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This paper focuses on propagation phenomena in reaction-diffusion equations with a weakly monostable nonlinearity. The reaction term can be seen as an intermediate between the classical logistic one (or Fisher-KPP) and the standard weak Allee effect one. We investigate the effect of the decay rate of the initial data on the propagation rate. When the right tail of the initial data is sub-exponential, finite speed propagation and acceleration may happen and we derive the exact separation between the two situations. When the initial data is sub-exponentially unbounded, acceleration unconditionally occurs. Estimates for the locations of the level sets are expressed in terms of the decay of the initial data. In addition, sharp exponents of acceleration for initial data with sub-exponential and algebraic tails are given. Numerical simulations are presented to illustrate the above findings.

Introduction

In this paper, we study rates of invasion in the following one-dimensional reaction-diffusion equations    ut(t, x) = uxx(t, x) + f (u(t, x)), t > 0, x ∈ R, u(0, x) = u0(x) ≥ 0,

x ∈ R.

(1.1)

Hypothesis 1.1. The non-linearity f ∈ C 1 ([0, 1], R) is of the weakly monostable type, in the sense that f (0) = f (1) = 0, f (s) > 0 for any s ∈ (0, 1), f (1) < 0, and there exists s0 ∈ (0, 1), K ≥ 0, α > 0 and r > 0 such that f (s) ≤ r s (1 + | ln s|) α for all s ∈ (0, 1), (1.2) and f (s) ≥ r s (1 + | ln s|) α (1 -Ks) for all s ∈ (0, s0].

(1.3) After Kolmogorov, Petrovskii and Piskunov [START_REF] Kolmogorov | Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologigue[END_REF], and Fisher [START_REF] Ronald | The wave of advance of advantageous genes[END_REF], the classical monostable equation is equation (1.1) with Fisher-KPP type nonlinearity, that is, f (0) = f (1) = 0 and 0 < f (s) ≤ f (0)s for all s ∈ (0, 1). (1.4) In population dynamics, this type of non-linearity is commonly used to model the situation where growth per capita is maximal at low densities. The decay rate of the initial data at infinity is crucially important for the propagation problem. For the Fisher-KPP equation with front-like initial data, initial data u0 with exponentially bounded decay, that is, lim x→+∞ u0(x)e εx < ∞ for some ε, (1.5) lead to finite propagation speed [12,[START_REF] Mallordy | A parabolic equation of the kpp type in higher dimensions[END_REF]. On the other hand, for an exponentially unbounded initial data, meaning that condition (1.5) is not met, or lim x→+∞ u0(x)e εx > +∞ for any ε,

Hamel and Roques [20] have presented evidence of acceleration of the solution to the Fisher-KPP equation. They also provided an expression of the locations of level sets based on the decay of the initial data. We refer to references [3, 7-9, 13, 15, 17, 21, 22, 25] for the further results about propagation in KPP equations.

When an Allee effect occurs, meaning that the per capita growth is no longer maximal at low densities, the KPP assumption (1.4) becomes unrealistic. Hence, incorporating the Allee effect into models becomes necessary.

An acceleration phenomenon may take place in the degenerate situation f (0) = 0. Indeed, when the initial data is front-like and the nonlinearity f (s) ∼ rs α+1 with α > 0 as s → 0 + , Alfaro [2] has studied the balance between the decay rate of the initial data at infinity and the weak Allee effect and found that for exponentially unbounded tails but lighter than algebraic acceleration does not occur in the presence of the Allee effect, which is in contrast with the KPP equation. Similarly to the KPP situation, the initial data with exponentially bounded decay lead to a finite propagation speed [START_REF] Kay | Comparison theorems and variable speed waves for a scalar reaction-diffusion equation[END_REF]28]. On the other hand, algebraic decay leads to acceleration despite the Allee effect and the position of the level sets of u(t, •) as t → ∞ propagates polynomially fast [2,26]. We refer to references [START_REF] Achleitner | Traveling waves for a bistable equation with nonlocal-diffusion[END_REF]6,[START_REF] Ascher | Implicit-explicit runge-kutta methods for timedependent partial differential equations[END_REF]19] for other kinds of Allee effect.

It is worth mentioning that these results about propagation phenomena in degenerate monostable equations are based on the assumption f (s) ∼ rs α+1 with some α > 0 and r > 0 as s → 0 + . This assumption is used to quantify the degeneracy. In this paper, we also take into account that the growth per capita is small at small densities, but we quantify the degeneracy by a weakly monostable type nonlinearity [START_REF] Achleitner | Traveling waves for a bistable equation with nonlocal-diffusion[END_REF]. Notice that such nonlinearity is between the KPP type and the Allee effect type near the right side of zero point, see Figure 1. Thus, this type of nonlinear term fill an existing gap between two classical nonlinearities.

f satisfying f (s) ∼ r s | ln s| α with α > 0 and r > 0 as s → 0 + , like f (s) = r s (1+| ln s|) α (1 -s) for s ∈ (0,
To describe the propagation speed, we introduce three notations. For any λ ∈ (0, 1), the (upper) level set of u(t, x) is defined by

E λ (t) := {x ∈ R : u(t, x) ≥ λ}.
Let x λ (t) be the largest element of level set of u(t, x) defined by

x λ (t) := sup E λ (t).
For any subset Λ ⊂ (0, 1], we set 

u -1 0 {Λ} := {x ∈ R : u0(x) ∈ Λ} the inverse image of Λ by u0. 2 0 s f (s) s r r | ln s| α rs α 0 1 s f (s) rs(1 -s) r s(1-s) (1+| ln s|) α rs α+1 (1 -s)
u0 > 0 in R, lim inf x→-∞ u0 > 0, lim x→+∞ u0 = 0.
In this paper, we always denote by u(t, x) the solution to (1.1) with initial data u0. We mainly consider the following types of initial data:

• Sub-exponentially bounded for large x, that is, there exist x0 > 0 such that, for any x > x0, u0(x) e -µx β , with β ∈ (0, 1) and µ > 0.

• Sub-exponential decay for large x, that is, there exist x0 > 0 such that, for any x > x0, u0(x) e -µx β , with β ∈ (0, 1) and µ > 01 .

• Algebraic decay for large x, that is, there exists x0 > 1 such that, for any x > x0, u0(x)

1 x β ,
with β > 0.

• Initial data u0 that decay as a negative power of ln x for large x, that is, there exists x0 > e such that, for

any x > x0, u0(x) (ln x) -β , with β > 0.
Our first result shows that for sub-exponentially bounded initial data, acceleration does not happen.

Theorem 1.3. Let α > 0 and β > 0 be such that

β ≥ 1 α + 1 .
Assume that the non-linearity f and the initial data u0 satisfy Hypotheses 1.1 and 1.2, respectively. Assume that there exist x0 > 0 and µ > 0 such that u0(x) e -µx β for any x ≥ x0.

(1.7)

Then, for any λ ∈ (0, 1), there exist some positive constants c and a time T λ such that

Γ < x λ (t) t < c for any t > T λ . (1.8)
Now, we turn to cases where it is assumed that the initial data u0 decay more slowly than e -εx 1 α+1 as x → +∞ for any ε > 0, that is,

∀ε > 0, ∃xε ∈ R, u0(x) ≥ e -εx 1 α+1 in [xε, +∞). (1.9) Let us denote ϕ0(x) := -ln u0(x) ≥ 0. (1.10) Notice that if u0 is C 2 , then we can get ϕ 0 (x) = - u 0 u0 (x) and ϕ 0 (x) = - u 0 u0 (x).
Observe that if we assume that ϕ 0 (x) = o(ϕ -α 0 (x)) as x → +∞, then condition (1.9) is fulfilled. For such initial data, we have the following result. Lemma 1.4. Assume that the non-linearity f and the initial data u0 satisfy Hypotheses 1.1 and 1.2, respectively.

Assume that u0 is of class C 2 and non-increasing on [ξ0, +∞) for some ξ0 > 0, and ϕ 0 (x) = o(ϕ -α 0 (x)) and ϕ 0 (x) = o(ϕ 0 (x)) as x → +∞.

(1.11)

Then, for any fixed λ ∈ (0, 1) and small ε > 0, there is a time T λ,ε such that

E λ (t) ⊂ u -1 0 e -[(r+ε)(α+1)t] 1 α+1 , e -[(r-ε)(α+1)t] 1 α+1
for any t > T λ,ε .

It is easy to check that initial data u0(x) e -µx β satisfy (1.11) in the regime β < 1 α+1 . Thus, according to the above lemma, we obtain the following theorem.

Theorem 1.5. Let α > 0 and β > 0 be such that

β < 1 α + 1 .
Assume that the nonlinearity f and the initial data u0 satisfy Hypotheses 1.1 and 1.2, respectively. Assume that there exists x0 > 0 and µ > 0 such that u0(x) e -µx β for any x ≥ x0.

Then, for any λ ∈ (0, 1) and ε > 0, there exists a time T λ,ε such that 2

x λ (t) λ,ε,µ t

1 β(α+1) for any t > T λ,ε . 1 x λ (t) t 1 β(1+α) x λ (t) t α = 1 β -1 β α Figure 2:
The separation for sub-exponential decay initial data case.

For initial data with algebraic tails, that is u0(x)

x -β for β > 0, by Lemma 1.4, we just obtain a rough estimate:

C1e 1 β ((r-ε)(α+1)t) 1 α+1 ≤ x λ (t) ≤ C2e 1 β ((r+ε)(α+1)t) 1 α+1
for some constants C1 and C2. Notice that the position of the level set depends strongly on the constant ε. Hence the estimate is not enough for such initial data.

To get an exact estimate of the position of the level sets, we add a concavity assumption, that we believe not to be a huge restriction given that classical sub-exponentials are usually log-concave functions.

Lemma 1.6. Assume that the nonlinearity f and the initial data satisfy Hypotheses 1.1 and 1.2, respectively.

Assume that u0 is of class C2 and nonincreasing on [ξ0, +∞) for some ξ0 > 0, and

ϕ 0 (x) = o(ϕ -α 0 (x)) and ϕ 0 (x) = o(ϕ 0 (x)) as x → +∞.
Assume that ϕ 0 (x) ≤ 0 for large x.

(1.12)

Then, for any λ ∈ (0, 1), there are two constants C λ > 0 and Cλ > 0 and a time T λ such that

E λ (t) ⊂ u -1 0 Cλ e -[r(α+1)t] 1 α+1 , C λ e -[r(α+1)t] 1 α+1
for any t > T λ .

(1.13)

We point out that (1.12) is used only in the proof of the lower bound. Our approach can be used to prove the exact result in the KPP situation of [20].

Equipped with the above lemma, we can get exact estimates for the level sets of the solution to equation (1.1)

with the algebraic decay initial data. We check the assumptions in Lemma 1.6 and obtain the following theorem.

Theorem 1.7. Assume that the nonlinearity f and the initial data satisfy Hypotheses 1.1 and 1.2, respectively.

Assume that there exist x0 > 1 and β > 0 such that u0(x) 1

x β for any x ≥ x0.

Then, for any λ ∈ (0, 1), there exists a time T λ such that

x λ (t) λ e 1 β [r(α+1)t] 1 α+1
for any t > T λ .

Observe that when α = 0, one recovers the rate of the KPP situation [20,22]. For the degenerate monostable case, Alfaro [2] shows that if

f (s) = s 1+α (1 -s) then x λ (t) t 1 αβ
for t large enough, where 0 < α < 1 β . Thanks to Lemma 1.6, we can also get the following theorem for the initial data u0(x) (ln x) -β . Theorem 1.8. Assume that the nonlinearity f and the initial data u0 satisfy Hypotheses 1.1 and 1.2, respectively.

Assume that there exists x0 > e and β > 0 such that u0(x) (ln x) -β for any x ≥ x0.

(1.14)

Then, for any x(t) ∈ E λ (t), there exists a time T λ , such that

ln x λ (t) λ e 1 β [r(α+1)t] 1 α+1
for any t > T λ .

Remark 1.9. One can obtain Lemma 1.4 and Theorem 1.5 under the weaker hypothesis

f (s) ∼ r s (1 + | ln s|) α as s → 0 + ,
for some r > 0 and α > 0. However, Lemma 1.6 and Theorems 1.7 and 1.8 need crucially Hypothesis 1.1 with both precise bounds (1.2) and (1.3) for f . An insight can be easily seen in the proofs in Sections 3 and 4.

Nevertheless, Lemmas 1.4 and 1.6 and Theorems 1.5, 1.7 and 1.8, are true under Hypothesis 1.1 where (1.3) is replaced by

f (s) ≥ r s (1 + | ln s|) α (1 -Ks δ ) for any s ∈ (0, s0],
for some δ > 0, s0 ∈ (0, 1) and K ≥ 0. Their proofs are similar to the one we provide in Sections 3 and 4 but a bit messier so we have chosen to stick to δ = 1 for the sake of readability.

The rest of this paper is organized as follows. In Section 2, we shall prove that the solution to equation (1.1), starting from an exponentially unbounded initial data, propagates at constant speed. In Section 3 and Section 4, we provide the proof of the main results, Lemma 1.4 and Lemma 1.6, respectively. In Section 5, some numerical simulations shall be given to illustrate our main results. This paper is the first part of our work on weakly monostable equations; a companion paper [11] with nonlocal dispersal follows. In this latter paper, we have proved the existence and nonexistence of traveling waves, and studied the effect of the tails of the dispersal kernel on the propagation rate. Exact rates of invasion have been provided for the sub-exponential and algebraic tails.

2 Finite speed propagation: Proof of Theorem 1.3

In this section, we prove Theorem 1.3: the level sets of the solution to (1.1) moves at a constant speed.

As in [2, Theorem 2.3], we can also obtain that, for any λ ∈ (0, 1), there is a time t λ > 0 and Γ > 0 such that ∅ = E λ (t) ⊂ (Γt, +∞) for any t > t λ .

(2.1) Indeed, we consider the equation

   vt -vxx -r1v 2 (1 -v) = 0, t > 0, x ∈ R, v(0, x) = v0 ≥ 0, (2.2)
where the initial data v0(x) = inf y≤0 u0(y)1 (-∞,0) (x) and r1 > 0 small enough so that r1s 2 (1 -s) ≤ f (s) for all s ∈ (0, 1). According to [29], the solution v(t, x) to (2.2) satisfies limt→∞ inf x≤Γt v(t, x) = 1 for some Γ > 0. It follows from the comparison principle that propagation of u(t, x) is at least linear, that is,

lim inf t→∞ x≤Γt u(t, x) = 1. (2.3)
On the other hand, we can reproduce the proof of [20, Theorem 1.1 part a], which does not require the KPP assumption, and get lim x→+∞ u(t, x) = 0 for any t ≥ 0.

(2.4) Thus, combining (2.3) and (2.4), we can conclude (2.1).

Inspired by [2], for the initial data with sub-exponential decay, we use a suitable shifted profile which construction now follows. Take α > 0 and β > 0 such that

β ≥ 1 α + 1 .
Let us define

w(z) := M e -µz p (≤ 1) for z ≥ z0 := ln M µ 1 p , (2.5) 
where p := 1 α+1 < 1 and M > e.

Lemma 2.1. Assume that f satisfies Hypothesis 1.1. Then, for any M > e, there is c > 0 such that

w (z) + cw (z) + f (w(z)) ≤ 0, ∀z ≥ z0.
Proof. By definition of w, we have, for z ≥ z0,

w (z) = -µpz p-1 w(z) and w = µp(1 -p)z p-2 + µ 2 p 2 z 2(p-1) w(z). Since 1 -ln M + µz p ≥ µ 2 z p for any z ≥ ( 2(ln M -1) µ ) 1 
p , then we have, for all z ≥ z1 := max{z0, ( 2(ln M -1)

µ ) 1 p }, w (z) + cw (z) + f (w(z)) ≤ µw(z) µp 2 z 2(1-p) + p(1 -p) z 2-p - cp z 1-p + r µ(1 -ln M + µz p ) α ≤ µw(z) µp 2 z 2(1-p) + p(1 -p) z 2-p - cp -2 α r µ α+1 z 1-p .
Choosing c > 2 α r µ α+1 p , the above is nonpositive for z large enough, say z ≥ z2. On the other hand, for the remaining region z0 ≤ z ≤ z2, we have

w (z) + cw (z) + f (w(z)) ≤ µw(z) µp 2 z 2(1-p) + p(1 -p) z 2-p - cp z 1-p + r µ(1 -ln M + µz p ) α ≤ µw(z) µp 2 z 2(1-p) 0 + p(1 -p) z 2-p 0 - cp z 1-p 2 + r µ(1 -ln M + µz p 0 ) α ,
by taking c large enough so that the above is nonpositive.

Equipped with the above lemma, we can construct a supersolution to (1.1). Let M = max{e, e x β 0 ||u0||∞} and define

v(t, x) :=    w(x -x0 -ct), x > ct + x0 + z0, 1, x ≤ ct + x0 + z0,
where c and x0 is from the above lemma and (1.7) respectively. We claim that v(t, x) is a supersolution for (1.1)

for any x ∈ R and t > 0. Indeed, it is enough to check it when v(t, x) < 1, that is, x > ct + x0 + z0. It follows from the above lemma that

vt -vxx -f (v) ≥ -(cw -w + r w (1 -ln w) α ) ≥ 0. For x > x0 + z0, since p = 1
α+1 ≤ β and (1.7), then we have

v(0, x) = M e -µ(x-x 0 ) p ≥ e x β 0 ||u0||∞e -µx β ≥ u0(x).
On the other hand, since u0 ≤ 1, for x ≤ x0 + z0, we have v(0, x) = 1 ≥ u0(x).

In the regime β ≥ 1 α+1 , the comparison principle then implies that for all t > 0 and x ∈ R, we have

u(t, x) ≤ v(t, x) ≤ w(x -x0 -ct).
Therefore, for any λ ∈ (0, 1), there is T λ large enough such that for all t > T λ , we have

x λ (t) ≤ x0 + 1 µ ln M λ 1 p + ct ≤ (c + 1)t,
which gives the upper bound of (1.8). Together with (2.1), the proof of Theorem 1.3 is complete.

3 The acceleration regime: Proof of Lemma 1.4

In this section, we prove Lemma 1.4: the level sets of solution to the equation (1.1) with front-like initial data that is sub-exponentially unbounded move by accelerating, and the locations of the level sets are expressed in terms of the decay of the initial data.

The long-time behaviour of the solution to the Cauchy problem (1.1) is captured approximately by the ODE

     wt = ρ w (1 -ln w) α , t > 0, x ∈ R, w(0, x) = u0(x) ≥ 0, x ∈ R, (3.1) 
where ρ > 0 is to be determined. We solve the above ODE and obtain

w(t, x) = exp 1 -(1 + ϕ0(x)) α+1 -ρ(α + 1)t 1 α+1 , (3.2) 
where ϕ0 is defined by (1.10). Notice that w(t, x) ≥ w(0, x) = u0(x) since w(x, •) is increasing for each x ∈ R.

Let us define

x0(t) := sup x ∈ R : u0(x) = exp 1 -ρ(α + 1)t + 1 1 α+1 . (3.3)
Observe that w(t, x0(t)) = 1 and 0 < w(t, x) ≤ 1 for x ≥ x0(t). For any x ≥ x0(t) and t > 0, we have

wx = - w (1 -ln w) α ϕ 0 (1 + ϕ0) α , (3.4) 
and

wxx = w (1 -ln w) α (ϕ 0 ) 2 (1 + ϕ0) 2α (1 -ln w) -α + α(1 -ln w) -(α+1) -α(1 + ϕ0) -(α+1) -ϕ 0 (1 + ϕ0) α . (3.5)
For wxx, we have the following estimate. Lemma 3.1. Let u0 such that ϕ0 = -ln u0 satisfies ϕ 0 = o(ϕ -α 0 ) and ϕ 0 = o(ϕ 0 ) as x → +∞. Then, for any small ε > 0, there exists t # > 0, depending on ε, such that |wxx| < ε w (1 -ln w) α for any x ≥ x0(t) and t ≥ t # .

(3.6)

Proof. Since 0 < u0(x) ≤ w(t, x) ≤ 1, we have

0 < (1 + ϕ0) -(α+1) ≤ (1 -ln w) -(α+1) ≤ 1.
It follows from 0 < w ≤ 1 for all x ≥ x0(t) and t > 0 that, for any x ≥ x0(t) and t > 0, we have

0 < (1 -ln w) -α + α(1 -ln w) -(α+1) -α(1 + ϕ0) -(α+1) < 2. (3.7)
In view of the definition (3.3) of x0(t), since u0 is nonincreasing and limx→+∞ u0 = 0, we have x0(t) → +∞ as t → ∞. For any small ε > 0, it follows from the assumption on ϕ 0 (x) that there exists t # > 0 such that for

x > x0(t) and t ≥ t # , we have

|ϕ 0 (x)(1 + ϕ0(x)) α | < ε 4 .
On the other hand, it follows from ϕ 0 (x) = o(ϕ 0 (x)) that there exists X such that for x > x0(t) ≥ X and t ≥ t # , up to enlarge t # if necessary, we have

|ϕ 0 (x)(1 + ϕ0(x)) α | < ε/2.
Therefore, by collecting the above estimates, we have, for any x ≥ x0(t) and t ≥ t # ,

|wxx(t, x)| ≤ w(t, x) (1 -ln w(t, x)) α (ϕ 0 (x)(1 + ϕ0(x)) α ) 2 (1 -ln w(t, x)) -α + α 1 -ln w(t, x) -(α+1) -α(1 + ϕ0(x)) -(α+1) + |ϕ 0 (x)(1 + ϕ0(x)) α | ≤ w(t, x) (1 -ln w(t, x)) α ( ε 4 × 2 + ε 2 ) = ε w(t, x) (1 -ln w(t, x)) α ,
which gives the estimate (3.6). This completes the proof.

Here we present a lemma, which will play a key role in the proof of Lemma 1.6. Lemma 3.2. Let u0 such that ϕ0 = -ln u0 satisfies ϕ 0 = o(ϕ -α 0 ) and ϕ 0 = o(ϕ 0 ) as x → +∞. Then there is t 1 > 0 such that, for x ≥ x0(t) and t ≥ t 1 , we have wx + wxx ≤ 0.

(3.8)

Proof. By the assumptions ϕ 0 (x) = o(ϕ -α 0 (x)) and ϕ 0 (x) = o(ϕ 0 (x)), there exists X0 such that for all x ≥ X0, we have

ϕ 0 (1 + ϕ0) α ≤ 1 4 and |ϕ 0 | ≤ 1 2 ϕ 0 .
Since x0(t) → +∞ as t → ∞, there is t 1 > 0 such that x0(t) > X0 for all t ≥ t 1 . In view of the definition (1.10) of ϕ, since u0 is a nonincreasing function, then ϕ ≥ 0. It then follows from (3.4), (3.5) and (3.7) that we have, for all x ≥ x0(t) and t ≥ t 1 ,

wx + wxx ≤ w (1 -ln w) α (1 + ϕ0) α ϕ 0 (-1 + 2ϕ 0 (1 + ϕ0) α ) + |ϕ 0 | ≤ w (1 -ln w) α (1 + ϕ0) α - 1 2 ϕ 0 + 1 2 ϕ 0 = 0.
This completes the proof.

The upper bound

In this subsection, we prove the upper bound of the level sets in Lemma 1.4 by constructing an accurate supersolution.

We define

m(t, x) =    w(t + t # , x), x ≥ x0(t + t # ), 1, x < x0(t + t # ),
where t # is defined in Lemma 3.1. Observe that m(t, x) is well defined for all t ≥ 0 and all x ∈ R, and 0 < m(t, x) ≤ 1.

Let ε > 0 be given and define

ρ = r + ε 2 . (3.9)
Now, we prove that m is a supersolution of equation (1.1).

Lemma 3.3. Let u0 such that ϕ0 = -ln u0 satisfies ϕ 0 = o(ϕ -α 0 ) and ϕ 0 = o(ϕ 0 ) as x → +∞. Then m(t, x) is a supersolution to equation (1.1) for all t > 0 and x ∈ R.

Proof. To prove m is a supersolution, we need to check that mt -mxx -f (m) ≥ 0 for all t > 0 and x ∈ R. For x < x0(t + t # ) and t > 0, since mt = mxx = f (m) = 0, we have

mt(t, x) -mxx(t, x) -f (m(t, x)) = 0.
On the other hand, for all x ≥ x0(t + t # ) and t > 0, by the definitions of m and w, we have

mt(t, x) = wt(t + t # , x) = ρ w(t + t # , x) (1 -ln w(t + t # , x)) α = r + ε 2 w(t + t # , x) (1 -ln w(t + t # , x)) α .
Thus, by Lemma 3.1 and Hypothesis 1.1, for all x ≥ x0(t + t # ) > x0(t) and t > 0, we obtain

mt(t, x) -mxx(t, x) -f (m(t, x)) = wt(t + t # , x) -wxx(t + t # , x) -f (w(t + t # , x)) ≥ r + ε 2 w(t + t # , x) (1 -ln w(t + t # , x)) α -2 w(t + t # , x) (1 -ln w(t + t # , x)) α -r w(t + t # , x) (1 -ln w(t + t # , x)) α = 0.
This completes the proof.

In view of the definition of m, for x < x0(t + t # ), since u0 ≤ 1, we have m(0, x) = 1 ≥ u0(x). For x ≥ x0(t + t # ), since w(•, x) is nondecreasing for each x ∈ R, we have m(0, x) = w(t # , x) ≥ w(0, x) = u0(x).

Thus, m(0, x) ≥ u0(x) = u(0, x) for all x ∈ R. Equipped with Lemma 3.3, it then follows from the comparison principle that m(t, x) ≥ u(t, x) for all t > 0 and x ∈ R.

(3.10) Now, we prove the upper bound in Lemma 1.4.

The proof of the upper bound. We need to prove that, for any λ ∈ (0, 1) and large time t, we have Let us pick a y ∈ E λ (t), then w(t + t # , y) ≥ λ. It follows that, by the definitions of w and ϕ0, we have

E λ (t) ⊂ u -1 0 e -[(r+ε)(α+1)t]
w(t + t # , y) = exp 1 -[(1 -ln u0(y)) α+1 -ρ(α + 1)(t + t # )] 1 α+1 ≥ λ, whence u0(y) ≥ exp 1 -ρ(α + 1)(t + t # ) + (1 -ln λ) α+1 1 α+1 . Since ρ = r + ε 2 , there is a time tλ,ε > 0 such that u0(y) ≥ e -[(r+ε)(α+1)t] 1 α+1
for any t ≥ tλ,ε ,

which gives (3.11). This completes the proof.

The lower bound

In this subsection, we explore the lower bound of the level sets of a solution to (1.1) by constructing an adequate subsolution.

Let ε > 0 be given. We take

max r - ε 2 , 3 4 r < ρ < r. (3.13)
Let us define the function g(y)

:= y(1 -M y) with M > 0. Notice that 0 ≤ g(y) ≤ g 1 2M = 1 4M , ∀y ∈ 0, 1 2M .
We define

xM (t) := sup x ∈ R : u0(x) = exp 1 -(1 + ln (2M )) α+1 + ρ(α + 1)t 1 α+1 ≥ x0(t),
where x0(t) is defined by (3.3). Observe that w(t, xM (t)) = 1 2M and w(t, x) < 1 2M for all x > xM (t). Let us define

ζ := inf x∈(-∞,ξ 1 ) u0(x),
where ξ1 := max{ξ0, x0(0)}. Notice that ζ ∈ (0, 1] according to Hypothesis 1.2, and that u0 is non-increasing on [ξ1, +∞). We select large enough M > 0 so that

M ≥ M0 := max 1 2ζ , 1 4s0
.

Then, by u0(xM

(0)) = 1 2M < ζ ≤ u0(ξ1), we have xM (0) > ξ1. Let us define v(t, x) :=      1 4M , x ≤ xM (t), g(w(t, x)), x > xM (t). (3.14)
Since M ≥ 1 4s 0 , then we have 0 < v(t, x) ≤ s0 for all t ≥ 0 and x ∈ R.

Lemma 3.4. Let u0 such that ϕ0 = -ln u0 satisfies ϕ 0 = o(ϕ -α 0 ) and ϕ 0 = o(ϕ 0 ) as x → +∞. Then there exists large enough M > 0 such that v(t, x) is a subsolution to equation (1.1) for all t > 0 and x ∈ R.

Proof. In view of the definition (3.14) of v, we obtain

vt(t, x) = ρ w(t, x) (1 -ln w(t, x)) α 1 -2M w(t, x) + . It then follows that vt(t, x) ≤      0, x ≤ xM (t), ρ w(t, x) (1 -ln w(t, x)) α 1 -2M w(t, x) , x > xM (t).
(3.15) Since 1 (1+y) α ≥ 1 -αy for any y ≥ 0, then, for any x > xM (t), we have

1 ≥ 1 -ln w 1 -ln v α = 1 1 -ln(1-M w) 1-ln w α ≥ 1 + α ln(1 -M w) 1 -ln w .
It follows from the inequality ln(1 -y) ≥ -cy for any y ∈ (0, 1 2 ), where c = 2 ln 2, that, for any x > xM (t), we have

1 ≥ 1 -ln w 1 -ln v α ≥ 1 -αcM w 1 -ln w , from 0 < M w < 1 2 . Thus, since f (s) ≥ r s (1-ln s) α (1 -Ks)
for s ∈ (0, s0] and 0 < v(t, x) ≤ s0 for all t ≥ 0 and x ∈ R, when x > xM (t), we have

f (v(t, x)) ≥ r v(t, x) (1 -ln v(t, x)) α (1 -Kv(t, x)) ≥ r w(t, x)(1 -M w(t, x)) (1 -ln w(t, x)) α 1 -ln w(t, x) 1 -ln v(t, x) α 1 -Kw(t, x) ≥ r w(t, x) (1 -ln w(t, x)) α 1 -(M + K)w(t, x) -αcM w(t, x) 1 -ln w(t, x)
-αcKM 2 w 3 (t, x) 1 -ln w(t, x) .

(3.16)

On the other hand, when x ≤ xM (t), we have and

f (v(t, x)) ≥ 0, (3.17 
vxx(t, x) = (1 -2M w(t, x)) wxx(t, x) -2M w 2 x (t, x) for x > xM (t).
In view of (3.4) and (3.5), we get

vxx(t, x) ≥ -ϕ 0 (x)(1 + ϕ0(x)) α (1 -2M w(t, x)) w(t, x) (1 -ln w(t, x)) α -2M ϕ 0 (x)(1 + ϕ0(x)) α 2 w 2 (t, x) (1 -ln w(t, x)) 2α .
Since ϕ 0 (x) = o(ϕ (x)) and ϕ 0 (x) = o(ϕ -α 0 (x)) as x → +∞, there exists X1 > ξ0 such that

ϕ 0 (x)(1 + ϕ0(x)) α ≤ r -ρ 4 and ϕ 0 (x)(1 + ϕ0(x)) α ≤ √ r -ρ 2 , (3.18) 
as x → +∞. In view of the definition of xM , we take M large enough, say M > M1 ≥ M0, such that xM (t) > X1 for all t > 0. Thus, for x > xM (t), we have (3.16), (3.17) and (3.19), for x ≤ xM (t), we obtain

vxx ≥ - r -ρ 4 w (1 -ln w) α - r -ρ 2 M w 2 (1 -ln w) 2α ≥ - r -ρ 2 w (1 -ln w) α , (3.19) thanks to 0 < w ≤ 1 2M . Collecting (3.15),
(vt -vxx -f (v))(t, x) ≤ 0, (3.20) whereas, for x > xM (t), (vt -vxx -f (v))(t, x) ≤ w(t, x) (1 -ln w(t, x)) α - 1 2 (r -ρ) + (-2ρ + r)M + rK w(t, x) + rαcM w(t, x) 1 -ln w(t, x) + αcKM 2 w 3 (t, x) 1 -ln w(t, x) . (1) {t θ } × (-∞, y θ (t + θ )]; (2) (t, x)|t > t θ and x ∈ [y θ (t), y θ (t + )] .
For the first part, u(t θ , •) is continuous, positive, and lim infx→-∞ u(t θ , x) > 0. Thus, we have inf

x∈(-∞,y θ (t + θ )] u(t θ , x) > 0.
For the second part, if t > t θ and x ∈ [y θ (t), y θ (t + )], then w(t, x) = θ, whence

u(t, x) ≥ θ -M θ 2 > 0.
As a consequence, Θ := inf ∂Ω u > 0. Since Θ > 0 is a subsolution of equation (1.1), the comparison principle yields

u(t, x) ≥ Θ for all x ∈ Ω. (3.23) 
Let us pick any x ∈ E λ (t) for any λ ∈ (0, Θ). Then

x > y θ (t + ) ≥ y θ (t) for any t ≥ t θ .

Since ρ > r -ε 2 , then there exists a time t λ,ε > t θ such that

u0(x) ≤ u0(y θ (t)) = exp 1 -ρ(α + 1)t + (1 -ln θ) α+1 1 α+1 ≤ e -[(r-ε)(α+1)t] 1 α+1 (3.24)
for any t > t λ,ε , which gives the lower bound for small λ.

Let us prove the lower bound for any λ ∈ (0, 1). Let λ ∈ [Θ, 1) be given. Denote by u θ the solution to 1.1 with initial data

u θ,0 :=          Θ, x ≥ -1, -Θx, -1 < x < 0, 0, x ≥ 0. (3.25) 
In view of (2.3), we can also obtain that, for some γ1 > 0, we have limt→∞ inf

x≤γ 1 t u θ (t, x) = 1.
There exists a time t λ > 0 such that u θ (t λ , x) > λ for all x ≤ 0.

(3.26) Furthermore, by (3.23) and (3.25), we have u(t, x) ≥ u θ,0 (x -y θ (T )) for any x ∈ R and T ≥ 0.

It follows from the comparison principle that

u(T + t, x) ≥ u θ (t, x -y θ (T )).
By (3.26), we obtain u(T + t λ , x) > λ, for all x ≤ y θ (T ) and T ≥ 0.

Therefore there exists a time

t λ,ε > max(t λ,ε , t λ ) such that u0(x λ (t)) < u0(y θ (t -t λ )) = exp 1 -ρ(α + 1)(t -t λ ) + (1 -ln λ) α+1 1 α+1 < e -[(r-ε)(α+1)t] 1 α+1 (3.27)
for any t > t λ,ε , which gives the lower bound. This completes the proof.

Let T λ,ε = max{ tλ,ε , t λ,ε }. Thus, combining (3.12), (3.24) and (3.27), the proof of Lemma 1.4 is complete.

4 A more precise bound: Proof of Lemma 1.6

In this section, we give a more precise bound for the level sets of the solution to the equation (1.1).

The upper bound

We derive a more precise upper bound by translating the spatial variables in w, so that the supersolution can approximate the solution to (1.1) more accurately.

Let us define

m(t, x) =    w(t + t 1 , x -t), x ≥ x0(t + t 1 ) + t, 1, x < x0(t + t 1 ) + t,
where w(t, x) is defined by (3.2) with ρ = r and t 1 is from (3.8).

We claim that m is a supersolution to equation 1.1 for any t > 0 and x ∈ R.

To prove m is a supersolution, we need to check that mt -mxx -f (m) ≥ 0 for all t > 0 and x ∈ R. For

x < x0(t + t 1 ) + t and t > 0, since mt(t, x) = mxx(t, x) = f (m(t, x)) = 0, we have

mt(t, x) -mxx(t, x) -f (m(t, x)) = 0.
For x ≥ x0(t + t 1 ) + t and t > 0, by the definitions of m and w and Hypothesis 1.1, we have

mt(t, x)-f (m(t, x)) ≥ r w(t + t 1 , x -t) (1 -ln w(t + t 1 , x -t)) α -wx(t+t 1 , x-t)-r w(t + t 1 , x -t) (1 -ln w(t + t 1 , x -t)) α = -wx(t+t 1 , x-t).
Therefore, for all x ≥ x0(t + t 1 ) + t and t > 0, since x -t ≥ x0(t + t 1 ) > x0(t) and t + t 1 > t 1 for t > 0, by Lemma 3.2,we have mt(t, x) -mxx(t, x) -f (m(t, x)) ≥ -wx(t + t 1 , x -t) -wxx(t + t 1 , x -t) ≥ 0.

When t = 0, since u0 ≤ 1 and w(•, x) is nondecreasing for each x ∈ R, we have that m(0, x) = 1 ≥ u0(x) = u(0, x) for x < x0(t 1 ), and that m(0, x) = w(t 1 , x) ≥ w(0, x) = u0(x) = u(0, x) for x ≥ x0(t 1 ). The comparison principle then yields that u(t, x) ≤ m(t, x) for all t > 0 and x ∈ R.

(4.1)

The proof of the upper bound. Now, we prove that, for any λ ∈ (0, 1) and large time t, there are a constant Cλ > 0

we have

E λ (t) ⊂ u -1 0 [ Cλ e -(r(α+1)t) 1 α+1 , 1] . (4.2)
It follows from (4.1) that u(t, x) ≤ m(t, x) ≤ w(t + t 1 , x -t) for all t > 0 and x ∈ R.

If we pick y ∈ E λ (t), then w(t + t 1 , y -t) ≥ λ. Thus, by the definitions of w and ϕ0, we have

w(t + t 1 , y -t) = exp 1 -[(1 -ln u0(y -t)) α+1 -ρ(α + 1)(t + t 1 )] 1 α+1 ≥ λ, whence u0(y -t) ≥ exp 1 -r(α + 1)(t + t 1 ) + (1 -ln λ) α+1 1 α+1 .
By the assumption ϕ 0 (x) = o(ϕ -α 0 (x)) as x → +∞, we have, for some C > 0,

U0(Ce -(r(α+1)t) 1 α+1 ) t → +∞ as t → ∞,
where U0(z) := sup{x ∈ R, u0(x) = z}. Therefore, there is a time tλ and a constant Cλ such that

E λ (t) ⊂ u -1 0 [ Cλ e -(r(α+1)t) 1 α+1 , 1] ∀t ≥ tλ , (4.3) 
proving (4.2).

The lower bound

Assuming additionally that ϕ 0 (x) ≤ 0 for large x, we derive a more precise lower bound. To do so, we take ρ = r and recall

v(t, x) =      1 4M , x ≤ xM (t), g(w(t, x)), x > xM (t), (4.4) 
where M ≥ M0 = max 1 2ζ , 1 4s 0 . We claim that

E λ (t) ⊂ u -1 0 0, Ce -[r(α+1)t] 1 α+1
for t large enough.

(4.5)

In view of (3.5), since ϕ 0 (x) ≤ 0 for large x, we obtain wxx ≥ 0 for any x ≥ xM (t) with large enough M , say M > M * ≥ M0. For x > xM (t), it follows from the assumption ϕ 0 (x) = o(ϕ -α 0 (x)) as x → +∞, the definition (4.4) of v and (3.4) that we have for M > M * , up to enlarge M * ,

vxx(t, x) = (1 -2M w)wxx -2M w 2 x ≥ -2M ϕ 0 (1 + ϕ0) α 2 w 2 (1 -ln w) 2α ≥ - 1 4 rM w 2 (1 -ln w) 2α .
On the other hand, for x ≤ xM (t), we have vxx(t, x) = 0.

In view of (3.16) and (3.17), similar to (3.20), we obtain, for x ≤ xM (t), (vt -vxx -f (v))(t, x) ≤ 0, whereas, for x > xM (t), we have

(vt -vxx -f (v))(t, x) ≤ w(t, x) (1 -ln w(t, x)) α (- 3 4 rM + rK)w(t, x) + αcM w(t, x) 1 -ln w(t, x) + αcKM 2 w 3 1 -ln w(t, x) . For 0 < w ≤ 1 2M , when M ≥ M * * := max 1 2 exp 4αc(1 + 1 r ) -1 , K 4 
, we have

r + KM w 2 1 -ln w ≤ r + 1 1 + ln(2M ) ≤ r 4αc .
Thus, for any x > xM (t), we take M large enough, say

M ≥ M := max 2rK, M * , M * * , so that rαcM w(t, x) 1 -ln w(t, x) + αcKM 2 w 3 (t, x) 1 -ln w(t, x) = αcM r + KM w 2 (t, x) 1 -ln w(t, x) w(t, x) ≤ 1 4 rM w(t, x), whence (vt -vxx -f (v))(t, x) ≤ w 2 (t, x) (1 -ln w(t, x)) α - 1 2 M + rK ≤ 0.
In view of (4.4), we notice that:

• when x > xM (0), we have v(0, x) = g(w(0, x)) ≤ w(0, x) = u0(x);

• when ξ1 ≤ x ≤ xM (0), since u0 is nonincreasing on [ξ1, +∞), we have v(0, x) = 1 4M < 1 2M ≤ u0(x); • when x < ξ1, since M > 1 2ζ , we have v(0, x) = 1 4M ≤ 1 2M < ζ ≤ u0(x)
. Thus, we obtain v(0, x) ≤ u0(x) = u(0, x) for all x ∈ R. Therefore, the comparison principle implies that v(t, x) ≤ u(t, x) for all x ∈ R, t > 0.

It follows from the proof of the lower bound of Lemma 1.4 that, for λ ∈ (0, Θ), if x ∈ E λ (t), then there exists

a time t λ > t θ such that u0(x) ≤ u0(y θ (t)) = exp 1 -r(α + 1)t + (1 -ln θ) α+1 1 α+1 ≤ C 1 e -[r(α+1)t] 1 α+1
for any t > t λ , (4.6)

and, for λ ∈ (Θ, 1), there exists a time t λ > max{t λ , t λ } such that

u0(x) < u0(y θ (t -t λ )) = exp 1 -r(α + 1)(t -t λ ) + (1 -ln λ) α+1 1 α+1 < C 2 e -[r(α+1)t] 1 α+1 (4.7)
for any t > t λ which gives (4.5). Let T λ = max{t λ , tλ } and C λ = max{C 1 , C 2 }. Thus, combining (4.3) (4.6) and (4.7), the proof of Lemma 1.6 is complete.

Numerical simulations

In this section, we provide some numerical simulations to illustrate the previous results.

To get an approximate solution for equation (1.1), we discretize the equation in space by the finite difference method and then use Implicit-Explicit scheme (IMEX) [4, 5] to integrate it in time, where the implicit scheme handles the diffusion term while the explicit handles the reaction term. The influence of the initial data u0 on the propagation speed is illustrated under the some fixed α in Figure 345678. We mainly consider the initial data with two kinds of decay: sub-exponential decay and algebraic decay. In the following simulations, we all take f (u) = u (1-ln u) α (1 -u) for u ∈ (0, 1). For the initial data with sub-exponential decay, we take the initial data to be u0 = min{e -5x β , 1} and α = 0.2, 0.4, 0.6. Figure 3, Figure 4 and Figure 5 show that the acceleration can be observed over a small time range when β is small. This is consistent with our theoretical results, that is, x λ (t) t 1 β(1+α) tends to infinite as β → 0 + . When β is large enough, as we show in Theorem 1.3, for initial data u0 e -µx β with β > 1 α+1 and µ > 0, the solution propagates at a finite rate. Notice that the width of the solution becomes larger and larger as β gets smaller and smaller. This is because the flattening effect [10,[START_REF] Berestycki | The speed of propagation for kpp type problems. ii: General domains[END_REF].

For initial data with algebraic decay, we take u0 = min{ 1 1+100x β , 1} and α = 0.2, 0.4, 0.6. In Figure 6, Figure 7, and Figure 8, we observe that decreasing the parameter β leads to an increase of the propagation speed. Our theoretical findings support this observation, as demonstrated by the fact that x λ (t) exp (r(α+1)t) 1 α+1 β tends to infinity as β → 0 + . We can also observe the flattening effect. Therefore, the decay of the initial data is the key to the propagation of solution to equation (1.1). When the initial data increases, meaning β decreases, the propagation speed also increases.

In Figure 9, we provide a comparison between the largest element x λ (t) of level sets E λ (t) of the solution with three different types of initial data. Observe that the slope of curve for the algebraic decay case is maximum, followed by the sub-exponential decay, and the sub-exponentially bounded case show a straight line. This is consistent with our theoretical results. We fit the corresponding theoretical results for each cases, as shown in the thick continuous curves in the figure 9. Notice that in each pair of curves when time t is large enough, our 
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 1 Figure 1: Comparison of the size of three kinds of nonlinearities near zero, where the parameter r and α are positive.
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 11 10) and the definition of m, we have u(t, x) ≤ m(t, x) ≤ w(t + t # , x) for all t > 0 and x ∈ R.

  ) thanks to v ∈ (0, 1). Now, let us estimate the value vxx. In view of the definition (3.14) of v, we have vxx(t, x) = 0 for x ≤ xM (t)
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 3456 Figure 3: Numerical approximations of the solution to (1.1) with the initial data u 0 (x) = min{e -5x β , 1} at different times for α = 0.2 and different values of β. The threshold for acceleration is β = 1 α+1 = 5 6 .
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 78 Figure 7: Numerical approximations of the solution to (1.1) with the initial data u 0 (x) = min{ 1 1+100x β , 1} at different times for α = 0.4 and different values of β.
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 9 Figure9: Comparison between the largest element x λ (t) of level sets E λ (t) of the solution starting from three types of initial data: sub-exponentially bounded u 0 (x) = min{e -5x , 1}, sub-exponential decay u 0 (x) = min{e -5x 0.2 , 1} and algebraic decay u 0 (x) = min{ 1 1+100x , 1}. In this figure, the thick continuous curves are theoretical results. Here, we choose α = 0.4 and λ = 1 2 .

The notation a b means that there exists a constant C such that Cb ≤ a ≤ C -1 b.

The notation a Λ 1 ,Λ 2 ,... b means that there exists a constant C Λ 1 ,Λ 2 ,... , depending on some constants Λ 1 , Λ 2 ,..., suchthat C Λ 1 ,Λ 2 ,... b ≤ a ≤ C -1Λ 1 ,Λ 2 ,... b.

For 0 < w ≤ 1 2M , when M ≥ M2 := max 1 2 exp 2αc(1 + 1 r ) -1 , K

4

, we have

.

Thus, for any x > xM (t), we take M large enough, say

thanks to ρ > 3 4 r. This completes the construction of the subsolution v(t, x).

In view of (3.14), we notice that:

• when x > xM (0), we have v(0, x) = g(w(0, x)) ≤ w(0, x) = u0(x);

. Thus, we obtain v(0, x) ≤ u0(x) = u(0, x) for all x ∈ R. As a consequence, the maximum principle yields v(t, x) ≤ u(t, x) for all t ≥ 0 and x ∈ R.

(

Now, we prove the lower bound in Lemma 1.5.

The proof of the lower bound. Firstly, we prove it for small θ. Let us fix 0 < θ < 1 4M .

We define the level set of w(t, x) as

Recall that E θ (t) is not empty for t > t θ . It follows from Hypothesis 1.2 that there exists a time t θ > t θ such that, for any t > t θ , the closed set F θ (t) is nonempty. For any t ≥ t θ , denote

Then the function y θ : [t θ , +∞) → R is nondecreasing and left-continuous. In addition, since u0 is nonincreasing, for all points t ≥ t θ where the function y θ is discontinuous, there exist a < b such that

denotes the largest such interval, then a = y θ (t) and b = y θ (t + ) = lims→t,s>t y θ (s).

We claim that inf Ω u > 0, where Ω is an open set defined by Ω := {(t, x), t > 0, x < y θ (t)} .

Let us evaluate u(t, x) on the boundary ∂Ω. ∂Ω consists in two parts: