The turnpike property in finite-dimensional nonlinear optimal control[END_REF] this phenomenon is closely related to hyperbolicity properties of the Hamiltonian flow. For discrete-time problems it has been shown for instance in [START_REF] Damm | An exponential turnpike theorem for dissipative discrete time optimal control problems[END_REF], [START_REF] Grüne | Turnpike properties and strict dissipativity for discrete time linear quadratic optimal control problems[END_REF] that the exponential turnpike property is also closely related to a strict dissipativity property. Measure-turnpike is a weaker notion of turnpike, meaning that any optimal solution, along the time frame, remains close to an optimal static solution except during a subset of times with small Lebesgue measure. It has been proved in [START_REF] Faulwasser | On turnpike and dissipativity properties of continuous time optimal control problems[END_REF], [START_REF] Trélat | Integral and measure-turnpike properties for infinitedimensional optimal control systems[END_REF] that measure turnpike follows from strict dissipativity or from strong duality properties.

Based on the turnpike property, an equivalent as T Ñ `8 of the value 1 T

.vpT, x, zq "

T Ñ`8 v if v ‰ 0 (1)
where vpT, x, zq is the optimal cost to steer the system from x to z in time T and v is the "steady" cost at the turnpike.

Figure 2: Turnpike phenomenon Significant insights have been achieved in [START_REF] Esteve | On the turnpike property and the long time behavior of the Hamilton-Jacobi equation[END_REF] and [START_REF] Askovic | On the asymptotic behavior of the value function in large time optimal control problems[END_REF], where the authors explore variations of the linear quadratic (LQ) problem. Assuming certain controllability conditions, they derive the large-time expansion of the value function at the order of one in 1{T . In [START_REF] Esteve | On the turnpike property and the long time behavior of the Hamilton-Jacobi equation[END_REF], the various aspects are identified, and some are interpreted within the framework of the Hamilton-Jacobi-Bellman (HJB) theory. Meanwhile, in [START_REF] Askovic | On the asymptotic behavior of the value function in large time optimal control problems[END_REF], all the terms are characterized as functions of the solutions of the Riccati algebraic equation, initial/final states, and the Lagrange multiplier of the static optimization problem.

In this manuscript, we extend the results of [START_REF] Esteve | On the turnpike property and the long time behavior of the Hamilton-Jacobi equation[END_REF][START_REF] Askovic | On the asymptotic behavior of the value function in large time optimal control problems[END_REF] to the class of dissipative nonlinear systems. The concept of (strict) dissipativity, as introduced in [START_REF] Willems | Dissipative dynamical systems, Part I: General Theory[END_REF], is defined in a broad context, accompanied by related notions like the available storage function and the supply rate function. In cases where a system exhibits dissipativity with a specified supply rate function, the inquiry into identifying a suitable storage function has been extensively investigated (refer to, e.g., [START_REF] Brogliato | Dissipative systems analysis and control[END_REF]). This inquiry bears resemblance to the task of determining an appropriate Lyapunov function in the Lyapunov second method, which ensures the stability of a system. A precise mathematical definition will be provided later in this paper.

Setting of the problem

We consider the finite-dimensional optimal control problem, consisting of minimizing the cost functional

J T,x,z puq " ż T 0 f 0 pyptq, uptqqdt (2) 
over the time interval r0, T s, T ą 0 being fixed under the constraints

9 yptq " f pyptq, uptqq, (3a) 
yp0q " x, ypT q " z,

where f : R n ˆRp ÝÑ R n and f 0 : R n ˆRp ÝÑ R are of class C 1 . The associated value function defined by vpT, x, zq :" min

up¨qPU Ω T J T,x,z puq (4) 
where u P U Ω T :" L 8 pr0, T s, Ωq, Ω being a fixed compact subset of R p . In the sequel, we assume that Ω Ă Bp0, cq for some c ą 0.

Remark 2.1. Since Ω does not depend on T , the space of controls U Ω is independent of T . This is because, beyond the time horizon T , the controls can be trivially extended within Ω and consequently, the space of controls will be denoted by U Ω .

We assume that for T large enough, (2)-( 3)-( 4) admits an optimal solution, denoted by pp y T p¨q, p u T p¨qq. The conditions ensuring the existence of such a solution are well known (see for instance [START_REF] Trélat | Contrôle optimal: théorie et applications[END_REF], [START_REF] Cesari | Optimization-theory and applications[END_REF]). For instance, if the set of velocities tf py, uq | u P Ωu is a convex subset of R n for any y P R n , with mild growth at infinity and if the epigraph of f 0 is convex, then there exists at least one optimal solution. These conditions are for example satisfied if the dynamics are control-affine and if the cost functional is convex with respect to u By the Pontryagin maximum principle ([20]- [START_REF] Pontryagin | The mathematical theory of optimal processes[END_REF]), there exist λ 0 ď 0 and an absolutely continuous mapping p λ T : r0, T s ÝÑ R n (called adjoint vector) satisfying p p λ T p¨q, λ 0 q ‰ p0, 0q such that:

9 p y T ptq " BH Bλ ´p y T ptq, p λ T ptq, λ 0 , p u T ptq 9 p λ T ptq " ´BH By ´p y T ptq, p λ T ptq, λ 0 , p u T ptq BH Bu ´p y T ptq, p λ T ptq, λ 0 , p u T ptq ¯" 0 (5) 
for almost every t P r0, T s, where the Hamiltonian H is defined by Hpy, λ, λ 0 , uq :" xλ, f py, uqy `λ0 f 0 py, uq

and x , y is the Euclidean scalar product in R n . We assume throughout that the abnormal case does not occur, and we set λ 0 " ´1. Moreover, we assume the existence and uniqueness of the solution (denoted by pȳ, ūq) to the static optimization problem v :" min f py,uq"0

f 0 py, uq. (7) 
This is a usual nonlinear constrained optimization problem settled in R n ˆRp . Note that the minimizer exists and is unique in the linear quadratic case.

By the Karush Kuhn Tucker (KKT) optimality conditions, assuming that the abnormal case does not occur, there exists λ P R n such that f pȳ, ūq " 0

´Bf 0 By pȳ, ūq `xλ , Bf By pȳ, ūqy " 0 ´Bf 0 Bu pȳ, ūq `xλ , Bf Bu pȳ, ūqy " 0 (8) 
In the Hamiltonian formalism, the first-order optimality system (8

) is equivalent to BH Bλ pȳ, λ, ´1, ūq " 0 ´BH By pȳ, λ, ´1, ūq " 0 BH Bu pȳ, λ, ´1, ūq " 0 (9) 
Because of the turnpike property (see further), since it is expected that the dominating term in the asymptotic expansion of vp¨q is T.v, we "absorb" it by subtracting it to the cost J T,x,z and consider the "shifted" optimal control problem defined as

min up¨qPU Ω C T pu, x, zq :" min up¨qPU Ω ż T 0 wpyptq, uptqq dt (10a) 
´Px,z r0,T s ¯9 yptq " f pyptq, uptqq, @t P r0, T s (10b)

yp0q " x, ypT q " z (10c)
where wp¨q is the "shifted cost" defined by wpy, uq :" f 0 py, uq ´f 0 pȳ, ūq.

The readers acquainted with the notion of dissipativity in nonlinear optimal control will recognize in (11) a classical storage function. This is where the link with dissipativity appears.

We introduce also the shifted infinite-time optimal control problems

pP x 8f q v f pxq :" min up¨qPU Ω ż `8 0 wpyptq, uptqq dt 9 yptq " f pyptq, uptqq, yp0q " x (12) 
and

pP z 8b q v b pzq :" min up¨qPU Ω ż `8 0 wpyptq, uptqq dt 9 yptq " ´f pyptq, uptqq, yp0q " z (13) 
In our notations the index "f" stands for "forward" while the index "b" stands for "backward". We assume the existence of optimal solutions to pP x 8f q and pP z 8b q with a finite cost. Remark 2.2. The function v f p¨q (resp. v b p¨q) is the optimal cost of the infinitetime optimal control problem consisting in steering the system from x (resp. z) forward (resp. backward) in time and minimizing the cost functional ş `8 0 wpyptq, uptqq dt.

Assumptions

Assumptions of global nature:

pA 1 q: (Regularity of f and f 0 ): We assume that f and f 0 are of class C 1 .

pA 2 q: (Existence and uniqueness of optimal solutions): There exists T 0 ą 0 such that for any T ě T 0 each of the optimal control problems ´Px,z r0,T s ¯, pP x 8f q and pP z 8b q admits a unique optimal solution denoted respectively by pp y T p¨q, p u T p¨qq, pp y 8f p¨q, p u 8f p¨qq and pp y 8b p¨q, p u 8b p¨qq.

pA 3 q: (Boundedness of the optimal trajectories): The optimal trajectories of ´Px,z r0,T s ¯, pP x 8f q and pP z 8b q are bounded uniformly with respect to T ě T 0 :

Db ą 0, | @t ě 0, }p yptq} ď b. ( 14 
)
pA 4 q: (Boundedness of the optimal costs): The optimal costs of ´Px,z r0,T s ¯, pP x 8f q and pP z 8b q are bounded uniformly with respect to T ě T 0 . pA 5 q: The minimizer pȳ, ūq of ( 7) is unique and there exists a unique Lagrange multiplier λ satisfying [START_REF] Zaslavski | Turnpike theory of continuous-time linear optimal control problems[END_REF]. Moreover, we assume that ū P Ω (interior of Ω).

In the sequel, we will also need a concept of strict dissipativity. We recall that (10a)-( 10b) is dissipative at pȳ, ūq with respect the the supply rate function w if there exists a bounded function S : R n ÝÑ R, called storage function such that for any admissible pair pyp¨q, up¨qq and any T ą 0:

Spyp0qq `ż T 0 wpyptq, uptqq dt ě SpypT qq. ( 15 
)
The system is strictly dissipative if, in addition, there exists some function αp¨q of class K (i.e., α : r0, `8q ÝÑ r0, `8q continuous, increasing, and such that αp0q " 0) and for any T ą 0 we have:

Spyp0qq `ż T 0 wpyptq, uptqq dt ě SpypT qq `ż T 0 α ˆ› › › › yptq ´ȳ uptq ´ū › › › › ˙dt. (16) 
In this work we assume the following.

pA 6 q: (Strict dissipativity property): The family of optimal control problems (10a)-(10b) indexed by T is strictly dissipative at pȳ, ūq with respect to the supply rate function w defined by [START_REF] Porretta | Long time versus steady state optimal control[END_REF] with a storage function S.

The notion of strict dissipativity was introduced in [START_REF] Willems | Dissipative dynamical systems, Part I: General Theory[END_REF] and already used in [START_REF] Damm | An exponential turnpike theorem for dissipative discrete time optimal control problems[END_REF], [START_REF] Grüne | On the relation between strict dissipativity and turnpike properties[END_REF], [START_REF] Faulwasser | On turnpike and dissipativity properties of continuous time optimal control problems[END_REF] and [START_REF] Grüne | Turnpike properties and strict dissipativity for discrete time linear quadratic optimal control problems[END_REF] to derive turnpike properties.

Assumption of local nature:

pA 7 q: Setting A :" Bf By pȳ, ūq, B :" Bf Bu pȳ, ūq, the pair pA, Bq satisfies the Kalman rank condition, i.e, the linearized control system at pȳ, ūq is controllable.

pA 8 q: (Local boundedness of the minimum time trajectories and controls near the turnpike): There exists r ą 0 such that for any x P Bpȳ, rq the minimum time trajectory to ȳ starting from x, denoted by y τ f

x p¨q and the associated control, denoted by u τ f p¨q remain in the neighbourhood of respectively ȳ and ū uniformly with respect to x, i.e., Dr, K r ą 0 | @x P Bpȳ, rq @t P r0, τ f pxqs }y τ f

x ptq ´ȳ} `}u τ f ptq ´ū} ď K r (17) where τ f p¨q is the minimum time function to reach ȳ with the dynamics f .

Comments

The assumptions pA 1 q and pA 7 q together imply that there exists r ą 0 such that for any x P Bpȳ, rq, there exists an admissible trajectory steering the control system from x to ȳ in finite time. Thus the minimum time function τ f p¨q is well defined on Bpȳ, rq and is continuous at ȳ. This is classical result that can be found, for instance, in [START_REF] Bardi | Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations[END_REF]. The result remains true for the minimum time function associated to the backward-in-time dynamics ´f , denoted by τ ´f p¨q.

The assumption pA 8 q requires the local boundedness of the minimum time trajectories and controls for any trajectory starting in the previously defined neighbourhood of the turnpike. This assumption is satisfied if the minimum time function is C 1 in the neighbourhood of ȳ. We highlight here that the regularity of the minimum time function has been widely studied in the literature: it is well known that under appropriate controllability type conditions the minimum time function has an open domain of definition and is locally Lipschitz on it, see for instance [START_REF] Bardi | Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations[END_REF]- [START_REF] Frankowska | Value Function in Optimal Control[END_REF]. It is thus differentiable almost everywhere on its domain. The value function fails in general to be differentiable at points that are reached by at least two minimum time trajectories and its differentiability at a point does not guarantee continuous differentiability around this point. In [START_REF] Frankowska | Local Regularity of the Minimum Time Function[END_REF], the authors show that, under some assumptions on the regularity and target smoothness (which excludes the singleton case), the nonemptiness of the proximal subdifferential of the minimum time function at a point implies its continuous differentiability in a neighborhood of this point. An analogous result has been proved for the value function of the Bolza problem in [START_REF] Cannarsa | Local regularity of the value function in optimal control[END_REF] in the case where the initial state is a prescribed point and the final state is let free. In [START_REF] Stefani | Regularity properties of the minimum time map[END_REF], the author gives a survey of results on the regularity of the minimum time map for control-affine systems with prescribed initial and final points. Finally, for results on the set where the value function is differentiable we refer the reader to [START_REF] Aubin | Set-Valued Analysis[END_REF], [START_REF] Clarke | The relationship between the maximum principle and dynamic programming[END_REF], [START_REF] Rifford | Morse-Sard type results in sub-Riemannian geometry[END_REF], [START_REF] Rifford | On the stabilization problem for nonholonomic distributions[END_REF], [START_REF] Clarke | Semiconcave Functions, Hamilton-Jacobi Equations and Optimal Control[END_REF] and references therein.

The (strict) dissipativity property pA 6 q is certainly the less intuitive assumption to check in practice. In general, when the system is dissipative, storage functions are closely related to some viscosity sub-solutions of partial differential inequalities called Hamilton-Jacobi inequalities. We refer the reader to [START_REF] Brogliato | Dissipative systems analysis and control[END_REF]Chapter 4] for more details on this subject. One can remark that, under suitable regularity and boundedness assumptions on the dynamics and the cost, the value function (its opposite more precisely) can be taken as a storage function, and the dissipativity inequality is then deduced from the Dynamic Programming Principle (DPP). Note also that the infinitesimal form of the (non-strict) dissipativity inequality [START_REF] Grüne | Turnpike properties and strict dissipativity for discrete time linear quadratic optimal control problems[END_REF], with α " 0, is the Hamilton-Jacobi inequality: H 1 py, ∇Spyq, uq ď ´f 0 pȳ, ūq where H 1 is the maximized normal Hamiltonian (indeed, divide by t 1 ´t0 ą 0 and take the limit t 1 ´t0 Ñ 0). The existence of C 1 solutions is therefore related to the so-called weak KAM theory (see [START_REF] Fathi | Weak KAM theorem in Lagrangian dynamics[END_REF]). In this context, the singleton tpȳ, ūqu is the Aubry set and f 0 pȳ, ūq is the Mañé critical value.

Remark 4.1. The strict dissipativity inequality [START_REF] Faulwasser | On turnpike and dissipativity properties of continuous time optimal control problems[END_REF] remains true for the dynamics ´f , provided that one switches the initial and final states. The corresponding storage function is ´Sp¨q.

Main result

Theorem 5.1. Under Assumptions pA 1 q´pA 8 q, the value function (4) satisfies vpT, x, zq " T.v `vf pxq `vb pzq `op1q [START_REF] Esteve | On the turnpike property and the long time behavior of the Hamilton-Jacobi equation[END_REF] as T Ñ `8.

In order to prove Theorem 5.1, we need some preliminary lemmas. f ptq " 0.

Some useful lemmas

Proof. A proof can be found for instance in [START_REF] Khalil | Nonlinear Systems[END_REF]. By contradiction, take ą 0 and assume that f ptq does not converge to 0 as t Ñ `8. In this case, there exists an increasing sequence pt n q nPN in R `such that |f pt n q| ą . By the uniform continuity of f there exists δ ą 0 such that, for any n P N, and any t P R |t ´tn | ď δ ùñ |f ptq ´f pt n q| ď 2 .

So for any t P rt n , t n `δs and any n P N, one has |f ptq| " |f pt n q ´pf pt n q ´f ptqq| ě |f pt n q| ´|f pt n q ´f ptq| ě 2 .

Therefore,

ˇˇˇˇż tn`δ 0 f ptqdt ´ż tn 0 f ptqdt ˇˇˇˇ" ˇˇˇˇż tn`δ tn f ptqdt ˇˇˇˇ" ż tn`δ tn |f ptq|dt ě δ. 2 .
The latter inequality contradicts the convergence of ż t 0 f pτ qdτ as t Ñ `8 and the lemma follows.

Lemma 5.3. The optimal trajectory p y T p¨q of pP x,z 0,T q satisfies DtpT q P r0, T s | p y T ptpT qq ÝÑ ȳ as T Ñ `8.

Proof. For T ě T 0 , the strict dissipativity inequality applied to the optimal pair pp y T p¨q, p u T p¨qq implies

f 0 pȳ, ūq ď 1 T ż T 0 f 0 pp y T psq, p u T psqqds `Spxq ´Spzq T ´1 T ż T 0 α ˆ› › › › p y T psq ´ȳ p u T psq ´ū › › › › ˙ds. (20) 
Let us prove that

1 T ż T 0 α ˆ› › › › p y T psq ´ȳ p u T psq ´ū › › › › ˙ds ÝÑ 0 as T Ñ `8. (21) 
Let us assume by contradiction that this is not true: then there exists η ą 0 and a sequence T k ÝÑ `8 such that

1 T k ż T k 0 α ˆ› › › › p y T k psq ´ȳ p u T k psq ´ū › › › › ˙ds ě η. (22) 
By multiplying the inequality (20) by T k one gets

ż T k 0 α ˆ› › › › p y T k psq ´ȳ p u T k psq ´ū › › › › ˙ds ď ż T k 0 wpp y T k psq, p u T k psqqds `Spxq ´Spzq (23) 
which implies from ( 22)

T k .η ď ż T k 0 wpp y T k psq, p u T k psqqds `Spxq ´Spzq. (24) 
Assumption pA 4 q leads to a contradiction in the above inequality when k Ñ `8.

Then we have 1 T

ż T 0 α ˆ› › › › p y T ptq ´ȳ p u T ptq ´ū › › › › ˙ds ě 1 T ż T 0
α p}p y T ptq ´ȳ}q ds ÝÑ 0 as T Ñ `8 which implies, using the mean value theorem, that

DtpT q P r0, T s | α p}p y T ptpT qq ´ȳ}q ÝÑ 0 as T Ñ `8. (25) 
From the properties of αp¨q, this leads to

p y T ptpT qq ÝÑ ȳ as T Ñ `8. ( 26 
)
The lemma is proved.

Remark 5.4. As noted in [START_REF] Trélat | Linear turnpike theorem[END_REF], if one makes the change of variable s " t T , in

T 0 α ˆ› › › › p y T ptq ´ȳ p u T ptq ´ū › › › › ˙dt " ż 1 0 α ˆ› › › › p y T pT.sq ´ȳ p u T pT.sq ´ū › › › › ˙ds ÝÑ 0 as T Ñ `8 (21) then 1 T ż 
which implies, by the converse Lebesgue theorem (see [START_REF] Brezis | Functional analysis, Theory and applications[END_REF]Theorem IV.9]) that there exists an increasing sequence of time horizons pT k q kPN such that p y T k pT k .sq ÝÑ ȳ and p u T k pT k .sq ÝÑ ū as k Ñ `8 for almost every s P r0, 1s. The latter looks like a measure turnpike result. However we did not exploit this result in our paper.

Lemma 5.5. The optimal trajectory p y 8f p¨q of pP x 8f q satisfies p y 8f ptq ÝÑ ȳ as t Ñ `8

Proof. From ( 16) we have Op1q.

First, we remark that [START_REF] Rifford | On the stabilization problem for nonholonomic distributions[END_REF] and the positivity of αp¨q imply the convergence of ΦpT q as T Ñ `8.

On the other hand, from pA 1 q and pA 3 q we know that f is of class C 1 on the compact set Bp0, bq ˆBp0, cq thus bounded by a global constant, denoted by k ą 0. Therefore p y 8f p¨q is globally Lipschitz continuous in time t, and consequently t Þ Ñ }p y 8f ptq ´ȳ} as well.

From the boundedness of p y 8f p¨q (see pA 3 q) and the continuity of αp¨q, we deduce the uniform continuity of t Þ Ñ αp}p y 8f ptq ´ȳ}q over r0 `8q. Indeed, αp¨q being continuous on a compact set, it is uniformly continuous (Heine theorem). Applying Barbalat's lemma (see 5.2), one has αp}p y 8f ptq ´ȳ}q ÝÑ 0 as t Ñ `8, which implies p y 8f ptq Ñ ȳ as t Ñ `8 and the proof is over.

Corollary 5.6. Lemma 5.5 remains true for the optimal trajectory of pP z 8b q problem (with the backward-in-time dynamics ´f ).

Proof of the main result

Proof. For T ě T 0 , let us consider the respective optimal solutions pp y T p¨q, p u T p¨qq, pp y 8f p¨q, p u 8f p¨qq and pp y 8b p¨q, p u 8b p¨qq of ´Px,z r0,T s ¯, pP x 8f q and pP z 8b q.

We split the optimal cost C T pp u T , x, zq as

C T pp u T , x, zq " ż T 0 wpp y T ptq, p u T ptqq dt (31) 
"

ż tpT q 0 wpp y T ptq, p u T ptqq dt loooooooooooooomoooooooooooooon C f T `ż T tpT q wpp y T ptq, p u T ptqq dt looooooooooooomooooooooooooon C b T ( 32 
)
where tpT q is defined by [START_REF] Askovic | On the asymptotic behavior of the value function in large time optimal control problems[END_REF].

We perform the proof in two steps. We first prove that

Step 1: v f pxq `vb pzq ď lim inf

T Ñ`8 C T pp u T , x, zq (33) 
Then we prove that:

Step 2: lim sup

T Ñ`8 C T pp u T , x, zq ď v f pxq `vb pzq (34) 
which will prove the required result.

The real number r being defined in Assumption pA 8 q, we first remark that py, uq Þ Ñ wpy, uq is continuous on Ω r :" Bpȳ, K r q ˆBpū, K r q which is a compact set of R n ˆRp . Consequently, DM r ą 0 | @py, uq P Ω r , |wpy, uq| ď M r .

where τ 1 :" τ ´f pr y T pT ´tpT qqq is the minimum time to reach ȳ from r y T pT ´tpT qq and p u 1 p¨q the associated optimal control.

We infer from ( 37) and ( 38) that

v b pzq ď ż `8 0 wpyptq, ȗptqq dt ď ż T ´tpT q 0 wpr y T ptq, r u T ptqq dt `ż T ´tpT q`τ1
T ´tpT q wpp y 1 ptq, p u 1 ptq looooomooooon PΩr q dt `ż `8

T ´tpT q`τ1 wpȳ, ūq loomoon 39) and (42), we obtain

0 dt ď C b T `τ1 .M r ď C b T ` 2 (42) Combining (
v f pxq `vb pzq ď C f T `Cb T ` " C T pp u T , x, zq ` (43) 
and thus v f pxq `vb pzq ď lim inf

T Ñ`8 C T pp u T , x, zq (44) 
Ź Step 2: From Lemma 5.5 and Corollary 5.6, we have p y 8f ptq ÝÑ ȳ and p y 8b ptq ÝÑ ȳ as t Ñ `8. Consequently:

DT 2 ą 0 s.t @T ě T 2 , › › › › p y 8f ˆT 2 ´1˙´ȳ› › › › ď γ (45) 
and

DT 3 ą 0 s.t @T ě T 3 , › › › › p y 8b ˆT 2 ´1˙´ȳ› › › › ď γ (46) 
Take T ě max pT 2 , T 3 q and denote:

• τ 3 :" τ f ˆp y 8f ˆT 2 ´1˙˙a nd p u 3 p¨q the associated optimal control;

• τ 4 :" τ ´f ˆp y 8b ˆT 2 ´1˙˙a nd p u 4 p¨q the associated optimal control.

We construct the admissible control u T p¨q for pP 0,T q x,z as follows (see Figure (48) Noting that the integrals A and E converge, we take the limit superior as T Ñ `8 of the above inequality and we obtain: Remark 5.7. In the LQ case, a two-term large-time expansion of the value function has been derived in [START_REF] Askovic | On the asymptotic behavior of the value function in large time optimal control problems[END_REF] solely under the Kalman condition. Assumptions such as the strict dissipativity property and the existence/uniqueness of the solution of the static optimization problem are automaticaly satisfied in this case. For the proof, see [START_REF] Askovic | On the asymptotic behavior of the value function in large time optimal control problems[END_REF].

Conclusions

Considering a general nonlinear dissipative optimal control problem in finite dimension and fixed time T , we have established a two-term asymptotic expansion of the value function as T Ñ `8. Essentially based on the strict dissipativity property, the result is a generalization of the expansion established in the variants of the linear quadratic case treated in [START_REF] Esteve | On the turnpike property and the long time behavior of the Hamilton-Jacobi equation[END_REF] and [START_REF] Askovic | On the asymptotic behavior of the value function in large time optimal control problems[END_REF]. We highlight here that a generalization of [START_REF] Askovic | On the asymptotic behavior of the value function in large time optimal control problems[END_REF] to the infinite dimensional case is currently being finalized. The infinite dimensional nonlinear case remains open.

Figure 1 :

 1 Figure 1: Turnpike illustration: (a) small time case (b) large time case

Lemma 5 . 2 ( 8 ż t 0 f

 5280 Barbalat's lemma). Assume that f : r0, `8q ÝÑ R is uniformly continuous and that lim tÑ`pτ qdτ exists and is finite, then lim tÑ`8

0 α p}p y 8f ptq ´ȳ}q dt ďα

 0 ptq, p u 8f ptqqdt `Spxq ´Spp y 8f pT qq[START_REF] Clarke | The relationship between the maximum principle and dynamic programming[END_REF] the right-hand side of the inequality being bounded uniformly with respect to T one gets ż T p}p y 8f ptq ´ȳ}q dt " T Ñ`8

2 ´1wpp y 3 ptq, p u 3 ptq looooomooooon PΩr q dt ď τ 3 .M r ď 2 Cw pp y 4 2 ´1wpp y 4 ptq, p u 4 2 ´1 0 wT 2 ´10

 232424202 pT ´tq, p u 4 pT ´tqq dt " ptq looooomooooon PΩr q dt ď τ 4 .M r ď 2 Finally, we obtain C T pp u T , x, zq ď ż T pp y 8f ptq, p u 8f ptqq dt `ż wpp y 8b ptq, p u 8b ptqq dt `

8 CT Ñ` 8 C

 88 T pp u T , x, zq ď v f pxq `vb pzq. (49) Ź Conclusion: By combining (44) and (49), we obtain the required result: lim T pp u T , x, zq " v f pxq `vb pzq.(50)

  

  

Let ą 0. The continuity of τ f p¨q at ȳ gives:

The continuity of τ ´f p¨q at ȳ gives:

We set γ :" minpη, ν, rq ą 0, and we denote by B :" Bpȳ, γq.

Ź Step 1: From Lemma 5.3, we know that:

We select a time horizon T such that T ě maxpT 0 , T 1 q and construct q up¨q admissible control for the pP x 8f q problem as follows:

where τ 0 :" τ f pp y T ptpT qqq is the minimum time to reach ȳ from p y T ptpT qq and p u 0 p¨q the associated optimal control.

We infer from ( 36) and ( 38) that

w pq yptq, q uptqq dt ď ż tpT q 0 w pp y T ptq, p u T ptqq dt `ż tpT q`τ0 tpT q wpp y 0 ptq, p u 0 ptq looooomooooon PΩr qdt `ż `8

tpT q`τ0 wpȳ, ūq loomoon

where pr y T ptq, r u T ptqq :" pp y T pT ´tq, p u T pT ´tqq is such that 9 r y T ptq " ´f pr y T ptq, r u T ptqq with r y T p0q " z (41)

Noting that the r y T pT ´tpT qq " p y T ptpT qq, we construct ȗp¨q the admissible control for the pP z 8b q problem as follows ȗptq :" 3):