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Traffic prediction by combining
macroscopic models and Gaussian processes

Alexandra Würth, Mickaël Binois, Paola Goatin

Abstract—We propose a physics informed statistical frame-
work for traffic travel time prediction. On one side, the dis-
crepancy of the considered mathematical model is represented
by a Gaussian process. On the other side, the traffic simulator
is fed with boundary data predicted by a Gaussian process,
forced to satisfy the mathematical equations at virtual points,
resulting in a multi-objective optimization problem. This com-
bined approach has the merit to address the shortcomings of the
purely model-driven or data-driven approaches, while leveraging
their respective advantages. Indeed, models are based on physical
laws, but cannot capture all the complexity of real phenomena.
On the other hand, pure statistical outputs can violate basic
characteristic dynamics. We validate our approach on both
synthetic and real world data, showing that it delivers more
reliable results compared to other methods.

Index Terms—Macroscopic traffic flow models, Godunov
scheme, parameter calibration, Gaussian process modeling, loop
detector and trajectory data, travel time prediction.

I. INTRODUCTION

Macroscopic traffic flow models are employed since several
decades for state reconstruction and prediction. They consist
in partial differential equations (PDEs), whose solutions can
be computed by numerical schemes. Their implementation
requires information provided by real data, which are typically
measured by magnetic loop detectors at fixed locations. Real
data are also necessary to identify model parameters. However,
mathematical models may fail in capturing involved traffic
situations such as congestion, lane closures or accidents, even
if the true values of the calibration parameters are known [1].
Aiming to address these shortcomings, in [2] we adopt the
statistical framework proposed in [3], [4] by introducing a bias
term to better account for possible discrepancies between the
mathematical model and reality. Following [4], we model the
bias by a Gaussian process (GP), which is a classical choice
when dealing with computer simulations, since it provides a
flexible non-parametric framework.
Once calibrated, the model can be used for traffic state esti-
mation and prediction. The former consists in reconstructing
traffic states for already realized traffic scenarios, whereas
the latter deals with the prediction of the unknown future
to be used for real time traffic management. In general,
we can distinguish between model-driven and data-driven
approaches. In the first case, physical knowledge and therefore
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also the calibrated parameters are used to estimate and predict
the traffic state. This purely model-driven approach is often
criticized to be an over-simplification of the reality, subject
to model choice and calibration limitations [5], [6]. In con-
trast, data-driven approaches estimate the traffic states from
real (historical) data, using statistical or Machine Learning
methods. This alternative can deal with irregularities such
as noisy data or individual driving behaviors [5]. However,
it requires a large amount of data and fails to predict non-
recurrent traffic situations, such as accidents [7]. Thus, a
natural idea is to consider hybrid approaches for vehicular
traffic determination. Currently, the so called physics-informed
neural networks (PINNs) are gaining more and more attention
in the literature (see e.g. [8]): in PINNs, neural networks are
trained to solve PDEs, whose residual is integrated in the
training loss function. Analogously to our work, [6] focuses
on the reconstruction of vehicular traffic dynamics. However,
the authors deal only with traffic estimation based on density
measurements and do not consider the prediction part. An
extension to flow data is considered in [9].

A. Contribution

In this work, we propose a hybrid method for vehicular
traffic prediction, which combines the physics with GPs, as in
[10]–[12]. More precisely, the observed data are modeled by
a GP, which is computationally very efficient, especially when
dealing with large amount of data. Moreover, we force the GP
to satisfy the model PDE at virtual, i.e. unobserved points.
The GP thus calibrated provides predictions for (boundary)
loop detector data, which are then given to the simulator to
reconstruct the space-time evolution of the traffic speed in
order to compute travel times. The reconstructed traffic speeds
and travel times are then compared to the ground truth. Due
to limited access to both trajectory and average loop detector
data, the analysis is not only performed on real world traffic
scenarios but also on synthetic data generated by a microscopic
simulator.
To the best of our knowledge, this hybrid approach represents
an original contribution, since previous works either deal with
average loop detector data prediction (see e.g. [13], [14]) or
travel time prediction based on purely data-driven methods
(see e.g. [15], [16]).

B. Outline

The paper is organized as follows. Section II details the
mathematical model and its discretization. The statistical
framework for bias correction and traffic data prediction is
detailed in Section III. Section IV describes the data sets
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considered for the validation tests, which are presented in
Section V. Conclusions and perspectives are commented in
Section VI.

II. DESCRIPTION OF THE MATHEMATICAL MODEL

We model the traffic dynamics by a macroscopic model
consisting in a PDE that guarantees the conservation of
the number of cars on the road and describes the spatio-
temporal evolution of vehicle density. We refer to the Lighthill-
Whitham-Richards (LWR) [17], [18] model, whose key as-
sumption, besides mass conservation, is that the average speed
v is a function of the density ρ, i.e. v = V(ρ), which is
referred to as the fundamental diagram. Thus, by the so called
hydrodynamic relation q = ρv, the traffic flow q is also a
function of the density: q = Q(ρ) = ρV(ρ). The model then
consists in the scalar conservation law

∂tρ+ ∂x (ρV(ρ)) = 0, (1)

which is also referred to as first order model. In general,
the LWR model allows to distinguish between free flow and
congested traffic regimes, but it is less suitable for describing
more complex situations, such as capacity drops and stop-and-
go waves. Additionally, a single fundamental curve is not able
to capture complex dynamics observed in congested regimes.
Several models were proposed to address these shortcomings,
among which the Aw-Rascle-Zhang (ARZ) model [19], [20]
and the Generic Second Order traffic flow Model (GSOM)
[21]. In these models, consisiting of a system of two PDEs,
the speed function depends not only on the density but also
on a Lagrangian vehicle property w, which can be interpreted
as an empty road velocity, measuring the more or less ag-
gressive behaviour of the drivers. This results in a family of
fundamental curves, which can capture better the spread of the
data in the congested region. However, it turned out that the
increase of the model dimension by the less interpretable and
non-measurable variable w does not necessarily lead to better
performances when applied to real traffic scenarios (see e.g.
[6], [22]–[24]). Therefore, in this work we restrict our analysis
to the classical first order LWR model.

Since our aim is traffic dynamics reconstruction and predic-
tion on a road stretch, we consider the initial boundary value
problem (IBVP) for (1) on a bounded interval ]xin, xout[⊂ R,
where the variable ρ = ρ(t, x) ∈ [0, R] is equipped with
prescribed initial and boundary data at t = 0 and x = xin,
x = xout.

A. Numerical solution

To compute numerically approximate solutions of (1), we
use the following scheme. Given a (possibly non-uniform)
spatial discretization {x0, . . . , xM} of the interval ]xin, xout[
with x0 = xin and xM = xout, we set the cell sizes
∆xj := xj − xj−1 for j ∈ {1, . . . ,M} and a time step ∆t
satisfying the Courant-Friedrichs-Lewy (CFL) condition:

∆t · max
ρ∈[0,R]

Q′(ρ) ≤ min
j∈{1,...,M}

∆xj . (2)

We construct a finite volume [25] approximate solution
of (1) of the form ρ∆xj (t, x) = ρnj for (t, x) ∈ Cn

j =

[tn, tn+1[×[xj−1, xj [ and n ∈ N. Since we also want to
integrate ramps, which are modeled as junctions (see e.g. [26])
we define by rnj (resp. snj ) the measured on-ramp (resp. off-
ramp) fluxes at position xj and time n∆t, which leads us to
the formulation of the extended discrete LWR equations:
if rnj ≥ 0 and snj = 0 (and rnj−1 = snj−1 = 0):

ρn+1
j = ρnj +

∆t

∆xj

[
Fn
j−1

−min
{
D(ρnj ),max{PjS(ρ

n
j+1), S(ρ

n
j+1)− rnj }

}]
,

ρn+1
j+1 = ρnj+1

+
∆t

∆xj+1

[
min{D(ρnj ) + rnj , S(ρ

n
j+1)} − Fn

j+1

]
;

if snj > 0 and rnj = 0 (and rnj−1 = snj−1 = 0):

ρn+1
j = ρnj +

∆t

∆xj

[
Fn
j−1 −min{D(ρnj ), s

n
j }

−min
{
max

{
D(ρnj )− snj , 0

}
, S(ρnj+1)

}]
,

ρn+1
j+1 = ρnj+1 −

∆t

∆xj+1

[
Fn
j+1

−min
{
max{D(ρnj )− snj , 0}, S(ρnj+1)

}]
,

for j ∈ {2, . . . ,M − 1}. Above, the priority parameter
Pj ∈ [0, 1] is approximated by the number of lanes of cell j
divided by the number of lanes of cell j added to the number
of lanes of the corresponding on-ramp. Moreover, we choose
the discretization in such a way that we cannot have two ramps
at subsequent cell interfaces.
The above scheme is based on the widely-used Godunov
scheme [27] in its Cell Transmission Model (CTM) ver-
sion [28], where the fluxes across cell interfaces are given
by the minimum of the sending capacity (demand D) of
the upstream cell and the receiving capacity (supply S) of
the downstream one. Thus, the flux Fn

j is computed for
j ∈ {1, . . . ,M − 1} as

Fn
j = min

{
D(ρnj ), S(ρ

n
j+1)

}
,

where D(ρ) = Q(min{ρ, ρcr}), S(ρ) = Q(max{ρ, ρcr}) and
the critical density ρcr is given by ρcr = argmaxρ Q(ρ).
For j ∈ {1,M}, we consider two different implementations
of the boundary conditions:

1) Flow boundary conditions:

ρn+1
1 = ρn1 − ∆t

∆x1

(
Fn
1 −min{qnin, S(ρn1 )}

)
,

ρn+1
M = ρnM − ∆t

∆xM

(
min {D(ρnM ), qnout} − Fn

M−1

)
,

where qnin (resp. qnout) denotes the inflow (resp. outflow)
measured by the left (resp. right) boundary detector.

2) Density boundary conditions:

ρn+1
1 = ρnin, ρn+1

M = ρnout,

ρnin, ρ
n
out being the measured or reconstructed densities

at time t = tn.
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The choice typically depends on the application: for traffic
flow reconstruction, the flow data usually lead to better per-
formances. However, for travel time predictions, the density
implementation results to be more favorable (see e.g. [24]).

In the following, we consider the Newell-Franklin [29], [30]
speed function

V(ρ) = V

(
1− exp

(
C

V

(
1− R

ρ

)))
, (3)

whose parameters are the maximum speed V > 0, the wave
propagation speed in congestion C > 0 and the maximum
density R > 0, denoted by θ = (V,C,R). Note that it holds
V(ρ) ≥ 0 for ρ ∈ [0, R], V(R) = 0, V(0) = lim

ρ→0
V(ρ) = V

and Q′′(ρ) < 0 for ρ ∈ ]0, R].
Remark 1: Since in the implementation of our algorithms

the measured initial and density boundary data can exceed the
parameter value R, we perform a projection algorithm before
executing the numerical scheme: given a density ρ > R and
a speed v ≥ 0, the projected densities are computed by the
inverse of the speed function (3) at v.

III. STATISTICAL METHODS FOR TRAFFIC
RECONSTRUCTION AND PREDICTION

The model simulator described above can be used for recon-
structing and predicting traffic scenarios by integrating the
measured data yF , also called “field” observations. It is gen-
erally assumed that the field data are noisy measurements of
the real quantity yP , i.e. yF (t, x) = yP (t, x)+ε at time t and
position x. In the absence of any a-priori knowledge, the ob-
servation error ε is assumed to be independent and identically
normally distributed (iid) with zero mean, i.e. ϵ ∼ N (0, σ2

ε)
and σ2

ε > 0. Kennedy and O’Hagan (KOH) [4] propose to also
take into account the discrepancy between the mathematical
model with optimal parameter θ∗ = (V ∗, C∗, R∗) and the
reality, adding a bias term b such that

yP (t, x) = yM (t, x, θ∗) + b(t, x, θ∗),

where both the simulation output yM and b depend on the
parameter θ∗. We note that the variables yk, k ∈ {F, P,M},
can stand for any quantity of interest, typically the flow, speed
or density in the traffic context. Finally, for all i ∈ {1, . . . , N}
it holds:

yF (ti, xi) = yM (ti, xi, θ
∗) + b(ti, xi, θ

∗) + ε,

where XN = ((t1, x1), . . . , (tN , xN )) denotes the set of time-
space points where observations have been recorded.
To estimate the bias function, we rely on a GP regression [3],
[4], which amounts to consider the discrepancy as a realization
of a (zero-mean) multivariate normal distribution, i.e.

bN ∼ N (0N ,KN ) with KN = σ2(CN +gIN ) and g =
σ2
ε

σ2
,

where bN denotes the set of observed (noisy) biases, KN

(resp. CN ) the covariance (resp. correlation) matrix between
these observations and l1, l2, g, σ

2 the hyper-parameters. We
refer to [2]–[4], [31] for more details on GP modeling.
Our aim is to match the real data as well as possible and to

predict the system evolution in the future. We present below
possible approaches for identifying θ and for forecasting traffic
data.

A. Calibration

Parameter identification from measured data is a fundamental
step for model validation and real world implementation.
Macroscopic traffic flow models are often calibrated by fit-
ting the fundamental diagram to data (see e.g. [32]–[35]).
However, in congested regions, traffic data are usually widely
spread. Moreover, data are not necessarily measured on the
whole diagram and the number of observations are often
imbalanced between the free flow and congestion regimes.
Thus, we focus instead on a model-driven approach which
integrates the numerical solution yM in the optimization
process aiming at minimizing the least squares distance among
field and simulated data. The optimal parameter is then given
by

θ∗ = argmin
θ

√√√√ 1

N

N∑
i=1

∣∣yF (ti, xi)− yM (ti, xi, θ)
∣∣2. (4)

Since the pure simulation output rarely fits the reality [1], we
correct the mathematical model adding the discrepancy term
modeled by GPs. In particular, the bias at N̂ new locations
X̂N̂ , given the observations bN , still follows a GP [36], i.e.
b(X̂N̂) | bN ∼ N

(
mN (X̂N̂ ), s2N (X̂N̂ , X̂N̂ )

)
with

mN (X̂N̂ ) = E[b(X̂N̂)|bN ] = σ2cN (X̂N̂ )⊤K−1
N bN ,

s2N (X̂N̂ , X̂N̂ ) = Cov[b(X̂N̂),b(X̂N̂)|bN ]

= σ2c(X̂N̂ ,X̂N̂)−(σ2)2cN (X̂N̂ )⊤K−1
N cN (X̂N̂ ),

where we choose c(·, ·) as the Gaussian kernel and cN (X̂n̂) =

(c(X̂ (j)

N̂
,X (i)

N ))1≤j≤N̂,1≤i≤N . Finally, the corrected (simulated)
data yMc at time t and position x are given by

yMc (X̂N̂ , θ∗) = yM (X̂N̂ , θ∗) +mN (X̂N̂ ). (5)

Observe that the hyper-parameters necessary to compute the
predictive mean are obtained by maximizing the concentrated
log-likelihood function

log L̃(l1, l2, g,bN ) =− N

2
log 2π − N

2
log σ̂2(l1, l2, g,bN )

− 1

2
log |CN + gIN | − N

2
, (6)

where the process variance is given by

σ̂2(l1, l2, g,bN ) =
b⊤
N (CN + gIN )−1bN

n
.

We emphasize that this bias correction helps also to address
the shortcomings of the LWR model (see e.g. [24]), which
were mentioned in Section II.

Remark 2: Other approaches can be used for parameter
identification, such as a 2-step optimization procedure of
the concentrated log-likelihood function or a Markov chain
Monte Carlo (MCMC) technique, as done in [3]. However,
preliminary experimental tests showed that the computation-
ally less expensive least squares approach provides similar or
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even better performances after correcting the simulation by its
kriging mean, as indicated in Equation (5).

B. Prediction

In this section, we present several approaches to predict the
boundary loop detector data at future times, denoted by ŷB ,
which are necessary to run the numerical simulation for traffic
forecast. Note that considering the first order LWR model
requires the prediction of only one traffic quantity (density
or flow). In general, prediction methods can either be purely
data-driven, relying on historical data, or consider only data
corresponding to a (short) preceding time window and which
might be additionally model-driven.

1) Prediction from historical data: In the literature, we can
find several prediction methods based on historical traffic data.
For example, [15], [16] rely on linear regression. However,
we focus on two approaches that can be considered as the
most intuitive or frequently used ones. In the following, the
historical traffic data form the train data set, which is scaled
by first subtracting its mean and then dividing by its standard
deviation. This normalization is done for each loop detector
separately.

DTW: The Dynamic Time Warping (DTW) approach se-
lects a time series in the train data set which behaves similarly
to the data which immediately precede the prediction time
slot. We will call these data test data, also normalized by the
mean and standard deviation of the train data. To measure
the similarity between two sequences, we follow [37] and use
the DTW-metric DTW from MATLAB [38], which computes
a predefined distance, such as the Euclidean one, between
aligned time series. This alignment allows to find similarities
between time series with shifted patterns or which evolve
differently in time. The reference time series in the train data
set is the one with the smallest DTW-distance with respect to
the test data. We then perform a linear least square regression
to scale and shift the reference data to the test one. The
succeeding observations of the reference time series, adapted
by the regression parameter, form the predicted (boundary loop
detector) data.

LSTM: The long short-term memory (LSTM) recurrent
neural network (RNN) is the most frequently used neural
network in the context of time series analysis [39]. In
particular, it is capable to detect long-term dependencies
between time series. To create our LSTM regression network,
we make the following specifications1: the size of the
sequence input layer coincides with the number of considered
loop detectors; the number of hidden units of the LSTM
layer is set to 128; for the output time series, we consider a
fully connected layer with the same size as the input layer
and finally we include a regression layer; in the training,
we use the adam-optimizer with 400 epochs and a learning
rate of 0.001; the SequencePaddingDirection (resp.
Shuffle) specification is set to left (resp. every-epoch). Once
the network is trained on the above defined architecture, we

1https://fr.mathworks.com/help/deeplearning/ug/time-series-forecasting-usi
ng-deep-learning.html. Accessed on 06/13/2023.

use it to predict future time steps iteratively, transmitting non-
updated predicted values to the predictAndUpdateState
function.

2) Prediction without historical data: If historical data are
not available, we consider the following options to predict the
future boundary data ŷB based on a (short) preceding time
window. The simplest approach is to keep the data constantly
equal to the last recorded measurement or an average of
the last observed data, as proposed in [5] as a comparative
method. However, experimental tests show that this simplistic
approach, which disregards traffic evolution information, does
not lead to convincing results. This motivates us to develop
approaches which exploit better the traffic dynamics of the
available past data.

Pure GP: The pure GP approach belongs to the class of
data-driven approaches, where traffic data are modeld by a GP.
In formulas, this reads

yF (XN ) ∼ N (ȳN ,KN ) with KN = σ2(CN + gIN ),

where the mean ȳN is computed by taking the average of
all the observed data. The covariance hyper-parameters are
obtained by maximizing the concentrated likelihood function,
where we replace bN by yF (XN ) in (6). The predicted data
are then given by

yF (X̂N̂ ) | yF (XN ) ∼ N
(
my

N (X̂N̂ ), (syN )2(X̂N̂ , X̂N̂ )
)
,

with

my
N (X̂N̂ ) = ȳN̂ + kN (X̂N̂ )⊤K−1

N

(
yF (XN )− ȳN

)
,

(syN )2(X̂N̂ , X̂N̂ ) := k(X̂N̂ , X̂N̂ )− kN (X̂N̂ )⊤K−1
N kN (X̂N̂ ),

where k(·, ·) = σ2c(·, ·) and the constant entries of the N̂ -
dimensional vector ȳN̂ coincide with the ones in ȳN .
Then, denoting by X̂N̂B

the set of observation points at
boundary loop detector positions xin and xout in the future
time slot, the boundary data ŷB are given by

ŷB = my
N (X̂N̂B

).

Remark 3: The choice of the mean ȳN is not evident.
Since predicted data reverts typically to its prior mean [40],
we believe that ȳN is a reasonable and especially simple-
to-implement choice. A more advanced suggestion can be
found in [40], where they propose the so called Single Nugget
Kriging method in order to reduce the influence of the prior
mean on the predictions.

Hybrid GP: Aiming at improving the prediction results
using the model information, we consider methods that inte-
grate the PDE into the GP modeling. The method proposed
in [10] can be applied only to non-linear PDEs whose non-
linear term consists in products of derivatives, which is not
our case. A more general approach, without restrictions on
the form of the PDE, is suggested in [12]. The idea is to
construct two likelihoods, a data and a virtual one. The first
likelihood serves to fit the observations and the second one to
fulfil the PDE equation at so called virtual points. Since there
is no closed form for the posterior distribution available, they

https://fr.mathworks.com/help/deeplearning/ug/time-series-forecasting-using-deep-learning.html
https://fr.mathworks.com/help/deeplearning/ug/time-series-forecasting-using-deep-learning.html
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end up with a variational posterior expression. This results in
solving a high dimensional optimization problem, where the
number of parameters depends on the number of observations
and virtual points, making the approach unsuitable for real
world scenarios.
This motivates us to propose a new hybrid approach, which
applies to all kind of differential equations and whose set
of hyper-parameters does not increase compared to the pure
GP modeling. The method is based on a multi-objective
optimization (MOO) of two cost functions. On one hand, we
model the data by a GP, resulting in the minimization of the
negative concentrated log-likelihood function:

min
l1,l2,g

fobj
1 (l1, l2, g) = min

l1,l2,g

(
− log L̃

(
l1, l2, g, y

F (XN )
))

.

On the other hand, we also require (1) to be satisfied at
virtual points, denoted by X̃Ñ =

(
(t̃1, x̃1), . . . , (t̃Ñ , x̃Ñ )

)
.

This leads to the formulation of the second objective, namely
the minimization of the PDE residuals at X̃Ñ :

min
l1,l2,g

fobj
2 (l1, l2, g)

= min
l1,l2,g

∣∣∣∂t yF (X̃Ñ ) + ∂x

(
yF (X̃Ñ )V

(
yF (X̃Ñ )

))∣∣∣,
where yF (X̃Ñ ) = my

N (X̃Ñ ). The derivative expressions are
computed by deriving the kernels, thus it holds, for z ∈ {t, x},

∂z y
F (X̃Ñ ) = ∂z

(
kN (X̃Ñ )

)⊤
K−1

N

(
yF (XN )− ȳN

)
,

and ∂z

(
kN (X̃Ñ )

)
= Cov

(
b(ti, xi),

d
dz b(t̃j , x̃j)

)
1≤i≤N,1≤j≤Ñ

.
We observe that the second objective is expressed in terms of
the density. Consequently, it is natural to implement density
boundary conditions in the numerical scheme. This is why we
consider yF (XN ) =

(
ρ(t1, x1), . . . , ρ(tN , xN )

)
in the MOO

approach (and also in the pure GP approach).
Remark 4: The choice of virtual points X̃Ñ is not evident

and has a strong influence on the prediction. In our application,
we generate uniformly distributed random points, which seems
to deliver reasonable results. However, improvements might
probably be achieved by considering more involved methods,
as the “active PDE-informed Kriging” (APIK) approach pro-
posed in [10].

For the multi-objective optimization purpose, we compute
100 points on the Pareto front [41], using the MATLAB
function paretosearch. We then rely on the simple knee-
point method to select a solution on the Pareto front without
any prior knowledge [42]. The knee-point maximizes the
Euclidean distance to the segment connecting the extreme
points of the Pareto front, see Figure 1. It is considered as a
reasonable solution since moving along the Pareto front would
lead to a larger deterioration in one of the objectives.
Once the knee-point is determined, the optimal hyper-
parameters l1, l2 and g are identified. This enables us to
compute the desired boundary loop detector data by exploiting
the predictive mean formula, namely ŷB = my

N (X̂N̂B
).

Remark 5: The second objective function fobj
2 reminds of

the residual loss function in the PINNs approach [8], where the
PDE solution is approximated by a neural network trained on

fobj
1

fobj
2

knee-
point

extreme point

extreme pointPareto front

Fig. 1. Illustration of the knee-point method for the MOO approach.

a large amount of so called auxiliary points. In our case, the
GP predictive equations are computationally less expensive.
Moreover, we keep the two cost functions separated, instead
of including them in a single objective [12].

C. Determination of travel times

Aiming to predict travel times in some “future” time interval
[Tnow, TF ], we integrate the previously presented approaches
in the following procedure:

1) Calibration of θ by the least squares approach in some
preceding time window [TI , Tnow[.

2) Estimation of predicted boundary data ŷB in [Tnow, TF ].
3) Computation of of the model solution yM and eventually

its bias correction b in [Tnow, TF ]× ]xin, xout[.
4) Estimation of travel times in [Tnow, TF ].
In particular, the output of the simulation is used to calculate

travel times by solving the ordinary differential equation{
dx
dt = v(t, x(t)),

x(t0) = xin,

for t0 ∈ [Tnow, TF ]. The travel time is then given by the
first time τ̂ = τ̂(t0) > t0 such that x(τ̂) = xout. The whole
procedure is summarized in Algorithm 1.

Algorithm 1 Travel time computation from simulation output.
Require: Departure time t0 of a vehicle starting at position
xin and going to position xout, simulated speed v(t, x)
at time t and position x, time step size ∆t of numerical
simulation.
Initialize space position by x = xin;
Initialize travel time by τ̂ = 0;
while x < xout do

Update space position by x = x+∆t · v(t0 + τ̂ , x);
Update travel time by τ̂ = τ̂ +∆t;

end while
Return travel time τ̂ .

To evaluate the performance of our travel time prediction,
we need a comparison to real data, which in the best case
are recovered from Global Positioning System (GPS) tacking,
probe vehicles or video recordings. However, these measure-
ments are not often available or accessible [15]. In these
cases, we will use aggregated loop detector measurements
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as an approximation to the ground truth. As an error metric,
we consider a relative version of the root mean square error
(rRMSE), comparing the true and reconstructed travel times,
τ and τ̂ , for the same road stretch at Nτ different departure
instants. Thus, the total travel time error Eτ reads as

Eτ =

√
Nτ∑
i=1

(τi − τ̂i)2
/

Nτ∑
i=1

τ2i .

In the following, we detail the computation of the reference
travel times in the two mentioned cases:

a) Trajectory data: Real travel time data may fluctuate
a lot due to different traffic situations such as congestion
and free flow regimes, different driving behaviors and vehicle
types or due to external factors such as weather conditions.
Instead, the mathematical model provides average speed values
and therefore only average travel times can be obtained by
Algorithm 1. For a better comparison, we also average the
real recorded data: to compute the reference travel time for
a vehicle starting at time t, we take the mean over the travel
times of vehicles which started their trip between t − ε and
t+ ε, where ε > 0 has to be chosen.

b) Aggregated data: If no or only few trajectory data are
available, it is possible to derive travel times approximations
from aggregated data using the N-curves method [43], ob-
tained by summing up the aggregated flow data measured by
loop detectors. To estimate the travel time between two loop
detectors A and B for a vehicle starting at time tA at loop
A, we calculate the number of accumulated vehicle counts
for loop A at time tA and we intersect this number with
the N-curve of loop B, obtaining the arrival time tB . The
travel time is thus given by τ = tB − tA. Due to the usage
of aggregated data, this approach leads directly to average
travel times. However, a major source of error for the N-curve
method is the presence of on- of off-ramps, lane changes and
overtaking maneuvers [43].
An alternative for travel times reconstruction can be the
application of Algorithm 1, where the entries of the field
v(t, x) are given by the piece-wise constant average speed
measurements. We refer to this as the baseline method.

IV. DESCRIPTION OF TRAFFIC DATA SETS

To validate the proposed approaches, we refer to traffic data
recorded by loop detectors, providing aggregated information
over time, such as the traffic flow q and the occupancy O
(the percentage of time a detector is occupied by a vehicle
[14]). From the occupancy measurement, one can derive the
traffic density ρ from the relation ρ = O/l, where l denotes
the average vehicle length. If two detectors are installed in
very close succession, the average traffic speed v can be
also directly computed. Otherwise, it can be derived from the
fundamental relation v = q/ρ, which leads to a spatial and
not a temporal average value. We point out that contrary to
the flow (resp. density) which belongs to the class of temporal
(resp. spatial) traffic data, the speed can be defined as both
a temporal and a spatial quantity [43]. However, these two
definitions differ from each other, thus they naturally lead to
different results in applications such as travel time predictions.

A. Synthetic microscopic traffic data

Since real data often suffer serious limitations, such as non-
functioning sensors or measurement errors, we first validate
the proposed approaches on synthetic data. To this aim, we rely
on data generated by Simulation of Urban MObility (in short
SUMO) [44]. Unlike data derived by simulations based on a
macroscopic traffic flow model [23], the microscopic simulator
tracks each vehicle, giving direct access to trajectory data and
the corresponding travel times.
We consider two traffic scenarios, both simulating a highway
traffic situation for a rampless 10km road stretch with three
lanes and a constant speed limit of 100km/h, equipped with
3× 10 loop detectors, one for each lane at ten different, non-
equidistant locations. Moreover, the sensor data are aggregated
over 6 minutes. The traffic flow consists of three different
vehicle types differing in their desired maximum speed. The
length of all vehicles is set to 5m. SUMO provides all
measurable traffic quantities: the flow, occupancy and speed
per lane. To compute the average speed over the three lanes,
we use the space mean formula v = 1

ρ

∑3
i=1 ρivi, vi given

by the fundamental equation. We note that other choices for
vi are possible, such as the arithmetic or harmonic mean
speed; however, for these alternatives, we observed worse
traffic speed reconstructions.

SUMO-1: The first synthetic scenario reproduces a highly
congested traffic situation, generated by gradually reducing
the speed limit on the last 0.01km of the road, thus inducing
a backward moving congestion wave, which dissipates after
the considered time window of 3 hours. In Figure 2a, we
depict the speed values measured by the loop detectors for
the 6 minute aggregated time intervals. The distribution of all
the data points is visualized by the fundamental diagrams in
Figure 2b. The non-monotonicity of the flow data indicates
the presence of different traffic regimes: the free flow and
congestion. In particular, the congested phase presents more
widely spread data than the free flow, which is typical of
real traffic scenarios. For computing reference travel times,
we refer to Section III-C a), where we choose ε = 10s . The
first (resp. last) considered departure time is after 6 minutes
(resp. 2 hours and 30 minutes), resulting in Nτ = 865 vehicle
trajectories. Considering Figure 5a, we observe a steadily
increasing travel time up to τ ≃ 27min due to congestion.
The results for the method of N-curves (resp. baseline method)
is depicted in black (resp. blue). It appears that the N-curve
method reflects better the ground truth than the baseline
one, which is confirmed by the rRMSEs: Eτ

N-curve = 0.027
< Eτ

baseline = 0.052. This can be explained by the more precise
information on flow variations exploited by the N-curves,
compared to the piece-wise constant speed data employed by
the baseline approach.

SUMO-2: The second scenario simulates an accident occur-
ring at time t = 1h. We implement this in SUMO by closing
the rightmost lane between kilometer 6 and 9 for a duration of
80 minutes. This creates less congestion than in SUMO-1, see
Figure 3a and the few data points in the congested region in
Figure 3b. However, we observe a sudden change in the traffic
regime, especially for the loop detector located at x = 5.5km,
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Fig. 2. Traffic scenario SUMO-1.
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(b) Fundamental diagrams.

Fig. 3. Traffic scenario SUMO-2.

right before the lane closure. This scenario is interesting to
analyze since the sudden change in the dynamics cannot be
captured by the model without ad-hoc changes. Moreover, the
last boundary detector is not affected by this lane closure. In
this case, the role of the bias becomes crucial.

B. Real traffic data

Aiming to test our approach in real world scenarios, we
consider the RTMC data set [45], provided by the Minnesota
Department of Transportation (MnDOT). As the synthetic
SUMO data, the RTMC data are 6 minute averages obtained
by single loop detectors measuring the traffic flow and the
occupancy. For the tests, we consider a 4.85km long road
stretch on the northbound direction of the interstate highway
I-35W, which is equipped with 8 sensors on the mainlane, 2 at
on-ramps and 3 at off-ramps. The road stretch counts five lanes
and the speed limit is 55miles/hour (≈ 90km/h). We refer to
the year 2013 measures, serving as the historical train data,
and some selected days in 2014 as test data. The data were
pre-processed to remove abnormalities: we discarded eight full
days (due to the presence of negative traffic quantities) and we
replaced all measured flow (resp. density) values by zero if the
corresponding density (resp. flow) was zero. In these cases, we
set the average speed to 200km/h. We remark that a zero flow
could also correspond to a fully congested road, however this
is never the case for our extracted RTMC data, which can be
easily verified by comparing the data measured by nearby loop
detectors.

RTMC: The selected real data scenario covers the morning
time slot from 6am to 9am of Wednesday, November 5th,
2014. Figure 4a show free flow conditions in the first 30
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Fig. 4. Traffic scenario RTMC.
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Fig. 5. Illustration of average travel times.

minutes. Then, the traffic gets denser until almost the end
of the considered time period, see also the flow fundamental
diagram in Figure 4b. Again, the congested part show a larger
spread of the data for densities higher than 110veh/km.
Since in this case we do not have access to trajectory data,
the reference travel times can be only estimated by using the
aggregated loop detector data. We remark that the initialization
of the N-curves belonging to the first and last loop detector
are based on a free flow assumption at 6am. In Figure 5b,
we illustrate the results of the two approaches for vehicles
departing during the first 2 hours. Unlike the SUMO scenario,
here the N-curve method fails since the travel time decreases
constantly, resulting finally in negative values. The baseline
approach however captures the increasing of travel times, due
to lower measured speeds in the second part of the time slot.

V. MODEL AND STATISTICAL METHODS VALIDATION

Since we are interested int travel time prediction, we con-
sider the speed as our quantity of interest. In the numerical
scheme, we focus on a density boundary implementation,
which turned out to perform better in our context. Moreover,
the initial datum is approximated by piece-wise constant den-
sity values, which are given by the first recorded aggregated
measurements.

A. Traffic calibration and reconstruction

The calibration is run on the first 2 out of 3 hours for each
scenario, using the MATLAB nonlinear optimization function
fmincon. The last hour is left for the prediction tests in
Section V-B.
In Table I, we list the parameters and the rRMSE E (resp. Ec)
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at observation points between the field and simulated (resp.
corrected) speed data. For comparison, and to underline the
benefit of the physical model, we consider the error EGP

between the kriging mean of yF (XN ) ∼ N (ȳN ,KN ) and
the field data. We observe that the bias corrected version Ec

always outperforms E and EGP . Moreover, the errors for the

TABLE I
CALIBRATION RESULTS AND ERROR METRIC (km/h)

V C R E Ec EGP

SUMO-1 96 24 344 0.076 0.034 0.063
SUMO-2 93 31 300 0.117 0.034 0.083
RTMC 120 54 291 0.227 0.069 0.128

RTMC data are sensibly higher, probably due to measurement
errors.

Remark 6: We recall that the RTMC scenario includes
ramps; however, we set rnj = 0 = snj in the simulation code,
since this choice leads to slightly lower rRMSEs, compared
to E = 0.228, Ec = 0.071 and θ∗ = (107, 86, 290)
including ramp information. We will proceed analogously in
the prediction section, thus avoiding to forecast ramp data,
whose impact is questionable.

We also point out the strong improvement of the error
metric after the bias correction in SUMO-2. As previously
discussed, the pure simulation cannot reflect the traffic dynam-
ics properly, because the model is not designed to capture the
lane closure. This scenario emphasizes the benefit of the bias
modeling, which is also underlined by the space-time speed
plots in Figure 6 (a) and (b). Indeed, the corrected version is
able to detect the traffic jam. This can also be observed in the
speed profile for the sixth sensor, see Figure 6 (c).
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Fig. 6. SUMO-2. Illustration of space-time speed and speed profile.

B. Traffic prediction

For the prediction of the density boundary data needed to
run the numerical scheme, we introduce the density bound-
ary prediction rRMSE Êρ

B between the measured aggregated
yFρ (X̂N̂B

) and predicted ŷB density data at 2n̂t̂ future bound-
ary observation points. We also compare the simulated (resp.
corrected) speed with the available coarse field data at loop
detector positions and aggregated future times by the rRMSE,
denoted by Ê (resp. Êc). These metrics are used as indicators
for travel time prediction quality, lower values corresponding
to better forecasts. Additionally, we compute the two speed
metrics using the real boundary data yFρ (X̂N̂B

) in the simu-
lation. This will be referred to as the oracle case. Finally, in

the SUMO data case, we also compare the predicted relative
travel time error metrics Êτ and Êτ

c with the reference data,
where we consider the vehicles departing between t = 90min
and t = 150min, corresponding to 361 trajectories.

Remark 7: For the determination of the number of virtual
time points which are used in the second objective function,
we differentiate between the time and space dimension: for the
first one, we double the size of the 6 minute aggregated data

in the 3 hours, thus sampling
180

6
· 2 = 60 points from the

uniform distribution. The virtual space points however are not
sampled, instead they match exactly the position of the main
loop detectors. We observe that sampling the space points lead
to worse results in our case.

In Table II, we highlight in bold the lowest value for each
considered error metric. First of all, we observe that, compared
to the previous estimation section, the difference between the
predicted speed errors Ê and Êc are negligible, meaning that
the bias correction in the future time slot has almost no or
even a negative impact. Second, a good density boundary
prediction does not necessarily lead to the lowest speed error
Ê, as in the oracle boundary case where it holds Êρ

B = 0 but
Ê can be bigger than in other approaches. This underlines the
difficulty when dealing with different traffic quantities: since
the model describes density dynamics, a good reconstruction
of the density does not necessarily result in a good speed
estimation. In this regard, the independent speed reconstruction
provided by second order models do not lead generally to
improvements, as shown in [24]. Third, against expectations,
the lowest Ê value does not correspond to the best travel time
prediction result: in SUMO-1 the MOO approach outperforms
the other cases although its coarse speed reconstruction is
worse.

TABLE II
PREDICTION RESULTS

pure GP MOO DTW LSTM oracle

SUMO-1

Êρ
B 0.357 0.268 - - 0

Ê 0.348 0.402 - - 0.373
Êc 0.341 0.394 - - 0.358
Êτ 0.103 0.079 - - 0.157
Êτ

c 0.112 0.082 - - 0.147

SUMO-2

Êρ
B 0.321 0.316 - - 0

Ê 0.135 0.124 - - 0.155
Êc 0.130 0.118 - - 0.147
Êτ 0.056 0.054 - - 0.052
Êτ

c 0.037 0.034 - - 0.031

RTMC
Êρ

B 0.257 0.210 0.158 0.172 0
Ê 0.383 0.245 0.445 0.281 0.371
Êc 0.388 0.255 0.441 0.318 0.359

In SUMO-2 all proposed methods perform very similarly in
terms of travel time prediction: the oracle boundary case shows
a slight outperformance, although its speed rRMSEs are worse
than the others. Looking at the traffic volume in the prediction
hour in Figure 3a, the good results are easily explainable:
the congestion induced by the lane closure has almost no
impact on the last hour, consequently it is easier to predict
the boundary data. For RTMC, we observe that the DTW
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Fig. 7. SUMO-1. Travel time prediction results for MOO approach.

approach, which provides clearly the lowest Êρ
B , performs

the worst in terms of speed rRMSE. In contrast, although
the boundary predictions obtained by the LSTM network are
disappointing, its speed prediction power is convincing.

In Figure 7, we illustrate the results for SUMO-1 and
the MOO approach. Although the knee-point heuristic does
not lead to the lowest possible density boundary prediction
error Êρ

B (see Figure 7a), the performance is acceptable since
only a few points on the Pareto front undercut this point.
Moreover, in order to understand the rather disappointing
performance of the oracle case, we illustrate in Figure 7b
the travel time profiles for the simulations and oracle cases.
By the black vertical line, we highlight the starting point
of the 361 considered trajectories, used in the travel time
error computation. Naturally, the oracle boundary curve and
corrected simulated curve coincide in the past because the
simulation is executed with the same boundary data. In the
last hour, the oracle boundary case starts to overestimate the
travel times. In contrast, the (corrected) simulation both under-
and overestimates the speed which leads therefore to a lower
rRMSE in average. Due to the increasing uncertainty in the
future, it is clear that the correction tends to go back to the
pure simulation, which underestimates the speeds when using
real boundary data. This in turn explains the behavior of the
oracle curve and the similar performances of Ê and Êc.

As a final analysis, we compare in Figure 8 the uncertainty
of the pure GP and our proposed MOO approach. Together
with the real future boundary observations (red stars) and
its predictions ŷB = my

N (X̂N̂B
) (blue line), we depict 100

realizations of N
(
my

N (X̂N̂B
), (syN )2(X̂N̂B

, X̂N̂B
)
)

and the
corresponding 90% predictive intervals. We observe that in
the hybrid MOO approach, all observations are lying inside
the predictive intervals, whereas in the pure GP approach the
uncertainty is higher for the right boundary detector. This last
analysis reinforces the evidence of the advantage of integrating
the physics in the prediction approach.

VI. CONCLUSION

In this paper, we focused on traffic flow reconstruction and
prediction by using a first order macroscopic traffic flow
model and statistical approaches. We have shown the benefit
of correcting the simulation output by a bias in order to
compensate model limitations in reconstructing real data. For
prediction, the bias correction can be neglected due to its
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Fig. 8. SUMO-1. Uncertainty quantification for pure GP and MOO approach.

convergence towards the pure simulation.
Moreover, we proposed a hybrid MOO approach for boundary
data forecast, combining the physical knowledge, given by the
mathematical model, and GPs. This method is based on multi-
objective optimization and it addresses the shortcomings of the
existing ones: it applies to all kind of differential equations
and the set of hyperparameters does not increase compared
to the pure GP modeling. The results are robust, providing
competitive error metric values in all tested scenarios. Addi-
tionally, we observed a non-logical anti-correlated behavior of
the metrics Ê and Êτ , which might be partly due to the choice
between time or space mean speeds. Indeed, the difficulty of
predicting the speed is a frequently mentioned problem (see
e.g. [46], [47]).

This work opens several perspectives for future research,
as the choice of the virtual points in the MOO approach,
for example considering the so called APIK approach [10].
Moreover, it would be interesting to compare the performance
of our proposed MOO approach with the PINNs method.
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