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Some constructions and existence conditions for
Hermitian self-dual skew codes.

D. Boucher and E.K. Nouetowa *

Abstract
In this text, we first consider the existence conditions and the construction of
Hermitian self-dual 8-cyclic and 8-negacyclic codes over IF 2, where p is a prime
number and 6 is the Frobenius automorphism over IF ,2. We then give necessary
and sufficient conditions for the existence of Hermitian self-dual 8-cyclic and
0-negacyclic codes over IF e where e is an even integer greater than 2.
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1 Introduction

For § an automorphism of a finite field IF,, 6-cyclic codes (also called skew cyclic
codes) of length n were defined in [5]. These codes are such that a right circular shift
of each codeword gives another word which belongs to the code after application of 6
to each of its n coordinates. If 8 is the identity, 6-cyclic codes are cyclic codes.

Skew cyclic codes have an interpretation in the Ore ring R = IF,[X; 6] of skew
polynomials where multiplication is defined by the rule X - a = 6(a)X for a in IF,.
Euclidean self-dual skew cyclic codes of length n over IF; have been considered in many
previous works among which [11, 14]. Their existence conditions were first established
in [7], then their construction and enumeration were obtained over IF,> when p is a
prime number ([8]) and over IF,» when p is a prime number and 6 is the Frobenius
automorphism ([1]). In this text we are concerned with Hermitian self-dual skew cyclic
and skew negacyclic codes whose study was briefly initiated in [9]. We first consider
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Hermitian self-dual 0-cyclic and 0-negacyclic codes over IF),» where p is a prime number
and ¢ is the Frobenius automorphism over IFj2. Then we give necessary and sufficient
existence conditions for Hermitian self-dual skew cyclic and skew negacyclic codes over
F,.

The text is organized as follows. In Section 2, we first give generalities on #-cyclic
and f-negacyclic codes. In Section 3, we consider Hermitian self-dual #-cyclic and 6-
negacyclic codes over IF> when 6 is the Frobenius automorphism. In subsection 3.1,
we first characterize these codes by a system of homogeneous polynomial equations of
degree p + 1 (Algorithm 1). Then, in subsection 3.2, by using factorization properties
of skew polynomials, we prove that there exists no Hermitian self-dual 6-cyclic code
of any dimension over IF,> (Theorem 2). We also provide a construction and an exact
formula for the number of Hermitian self-dual #-negacyclic codes (Algorithm 5 and
Theorem 1). We give many examples of Hermitian self-dual codes over 4 and IFy,
including a [68,34,18] Hermitian self-dual code over IFy4, which improves the best
known Hermitian self-dual code of length 68 over IFy (according to [13]). All the
computations were made with the Magma algebra system ([4]). In Section 4, we prove
that there is no Hermitian self-dual §-cyclic code over any finite field IF,. with e even
and p odd (Theorem 2). Then we give necessary and sufficient existence conditions for
Hermitian self-dual #-negacyclic codes defined over IFp. with e > 2 (Theorem 3).

2 Generalities on self-dual skew constacyclic codes

For a finite field IF; and 6 an automorphism of IF, one considers the ring R =
IF,[X; 0] where addition is defined to be the usual addition of polynomials and where
multiplication is defined by the rule: for a in IF,

X -a=06(a) X. (1)

The ring R is called a skew polynomial ring or Ore ring (cf. [17]) and its elements

are skew polynomials. When 6 is not the identity, the ring R is not commutative, it is
a left and right Euclidean ring whose left and right ideals are principal. Left and right
ged (geld, gerd) and lem (Ielm, lerm) exist in R and can be computed using the left
and right Euclidean algorithms. The center of R is the commutative polynomial ring
Z(R) = ]FZ[XZ] where IFg is the fixed field of 6 and ¢ is the order of 6.
Definition 1 ([6, Definition 1]). Consider a non-zero element a of IF, and two integers
n,k such that 0 < k < n. A (0,a)-constacyclic code or skew constacyclic code
C of length n is a left R-submodule Rg/R(X"™ — a) C R/R(X™ — a) in the basis
1,X,...,X" ! where g is a monic skew polynomial diiding X™ — a on the right in
R with degree n — k. If a = 1, the code is f-cyclic and if a = —1, it is f-negacyclic.
The skew polynomial g is called skew generator polynomial of C.

If 6 is the identity then -cyclic and #-negacylic codes are respectively cyclic and
negacyclic codes.
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Definition 2 ([6, Definition 2]). Consider an integer d and h = Zhi X% in R of
i=0

degree d. The skew reciprocal polynomial of h is

d d

Wt =Y X b= 0" (hai) X"

=0 i=0

If m is the degree of the trailing term of h, the left monic skew reciprocal
polynomial of h is h? := ed%(hm) -h*.

The Euclidean dual of a linear code C of length n over I, is defined as C+ = {z €
Fy | Vy € C,(z,y) = 0} where for z,y in Fy, (z,y) := >i" x;%; is the (Euclidean)
scalar product of z and y. The code C is Euclidean self-dual if C is equal to C*.
Assume that ¢ is an even power of an arbitrary prime and denote o the automorphism
of F,, defined by o(a) = aV¥ for a in F,. The Hermitian dual of a linear code C of
length n over I, is defined as C+# = {z € Iy | Yy € C, (z,y)n = 0} where for x,y in
Fy, (z,y)m == > ;; zio(y;) is the (Hermitian) scalar product of z and y. The code
C is Hermitian self-dual if C is equal to C+#.

In what follows we will only consider (6, ¢)-constacyclic codes with €2 = 1 and with
length n divisible by the order ¢ of 6. That implies that the skew polynomial X™ — &
is a central polynomial. Following [10, Proposition 2|, the Hermitian dual of a (6, ¢)-
constacyclic code C' of length n and skew generator polynomial g is a (6, €)-constacyclic
code of skew generator polynomial O'(hh> where h is defined by h-g = g-h = X" —¢ and
where the automorphism o is extended to R by > a; X* — > o(a;)X". In particular
the code C is Hermitian self-dual if, and only if,

o(h?)-h=X"—¢. (2)

The equation (2) is called Hermitian self-dual skew equation.
For F' = F(X*) in FJ[X*], we define

Hp :={h € R| h is monic and O'(hh) ~h= F(Xe)}*

3 Hermitian self-dual 6-cyclic and 0-negacyclic
codes over IF 2

We consider here the existence and the construction of Hermitian self-dual #-cyclic
and 6-negacyclic codes of length n = 2k defined over IFj> where 6 is the Frobenius
automorphism over IF 2.

As ¢ = p?, the automorphisms # and o are both equal to the Frobenius auto-
morphism. The fixed field ]Fg of IF, is therefore I, and the order of 6 is ¢ =
2.

A first result was obtained in [9] for #-cyclic codes with dimension coprime with
p. Namely, there exists a Hermitian self-dual 6-cyclic code of dimension coprime to p



over Iz if, and only if, p = 2. Furthermore, the number of Hermitian self-dual §-cyclic
codes with odd dimension over IF; was computed in [9, Theorem 3.7].

3.1 Polynomial system strategy

Hermitian self-dual #-cyclic (resp. 8-negacyclic) codes of dimension k are completely
determined by the set Hx2x_. where ¢ = 1 (resp. ¢ = —1). In order to compute
Hxon_., a first strategy consists of solving the polynomial system satisfied by the
coefficients of the solutions h of the equation #(h?) - h = X" — € (the automorphism
6 being naturally extended to R by : > a; X* + > 6(a;)X*). Namely consider h =
S% hiX'in R with ho # 0, then

1=0

2k min(k,l)

O(h*) - h = m > > 0 (O(hk—i)hes) | X

£=0 \i=max(0,/—k)

Therefore we get that 6(h%) - h = X2¥ — ¢ if, and only if,
9k+1(h0) = —€h0 7é 07

£
Veefl,. . k—1}) 0" (0(hs—i)hy—;) =0,
=0

k

> 0" (O(hn-i)hk—i) =0,
=0
k .
Vee{k+1,...,2k—1}, Y 60/(0(hk—i)he—i) = 0.
i=0—k

The symmetries of the system enable to get rid of the last k — 1 equations and we
get :

9k+1(h0) = —Eho 75 0,
Vee{l,. .. k=1}, > BE_hei+ > hy_ihl_ =0,
G(hh)-h =X —ee . irggégzzzo ir?lgciéézl

> ot =o.

=0

Remark 1. The solutions of the above system belong to the non-degenerate Hermitian
variety defined by h]SH +- 4 hﬁﬂ + th = 0. Therefore according to Theorem 8.1

k k k k
of [3], there are at most (p +17(71)pz+_li(p =D solutions. Furthermore, according to

Theorem 6.3 of [12], the number of solutions of this homogeneous polynomial system
of k linearly independent equations into k 4+ 1 variables with degree p + 1 is at most
p*Fl 4 p2k;_21—1' The aim of this section is to give an exact formula for the number
of solutions of this system by using an approach based on the factorization of skew

polynomials (Theorem 1).




k-1

7] and assume

We can simplify this system in the following way. Consider N = |
that hy = 1. Then we get

VEe{N+1,....k—=1}, > h_hei+ Y heihl_ =0,

0<i<t 0<i<t
H(hh)-h:X2k—e<:> . i mod 2=0 i mod 2=1
>t
i=0
where
9k+1(h0) = _6h0 7é 07
Vee{l,. .., Nhhg=— > WP _ xhii— Y heixhi_,
1<i<e 1<i<e
i mod 2=0 i mod 2=1

Therefore we get a polynomial system of N equations with £k — N unknowns which
we solve in Algorithm 1 by using an exhaustive search.
Example 1. We consider the Hermitian self-dual 0-cyclic codes of dimension k = 3
over Fy = Fa(a) where a?+a+1=0. Their skew check polynomials h = X3 +ho X%+
h1 X + hg satisfy the polynomial system :

hg-ﬁ-hgh%—i—h%ho =0,
hy +h3+h3+1=0,

where

hi1 + hgh% =0.

We get 9 solutions :(a,0,0), (a?,0,0),(1,0,0) which give three Hermitian self-dual
[6,3,2] codes and (1,a,a),(1,a? a?),(a,1,a?),(a,a® a?),(a® 1,a),(a? a,a), which
give 6 Hermitian self-dual [6,3,4] codes.

Example 2. We consider the Hermitian self-dual 0-negacyclic codes of dimension
k=2,3,4 over Fg = F3(a) where a® + 2a + 2 = 0.

L k/’ = 2
The skew check polynomials h = X2+ h1X + hg of the Hermitian self-dual codes of
dimension 2 satisfy the polynomial system

{ho EIFZ,

hi — ho =0,
ho+hi+1=0,
h1+h§’ho:0.

The set of solutions is {(—1,—1),(=1,1),(=1,a%),(=1,a®)}. The corresponding
codes are [4,2,3)g Hermitian self-dual codes.
o k=3



Algorithm 1 Computation of Hxn_. wit €2 = 1 (polynomial system strategy)

Require: k, € such that €2 =1
Ensure: Hy2:_,

1: hk +—1

2: Fy {ho S F;z | 9k+1(h0) = 76h0}

3 M «+ I_%J

4: € + Fy x ]F‘Z,fg_N_l

5. while £ # () do

6: Pick (ho,hN+1,...,hk_1) in &

7. forl=1,...,N do

8 hee— Y ML xhei— Y heixhY,

1<i<e 1<4i<¢
7 mod 2=0 7 mod 2=1
9: end for
k

10: if Z WPt -4 then
i=0
11: go to 6:
12:  end if
132 forl=1,....k—1— N do

i Y RY X hgn—i+ Y he_i x hY, y_, #0 then

0<i<l+N 0<i<t+N
i mod 2=0 i mod 2=1
15: go to 6:
16: end if

17 end for

18 He—HU{XF+ S X0
19: g(—g\{(ho,h]v+1,...7hk,1)}
20: end while

21: return H

We look for (ho, h1,he) € F3 such that :

hg + hoh3 4 h3ho = 0,
h$ +hi+h3+1=0,

where

hi + hoh3 = 0.

We get the set of solutions {(a,0,0), (a?,0,0),(a°,0,0),(a’,0,0),(a,1,a), (a,a,a?),
(a,a3,2),(a®1,a%), (a?,a,2), (a®,a?,a%), (a®,a3 1), (a®, 1,a°), (a®,a,ab), (a",a,1),
(a”,a®,a?),(a”,1,a")}, therefore we have 16 Hermitian self-dual 6-negacyclic codes
of length 6.

For example the Hermitian self-dual 0-negacyclic code of length 6 with skew check

polynomial h = X3 + X2 +aX +a” is a [6,3,4] code.

{ho EFS,



L4 k = 4
We look for (ho, h1, ha, hs) € Fy such that :

hs + h3h% + hghl + h‘;’ho =0,
ho + h3hi’ + hgho =0,
ho+hi+h3+h3+1=0,

where

hy = —hghyg.
We get the SEt {(17 0’ a6’ 0)7 (17 07 a27 0)’ (17 27 a’ 1)7 (17 a27 ag’ aG)’ (17 a67 a7 a2)’
(27 O’ 27 0)7 (17 17 a7 2)7 (27 07 17 0)’ (17 a67 a37 a2)7 (17 a27 a7 a6)7 (]" 1’ a3’ 2)7 (1’ 27 a37 1)}’
therefore we have 12 Hermitian self-dual 8-negacyclic codes of length 8.

For example the Hermitian self-dual 0-negacyclic code of length 8 with skew check
polynomial h = X* + X3 4+ a3X? +2X + 1 is a [8,4,4] code.

{hoE]F;,

3.2 Factorization strategy.

In what follows we propose a strategy which was already used for Euclidean self-dual
skew codes over IF )2 ([8, Theorem 6.1] ) and for Hermitian self-dual §-negacyclic codes
of dimension coprime to p ([9, Theorem 3.7]). We give a practical way to construct the
solutions which avoids the resolution of a polynomial system and we provide a counting
formula for the number of solutions. This construction is based on Proposition 2 of [9]
that we recall below.

Proposition 1. Consider IF, a finite field with ¢ = p* elements where p is a prime
number, 0 : x — xP the Frobenius automorphism over IFp2» and R = IF,[X;0].
Consider F(X?) = fi(X?)--- f-(X?) where f1(X?),..., f(X?) are pairwise coprime
polynomials of ,[X?] satisfying fth = f;. The map

b Hpxz)y X - X My (x2) = Hpx2)
: (hi,...,hy) s lerm(hy, . .., hy)

is bijective.
We introduce the following notations: for f = f(X?) € F,[X?],
Hy = {h € Hs | no non-constant divisor of f(X?) in IF,[X?] divides h in R},
F={f=f(X?) €F,[X? | f=f"is irreducible in IF,[X?] and degy(f) > 1},
G:={f=f(X?) eTF,[X? | f=gg® with g # g* irreducible in IF,[X?]}.

3.2.1 Non-existence of Hermitian self-dual #-cyclic codes for p odd
prime

Recall that there exists a Hermitian self-dual #-cyclic code of dimension coprime to p
over IF 2 if, and only if, p = 2 (Theorem 3.7 of [9]). In what follows we prove that this
result remains true if the dimension of the code is divisible by p (Proposition 2).
Lemma 1. If k and p are odd then Hxz._; = 0.



Proof. Assume that H x2x_; # (. Consider h in H x2r_; with constant coefficient
ho. As O(h%) - h = X?* — 1, we have 6(1/6%(hg)) x ho = —1. As the order of 6 is 2 and
k is odd, we get 1/hg x hg = —1, which is impossible over IF,> because p is an odd
prime number. =

Proposition 2. Ifp is odd, then there exists no Hermitian self-dual 0-cyclic code over
.

Proof. Let us prove that for any k, Hy2x_; = 0. Consider s,t in IN such that
k = p*xt and p does not divide ¢. According to Lemma 1, the set H x2ps 1 = H(x2_1)p*
is empty. We have X2F —1 = f;(X?2) fo(X?2) where f;(X2) = (X2—1)?" = f}(X2) and
fo(X?) = (Zf;é X2p" = f2h (X?2). As p does not divide ¢, these two polynomialrs are
coprime polynomials of IF,,[ X 2]. Therefore, according to Proposition 1, the set H x2r_;
is empty. =

3.2.2 Construction of H x2q)ps

The aim of this section is to construct and to enumerate Hermitian self-dual
f-negacyclic codes over IFp> whose dimension is p® where 6 is the Frobenius auto-
morphism (Proposition 4 and Algorithm 2). In order to construct the set Hyzr,q =
H(x241)»*, factorization properties specific to )2 [X; 0] will be useful. The following
proposition enables to characterize the skew polynomials that have a unique factor-
ization into the product of monic linear skew polynomials dividing X2 + 1 (see also
[6, Proposition 16]).

Proposition 3. Consider p a prime number, 8 the Frobenius automorphism over
F,2, R =T,2[X;6], m a non-negative integer, f(X?) in IF,[X?] irreducible and h =
hi -« hpy, in R where for all i in {1,...,m}, h; is irreducible in R, monic, and divides
F(X?). The following assertions are equivalent :

(i) The above factorization of h is not unique.
(ii) f(X?) divides h.
(iii) There exists i in {1,...,m — 1} such that h; - hiy1 = f(X?).

Corollary 1. Consider p a prime number, 0 the Frobenius automorphism over IFpz,
R = TF,2[X;0], m a non-negative integer and h = (X + A1) --- (X 4+ Ay,) in R where
for alli in {1,...,m}, Af“ = —1. The following assertions are equivalent :

(i) The above factorization of h is not unique.
(ii) X2+ 1 divides h.
(iii) There exists i in {1,...,m — 1} such that (X + X\;) - (X + X\ip1) = X2+ 1 dce.
)\i)\i+1 =1.
This proposition and its corollary motivate the following partition (see Lemma 3.2
of [8]) :
Lemma 2. Consider p a prime number, 6 the Frobenius automorphism over IF,z,
R =T,2[X;0], s a non-negative integer and f = f(X?) € {X?+ 1} UF. One has the



following partition :
5]
Hppe = | | £ Hyppooi. (3)
i=0
Lemma 3. Consider p an odd prime number, 0 the Frobenius automorphism, R =
F,2[X;6], m a non-negative integer and M = |1 |. The number of elements of the
set Hxz241ym 8

(p+1) x p™ if p is odd,
#g(XQJ’,l)m, = 3 ifp=2and m=1,
0 ifp=2and m > 1.
If m =0 (mod 2), then

ﬂ(XQJrl)m = {(X2 + 201 X — 1) s (X2 + 20¢M+1X — 1) | Ozf-i_l =—-1, 041 7é —Oéi}.
Ifm=1 (mod 2), then

Hixopnym = {(XPH20 X 1) - (X* 200 X —1)-(X+an 1) | ol = =1, air # —ai}.
Proof.

® One first proves that the elements of ﬁ( x241)m are obtained as products of linear

monic skew polynomials (X + A1)+ (X + Ap,) where Aq,..., A, are elements of
IF,> such that

Vie {1,...,m},\PTt = 1

Vi € {1,...,m—1},)\i)\i+1 ;é 1, (4)

VJ (S {1, ey L%J}, (A2j—1)\2j)2 =1.
Namely, consider h in Q(Xzﬂ)m. As h divides (X2+41)™ and as X2 +1 is irreducible
with degree 1 in F,[X?], h is a (not necessarily commutative) product of linear
monic skew polynomials dividing X2 + 1 ([6, Lemma 13 (2) ] or [16, page 6]).
Furthermore, the degree of h is equal to m (because deg(6(h?) - h) = 2m), therefore
there exists Ay,..., Ay, in IF,2 such that :

h=(X4+A)- (X +\p) where Vi € {1,...,m}, \P*" = —1.

In particular, the first relation of (4) is satisfied. As X2 + 1 does not divide h,
according to Corollary 1, we have :

Vie{l,...om—1}, (X +N) - (X +Niy1) # X2+ 1. (5)

Therefore

Vi € {1,...,m— 1};AiAi+1 7§ 1,
which is the second relation of (4). The following expression of h* can be obtained
using an induction argument (left to the reader) :

B = (X + Am) - (X + A1)



where for 4 in {1,...,m}, ); is defined by :

) 1/ Xix Ao N)? difi=1 (mod 2),
A = 1 o (6)
¢ -1/ A X ——-————ifi=0 (mod 2).
JNx Gy i =0 (mod 2)
Furthermore, X241 does not divide k%, otherwise X2+ 1 would divide h. Therefore

Vie {l,...,m—1} (X +X 1) (X +N) # X2+ 1. (7)
The relation §(hf) - h = (X2 4 1)™ can be written

(X4+0An) - (X +000) - (X 4+ A1) (X + ) = (X2+1)™. (8)

As X% + 1 is central, the factorization of the skew polynomial (X2 + 1)™ into
the product of monic skew polynomials dividing X2 + 1 is not unique, therefore,
according to Corollary 1, X2 +1 is necessarily the product of two consecutive monic
linear factors of the left hand side of (8). According to (5) and (7), the only possibility
is

(X +0(\)- (X + M) =X2+1.

As X2 + 1 is central, the relation (8) can be simplified and one gets

(X 4+00m) - (X 4+00)) - (X 4+ X)) (X 4+ A\p) = (X2 + 1)1,

By repeating the same argument we get :

(X 4+0(A2) - (X + X)) = X2+ 1,

(X 4+ 60(A\n)) - (X.—i— Am) = X2 + 1.

Considering the constant coefficients of the skew polynomials involved in the above
equalities, we get that

Vie{l,...,m}, \0(N) =10\ =1,

and using the definition of A; given in (6), one gets, for i odd, (AiAi41)? = 1 (third
relation of (4)).

Conversely, consider h = (X + A1) -+ (X + Ayn) where Ay, ..., Ay, are elements of
IF > satisfying (4). According to the first relation of (4), the monic skew polynomials
X + \; divide X2 + 1. According to the second relation of (4) and to Corollary 1,
X2 +1 does not divide h. The skew polynomial A% is equal to (X + Ay ) - - - (X + A1)
where J; is defined by the relations (6). Furthermore, according to the third relation
of (4), if 7 is odd, (A; -+ \;)? = —1, therefore for all 7 in {1,...,m}, \;8(X;) = 1 and

10



X24+1=(X4+60(N\))- (X +X). The product 6(h?) - h can be simplified as follows :

O(h) - h = (X +0(0n) -+ (X +0(A) - (X + A1) - (X + An)
(X2 41) - (X +0(Am)) -+ (X +0(A2)) - (X +Aa) -+ (X + Am)
(because X2 + 1 is central)

' (X241 1 (X +000m)) - (X + Am)
= (X24+1)™

and one concludes that h belongs to H(x21ym.

e The relations (4) enable to count the number of elements of H(xz241ym. Namely
according to Corollary 1, the elements of ﬁ( x241)m have a unique factorization into
the product of linear monic skew polynomials dividing X2+ 1. Therefore the number
of elements of the set g(X2+1)m, is the number of m-tuples (A1,...,\,,) of (IF,2)™
satisfying the conditions (4).

Assume that p = 2 and that m is an integer greater than 1. Then the conditions
A2 # 1 and (A1 )2)? = 1 are not compatible, therefore the set ﬂ(xz,l)m is empty.
If m = 1, it is reduced to {X + 1, X + a, X + a?} where a* +a+ 1 = 0.

Assume that p is odd, then according to conditions (4), we have p+ 1 choices for A1,
1 choice for \g, p choices for A3, etc ... therefore one gets (p+ 1)pW”_1)/2J elements.

e Lastly, thanks to (4), the expression of h = (X +M\1) - - - (X + ;) can be simplified as
h= (X+/\1)~(X—/\%) e (X-"-Ag)'(X—%S) c = (X220 X 1) (X 24203 X 1) -+ -

Remark 2. Consider p =2, f(X?) = X2+ 1 and s a positive integer. According to
Lemma 2, the set H x241)2 can be written as :

25—1

H(X2+1)25 = |_| (X2 + 1)i : ﬂ(x2+1)25—2i.
1=0

According to Lemma 3, the sets ﬁ(xz_;’_l)zs—m‘ are empty when 2°—2i > 2. Therefore
the above equality can be simplified as follows :

Hixzpne = (X7 1)2:71 Hixzq1)0
={(X+1)*}.

One gets that for s > 0 there is only one Hermitian self-dual 8-cyclic code of dimension
2% over IFy.

Proposition 4 below gives a formula for the number of Hermitian self-dual
f-negacyclic codes whose dimension is a power of p when p is an odd prime number.
Proposition 4. Consider p an odd prime number, s a non-negative integer and 6 the
Frobenius automorphism over 2. The number of Hermitian self-dual 0-negacyclic
codes of dimension p°® over IF 2 is

11



Algorithm 2 Computation of H y2= 1 for p odd prime

Require: s
Ensure: Hx2ps

1: H<—®

2: fori:O,...,pS;1 do

3: M%%

4: L+ {OZ S IF;\)/QIJFI | Oélp+1 = —].7Ozi+1 7é —Ozi}

5 for o € L do

6: H+— {(X2+1) (X2 + 201X — 1) (X2 +2ayX —1)- (X +ays1)UH
7 end for

8: end for

9: return H

41 1
p = -
)
(p+1) o1
Proof.
Consider R = F,2[X;0]. The number of Hermitian self-dual #-negacyclic codes of
dimension p® over IF,2 is equal to #%H x2ps ;. According to Lemma 2, one has the

following partition :

M

Hxopo g = |_|(X2 1) H o pnyr—ns
=0

where M = psgl. According to Lemma 3, one has #H (y21yps-2s = (p+1) X plM—i]
therefore
M+l _q

M
_ M—i _ p
|
Example 3. Consider Fg = IF3(a) where a* + 2a +2 = 0 and 0 the Frobenius auto-
morphism over Fg. The monic solutions h € IFg[X;0] to the self-dual skew equation
O(hf) -h = X5 +1 are
h=(X*+1)-(X +a),

where a* = —1 and
h=(X?420X —1)- (X + ay),
where af = a3 = —1 and ag # —ay. We get the 16 Hermitian self-dual 0-negacyclic

codes of dimension 3 over IFg obtained in Example 2.
Example 4. Consider Fg = F3(a) where a®> + 2a +2 = 0 and 0 the Frobenius
automorphism over Fg. Consider

3 3 3 5 5 7 5 5 3 14
a=(a,a,a’,a,a”,a,a,a°,a°,a°,a",a°,a°,a°) € Fy".
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For all i in {1,...,14}, we have o} = —1 and for all i in {1,...,13}, i11 # —a,
therefore according to Lemma 3, the skew polynomial

h= (X242 X —1)--- (X2 + 203X — 1) - (X 4+ an4) € Fo[X; 6],

satisfies O(h%) - h = X°* 41, and the skew polynomial g = 0(h?) generates a [54,27]o
Hermitian self-dual code. Furthermore, its minimum distance is 18, which is the best
known minimum distance of [54,27] linear codes over Fg.

3.2.3 Construction of Hps for f in F

The aim of this subsection is to construct Hps for f in F and to compute its number
of elements.
Consider f = f(X?)in F. Recall that according to Lemma 2, one has the partition:

5]

’pr-? = |_| fi 'gfps—za‘,,

i=0
where for m in N, the set H ¢ is defined by
Hpm ={h € Hysm | f does not divide h}.

Lemma 4 below generalizes Lemma 3 and uses the same type of arguments linked to
the factorization of skew polynomials.

Lemma 4. Consider p a prime number, 0 the Frobenius automorphism over IF,2,
R =T,2[X;0], m a non-negative integer and f = f(X?) in F with degree d =25 > 1
in X2. The set Hgm is equal to

{h1~--hm | hj € Hy hj # H(hﬂ-_l)}

and has (1 + p®)p®™=1) elements.

Proof. To simplify the presentation, the following notations will be used in this
proof: h = h(X), f = f(X?).

Consider h in Hm. As h divides f™ and f is irreducible in IF,[X?], all the irre-
ducible factors of h divide f and have the same degree d ([6, Lemma 13 (2)] or [16,
page 6]):

m
h = H h;, h; monic,deg(h;) = d, h;|f, h; irreducible.
i=1
Furthermore, f does not divide h, therefore according to Proposition 3, for all j in
{1,...,m —1}, h; - hj41 is distinct from f.
Using an induction argument (left to the reader), one gets the following expression
of hf:




where uy = land fori € {2,...,m}, u; = (hy -+ hij—1)o is defined as the constant coef-
ficient of hq - --h;—1. Furthermore, this factorization (into the product of irreducible
monic polynomials of same degree d dividing f) is unique (because the factorization
of h is unique).

As the factorization of f™ into the product of irreducible factors is not unique
(because f™ is central), according to Proposition 3, f™ = @(h?) - h must have two
consecutive irreducible monic factors whose product is f. As h and h? do not possess
two consecutive factors whose product is f, necessarily, G(ihhl ~u1) - hy = f, and
proceeding by induction, one gets

. 1 1 _
Vje{l,....m},0 (th -uj> h; = fand hjy, # G(M—hE -pi;) when j #m.  (9)
J

J

Conversely, consider h = hy - - - h,, with O(M%_hg- “py) - hy = fihjp # G(M—ihg - )
and p; constant coefficient of hy---h;_;. Then O(h%) - h = f™ and hj - hj11 # f.
Furthermore, the skew polynomials h; are all irreducible because they are non-trivial
factors of f, and f is irreducible in IF,[X?]. Therefore according to Proposition 3, the
skew polynomial A is not divisible by f and it belongs to ﬁfm.

To conclude, we get that

h=hy - hm,
B OGERS - py) - by = f,
h€Hpn &S hj #0GER] - ),
pa =1,
pj = (hi---hj_1)o,j # 1.
Lastly, as f(X?) = f%(X?), the degree of f(X?) in X? is even, therefore, from the
equality (9), one gets that for all j € {1,...,m}, the degree of h; is even and the
constant coefficient of h? is

1 _ 1 ;
=D (v — Talo” Furthermore, the constant coefficient

of fis equal to 1 because f(X?) = ff(X?), therefore, following (9), we get

Vie{l,...,m},0 (Mlj(h?)oM]) (hj)o =1

and
Vje{l,...,m},0((hj)o) = (hj)o-
As i is defined as the constant coeflicient of hy --- h;_1, it is fixed by 6, therefore
we get :

h=nhi - hm,
heHm e 00 h;=f,
hjsr # 0(hY).

The number of elements of H s follows from the fact that #y has 1+ p® elements
([9, Lemma 3.3]).
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Algorithm 3 Computation of H s for f € F

Require: f,s,
Ensure: Hp-

1. Hy < {heR|OY)-h=f(X?2)}

2: H<—@

3: forizO,...,Lpsglj do

4 m<—p—2

50 L {u=(ur,...,um) € Hf™ | uip1 # 0(u;)}
6: forue L do

7 H+— {f(X?)uy-un} UH

g8: end for

9: end for

10: return H

The construction of the set Hgp+ for f in F is deduced from Lemma 2 and Lemma
4.
Proposition 5. Consider p a prime number, 0 the Frobenius automorphism over IF 2,
R =T,:2[X;0], s a non-negative integer and f = f(X?) in F with degree d = 25 > 1

pd@+)
in X2, The set prs has 5 elements.
p° —1
5]
Proof. According to Lemma 2, H pps = |_| f -ﬁfps_zq: and according to Lemma
i=0

4, ﬁfm has (14 p°)(°)™~ ' if m # 0 and 1 element if m = 0. Therefore H s has
Zz(,igofl)ﬂ(l +p%)(p?)P" =%~ elements if p is odd and 1+ 25;8171(1 +20)(29)%" 21

s(p°+1) _q

elements otherwise. In both cases one gets #H s = P

s(p°+1) _q

Corollary 2. If X% + 1 belongs to F, then there are 2
0-negacyclic codes of length n = 49p*® over IF .

T Hermitian self-dual

Proof. We apply Proposition 5 to f = f(X?) = X% +1. =

Example 5. We give here an example of a [36,18,13] Hermitian self-dual code over
Fo = F3(a) where a®> + 2a + 2 = 0. Consider 0 the Frobenius automorphism over
Fy and the skew polynomial ring R = Fo[X;0]. We have X* +1 € F, and the set
Hxay1 of the irreducible skew polynomials H satisfying 0(H®) - H = X* + 1 is equal
to {X?+ X +2,X?2+a?X +2,X2+2X +2, X2+ a5X +2}.

Consider the product of 9 elements of Hxay1 :h=(X?+X +2)-(X?+ X +2)-
(X24+a2X +2) (X24+a?X +2) (X24+ X +2) (X2 +a?X +2) (X2 +a?X +2) - (X2 +
(12X—|—2) . (X2—|—2X+2) — Xlg—|—a3X17+a5X16—|—2X15—|—a2X14+a2X13—|—aX12—|—
A" XM +a" X104+ a3 X%+ a3 X8 +a" X"+ a5 X0+ a? X5+ aP X1 +2X3 +aX? +aPX +2
mn R.

The skew polynomial h belongs to Hxay1)9 and the skew polynomial g = 6(h%)
generates a Hermitian self-dual 6-negacyclic [36,18,13] code over FFy.
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3.2.4 Construction of ’prs for fin G

In this section we propose an algorithm for the construction of H s for f = gg"in G
which relies on the construction of all the irreducible skew polynomials dividing g(X?)
in R (see Appendix A of [9] ).

We first recall that the set H fpe can be partitioned as follows (see Lemma 3.2 of
8).
Lemma 5. Consider p a prime number, 0 the Frobenius automorphism over IF,
R = F2[X;0)], s a non-negative integer and f = f(X?) = g(X?)g*(X?) in G with
g = g(X?) # ¢*(X?) irreducible in ,[X?]. One has the following partition

Hps = (0 U?:oz gzgh “H pps—its) -

The construction of each set Hm will rely on the construction of a new set of
special factors of g(X?)™.
Lemma 6. Consider p a prime number, 0 the Frobenius automorphism over IF,z,
R =TF,2[X;0]. Consider g(X?) an irreducible polynomial of Fp[X?] and Ry(x2ym the
set of all right factors u of g(X?)™ which are not divisible by g(X?) and which do not
divide g(X?)™~1. We have

Ry(x2ym = {ur -+ U | u; monic irreducible, u;|g(X>) and u; - w41 # g(X*)}.
Proof.

1. As g(X?) is irreducible in F,[X?], it is the product of two irreducible skew poly-
nomials of degree equal to degy2 g(X?), therefore g(X?)™ is the product of 2m
irreducible skew polynomials of same degree. Assume that g(X?)™ = uy---u, -
vy - vg with 7+ s = 2m and 7 > m+ 1; then g(X?) divides u := g - - - u,.. Namely,
assume that g(X?) does not divide u. As g(X?) divides uy ---u, - vy -+ v then,
according to Proposition 3, g(X?) = u, - vy or there exists i in {1,...,s — 1} such
that g(X?) = v; - vi41, therefore g(X?)™™1 = @y -+ @z - 01 -+ 05 with 7 > m and
74+ § = 2(m — 1); using an induction argument, we get a contradiction.

2. Assume that v = uq - - - u,, where for 7 in {1,...,m}, u; is a monic irreducible skew
polynomial dividing g(X?) and u; - u;41 # g(X?) fori € {1,...,m — 1}.

As u; divides g(X?), u divides g(X?)™. Furthermore, according to Proposition
3, g(X?) does not divide u because u; - uj+1 # g(X?). Assume that u divides
g(X?)m=1 then there exist m — 2 irreducible skew polynomials vy, ..., v, _2 such
that g(X2)™ L =y Uy V1 Vg = Up Uy - V] -+ Vs With 7 + 5 = 2(m — 1)
and 7 > m. Then according to point 1 of the proof, g(X?) divides u, which is
impossible.

3. Assume that u divides g(X?)™, u does not divide g(X?)™~! and g(X?) does not
divide u. Consider r < 2m such that © = uq - - - u, where u; is irreducible and divides
g(X?). Necessarily, u divides g(X?)", therefore, as u does not divide g(X?)™ ™!, we
have r > m. Assume that r» > m + 1, then according to point 1 of the proof, g(X?)
divides u, which is impossible. Therefore, 7 = m and as g(X?) does not divide u,
according to Lemma 3, we have for all 4 in {1,...,r — 1}, u; - u;41 # g(X?).
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Proposition 6. Consider p a prime number, 0 the Frobenius automorphism over
F,2, R = F2[X;0]. Consider f(X?) = g(X?)g*(X?) where g(X?) # ¢%(X?) is an
irreducible polynomial of F,[X?] and the map ¢ defined by :

¢: Rg(X2)m — ﬁf(XZ)WL
u + lerm(u, v) where O(uf) - v = gf(X2)™.
The map ¢ is a bijection and the set gf(Xz)'m has (1 +p5)p‘5(7”_1) elements where
§ is the degree of g(X?) in X2.

Proof.

® First the map ¢ is well defined. Namely, consider u in Ry(x2)m, then u divides
g(X2)™ it does not divide g(X?)™~! and it is not divisible by g(X?). Furthermore,
according to Lemma 6, the degree of u is equal to dm. Consider v in R such that
g (X%H)™ = 0(u?) - v and h = lerm(u,v), then the degree of v is dm and as u and v
are leftcoprime, the degree of h is equal to 26m. As g(X?) does not divide v and
¢%(X?) does not divide v, g(X?) and g%(X?) do not divide h. Consider % and ¥ in R
such that h = u-% = v-9. Then, O(h?)-h =V -0(v")-u-@ = U-(u?)-v - is divisible
by the central polynomials 8(v?) - u = g(X?)™ and 6(u?) - v = ¢g*(X?)™, therefore
f(X?)™ divides #(h?) - h. Considerations on the degrees lead to 6(h%)-h = f(X?)™.

* Consider h in Hy(x2)ym, then §(hf) - h = f(X?)™ with g(X?) { h and ¢*(X?) { h.
Then h = lerm(u, v) where u = geld(h, g(X?)™) and v = geld(h, g(X?)2™).
The skew polynomial u belongs to the set Rgy(x2)m. Namely, u divides g(X Zym
by construction; g(X?) does not divide h, therefore it does not divide u; lastly u
does not divide g(X?)™~1, otherwise g(X?) would divide #(h?), which is impossible.
Therefore, according to Lemma 6, v = u; - - - u,, where uq, ..., Uy, are m irreducible
skew polynomials dividing ¢(X?) and such that u;-u; 1 # g(X?) fordin {1,...,m—
1}.
In the same way, one gets that v = vy - - - v,;, where vy, ..., v,, are m irreducible skew
polynomials dividing ¢%(X?) and such that v;-v; 1 # ¢%(X?) foriin {1,...,m—1}.
Now consider U and V in R such that h = u-U = v -V, then 6(h?) = V - 6(v") and
Oh%) -h =V -0(v") -u-U. As O(hf) - h = g(X?)™g#(X?)™ is central, we get O(vf) -
w-U-V = g(X?)™g%(X?2)™. We deduce from this equality that lclm(g(X2)™, U - V)
divides 0(v") - u-U - V. Therefore g(X2)™ divides 6(v") - u and considerations on the
degrees of the polynomials lead to g(X?2)™ = 0(v?) - u.

® The elements of Rgy(x2)m are of the form g; - - g, where g1, ..., g are irreducible
monic factors of g(X?) and g; - gi41 # 9(X?). As g(X?) has 1+ p® monic irreducible
factors ([16] or [9, Appendix Al), we get that #H (x2)m = (14 p?)p?(m=b.

Proposition 7. Consider p a prime number, 0 the Frobenius automorphism over IF 2,
R =TF,2[X;0], s a non-negative integer and f = f(X?) in G with degree d = 25 > 1

S(p%+1) _ o, s_ ) s
in X%, The set H e has (" 2@,53)1()1;1) AP+ loments.
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Algorithm 4 Computation of H e for f=g- ¢f€g
Require: f €G,s
Ensure: H s

1: Z « set of monic irreducible right divisors of g(X?) in R

2. H <+ @

3: fort=0,...,p° do

4 for 7=0,...,p°—ido

5 m++p°—1—73

6 R {uy - um | u; € Tu; - uipr # 9(X3?)}
7: for u € R do
8
9

v < quotient of the division of ¢g%(X?)™ by 6(u?)
H < {g(X?)" ¢%(X?)7 - lerm(u,v)} UH

10: end for

11:  end for

12: end for

13: return H

Corollary 3. If X* + 1 belongs to G, then there are @’ +1)721E;§E)1()12+p6)+4p5+4

Hermitian self-dual 0-negacyclic codes of length n = 46p° over IF 2.

Proof. We apply Proposition 7 to f = f(X?) = X% +1. =

Example 6. The polynomial f(X?) = X6 + 1 factorizes over F3[X?] as f(X?) =
g(X?)g%(X?) where g(X?) = X8+ X*+2 and ¢*(X?) = X8 +2X* +2 are irreducible
in F3[X?]. Consider Fg = F3(a) with a®> +2a+2 = 0 and 0 Frobenius automorphism
over Fy. Consider the following irreducible skew polynomials dividing X® 4+ X* +2 in
R=Tg[X;0] :u; = X*+a?X3+a" X% +2X +a",us = X* +aSX3+2X?+a’X +a”
and uzs = X* + a®>X? 4+ a®X + a. As u1 - us and us - ug are distinct of X8 + X* + 2,
the skew polynomial u = uy - ug - uz belongs to R(xs; xayo)3. Consider v in R such
that O(u?) - v = (X8 +2X* 4+ 2)3 and h = lerm(u,v). Then the skew polynomial
g=0(h%) = X +aXB+aP X2+ X+ X204 a XV +aS X B +a?2X T +a3 X 1P 4 X144
A" XB+aS X2+ X+ X 10407 X9 +a5 X T +ab X O+ a5 X+ X 42X 3 +aP X2 +a5 X +1
generates a [48,24,16] Hermitian self-dual 6-negacyclic code over Fy.

3.2.5 Construction and enumeration of Hermitian self-dual
0-negacyclic codes.

Recall that there is a counting formula for Hermitian self-dual #-cyclic codes of odd
dimension over 4. In what follows we give a formula for the number of Hermitian
self-dual #-negacyclic codes of any dimension over IF,> where p is a prime number and
6 is the Frobenius automorphism over IF,.. When p is even, #-negacyclic codes are
f-cyclic codes.

Theorem 1. Consider p a prime number, 6 the Frobenius automorphism over IF,2,
k a positive integer, s,t two integers such that k = p°® Xt and p does not divide t. The
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number of self-dual 0-negacyclic codes over I,2 with dimension k is #H x2x 1 =

Sp*+1) 1 (PP +1) —2ps — 3)(1 +p%) 4+ 4p° + 4
p p p p i4
N x H s _1 X H (pé _ 1)2
FEF FIX?*+1 feg,fIX?* 41
deg(f)=26 deg(f)=26

where

3 if p=2ands=0,

N=1{1 if p=2and s >0 orp odd and t even,
po41
(p+1) ;_1—1 if p odd and t is odd.

Proof. According to Proposition 1 we have

#Hyonq = N x II H#H oo
FEFUG, fIX?F+1,

deg(f)=26
where
N— 1 if X2 41 does not divide X2¥ 4 1,
~ | #H(x241)e° otherwise.

Therefore, N = 1 if ¢ is even and p odd; otherwise N = #H x2,q) is given
by Remark 2 and Proposition 4. Furthermore, for f in F UG, #Hps is given by
Proposition 5 and Proposition 7. =

Algorithm 5 Computation of Hxn11 (factorization strategy)

Require: k&
Ensure: Hx2r,4
1: Compute s,t such that k =p® xt and pt¢
2: Compute f1(X?),...,f-(X?) € {X? + 1} UF UG such that X* +1 =
f1(X?) - f(X?) in Fp[X?] and ged(f;(X?), f;(X?)) =1 in F,[X?] for i # j.

3: Using Algorithms 2, 3 and 4, compute H,( x2)ps
4: H <+ @

5. for (hl, R hr) S Hfl(XZ)pS X oo X /HfT(XZ)pS do
6: H <« HU{leem(hy,..., h.)}

7. end for

8 return H

Example 7. We give here an example of a [30,15,12] Hermitian self-dual code over
Fo = F3(a) where a®> + 2a + 2 = 0. Consider 0, the Frobenius automorphism over
Fg and the skew polynomial ring R = Fo[X;0]. We have X30 +1 = ((X?)® +1)3 =
(X2 +1)3(X8 — X0+ X% — X2 +1)3.

Consider hi = X3 +a?2X?+a*’X +a” € H(x241)s and ho = X2 4aXM4+a"X104
X04aP X8 4+aSXT+2X0+a? XP+aP X4 +2X3+a" X2 +aS X +1 € H(xs_xopxi_x241),
then the skew polynomial h = lerm(hy, he) belongs to Hxso 1 and the skew polynomial
g = 0(h?) generates a [30,15,12] Hermitian self-dual 0-negacyclic code over Fy.
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Example 8. We consider here Hermitian self-dual 0-cyclic codes with length 68 over
F, = Fy(a) where a’>+a+1=0 and 0 is the Frobenius automorphism over IFy.
According to [13], the best known minimum distance of Hermitian self-dual codes of
length 68 over Fy is equal to 16. We provide here an example of a [68,34, 18] Hermitian
self-dual code over F,. Consider hy = X2 +1,

hy = (X34+ X+ X+ X3 41) (X340’ X +a X +a? X+ a? X +a’ X3 +aX? +a’ X +1)
and
hy = (X3 +a?X " +a X+ X +aX? +a® X +1)- (X®+ > X+ X°+ X + X3 +a® X +1).

We have hq S H(X2+1)2,h2 € H(X16+X10+X8+X6+1)2 and hs S
H(x16 4 X144 X124 X84 X 44 X241)25 therefore h = lerm(hy, ho, hg) belongs to Hxsaq41)2-
One checks that the 6-cyclic code of length 68 and skew generator polynomial
g = ©(h*) is a Hermitian self-dual (68,34, 18] code. We give below the expression of g :
g= X34—|—CLX33 +CL2X32 —|—CLX31 +ax30 +CL2X26 +ClX23 +a2X22 +X21 —|—a2X20—|—
a2 X1+ a2 X+ a2 XM+ XB + a2 X2 +aX M +a? X8 +aX* +aX? +a? X2 +aX + 1.

4 Existence conditions of Hermitian self-dual
0-cyclic and 6-negacyclic codes over IF,. with
e > 2 even.

In what follows, we assume that ¢ = p® where p is a prime number and e is an even
integer. Therefore the automorphism o is defined by ¢ = Frobsz : x ~— zP? where
Frob: x — zP is the Frobenius automorphism over IF;. We consider the non-negative
integer r defined by

0= Frob" :z+— 2P,

and the ring R = IF,[X; 0] of skew polynomials.

We denote ¢ the order of § and ]FZ the fixed field of 6.

We denote p the integer such that 2# || p + 1, which means that 2/ divides p + 1
and 2#*! does not divide p + 1.

We recall that for FF = F(X*) in IFg[XE], the set Hr is defined by

Hp :={h € R:=TF,[X;0] | his monic and o(h?) - h = F(X*)}.

The Hermitian self-dual #-cyclic codes of length n over IF, are completely deter-
mined by the set Hxn_; while the Hermitian self-dual #-negacyclic codes are
determined by Hxn~ 1. Recall also that we assume here that the order ¢ of 6 divides
the length n of the considered codes.
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4.1 Existence conditions of Hermitian self-dual #-cyclic codes
over IF,. with e > 2 even.

Recall that over Iz, there is no Hermitian self-dual §-cyclic code if p is an odd prime
number. In what follows we prove that this non-existence result can be extended to
F, = IF,.. We start with an intermediate lemma. :

Lemma 7. Consider F(X%) = Fy(X*)Fy(X*) € ]Fz[Xg] where F1(X%) and Fy(X*)
are coprime in ]FZ[XZ] and such that U(Ff) =F;. If Hp # 0 then Hp, # 0.

Proof. Consider h in R such that o(hf)-h = F(X*). Consider, for i € {1,2}, h; =
geld(h, F;(X*)) and H; in R such that h = h;- H;. We have o(h?) = H;-o(h?) where H;
is in R. Therefore F(X¢) = o(h%)-h = H; 'O’(hhl) ~hy-Hy. As F(X?") is central, we get
that o(h?) - hy divides F(X?). As Fy(X*) also divides F(XY), lerm(o(h}) - hy, Fo(XY))
divides F(X*). But F5(X?) is a central polynomial which has no common factor with
o(h?) - hy because hy and o(h?) both divide Fy(X¢) = o(F¥(X?)) and Fy(X?) is co-
prime with Fy(X?). Therefore lerm(o(h}) - hy, Fo(X?)) = (k%) - hy - Fo(X*) divides
F(XY) = F(XY)Fy(XY) and o(h?) - hy divides Fy(X?). In the same way, o(h}) - hy
divides Fy(X*). We conclude by noticing that 2deg(h) = 2(deg(hi) + deg(h2)) =
deg(F1) + deg(Fz). Assume that 2deg(h1) < deg(F1), then deg(F1) + deg(Fs) <
deg(Fy) + 2deg(hs), therefore deg(Fy) < 2deg(hs), which is impossible. Therefore we
get that o (k) - hy = Fy(XY). m
Theorem 2. Ifp is an odd prime number then there is no Hermitian self-dual 8-cyclic
code over IFpe.

Proof.

Assume that there exists a Hermitian self-dual #—cyclic code of dimension k
over FFpe. Then the set Hx2x_; is non-empty. Consider f,(X*) = (X’ — 1)?" and
f2(XE) = (X% —1)/(X*=1)P". As f1(X?) is a central polynomial coprime with fa(X?)
and satisfying o( ff) = f1, according to Proposition 7, the set Hy, (x¢) is non-empty.
Consider H € Fpe[X; 0] with degree d and constant coefficient « such that

o(HY - H = (X' —1)" .

U(Gdia))a:_l.

therefore fr = ey where p = — " and we
ged(e,r)

Then we have

Furthermore, we have £ =
ged(e,r)
have :
gof? = Frob%"'# = Frongr# = Frobs(Hee’) — gltup”
As the order of o is 2, if y is odd, then o o #% is the identity and we have —1 =

1
o (W()) « = 1 which is not possible because the characteristic of the field is odd. If
e
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p is even, we have o 0 8¢ = . Therefore #¢ is the identity, so ¢ divide d = %ps, which
is impossible because p is odd. =

4.2 Existence conditions of Hermitian self-dual 0-negacyclic
codes over IF,c with e > 2 even.

In what follows, we will give necessary and sufficient conditions for the existence of
Hermitian self-dual § —negacyclic codes over IFj. where p is an odd prime number.
Lemma 8. If one of the following conditions is satisfied, then there exists a Hermitian
self-dual 0-negacyclic code of dimension k over IFpe:

(i) §=1 (mod 2) and r =1 (mod 2);
(1)) p=1 (mod 4);
(#ii) p =3 (mod 4) and g =0 (mod 2);
(w) p=3 (mod 4), £ =1 (mod 2), r =0 (mod 2) and k=0 (mod 2#~1).
Proof.

Assume that (i) is satisfied, then the restrictions of § and of o to IF,2 are equal
to the Frobenius automorphism, therefore according to Theorem 1, there is a monic
skew polynomial h in IF,2[X;6] C R such that o(h%) - h = X?¥ 4 1.

Assume that one of the assertions (i7), (9¢) or (iv) is satisfied. As the order ¢ of
is equal to ., if (4i7) is satisfied, we have k x ged(e,7) =0 (mod 2) and r xk =0
(mod 2). Therefore, according to [7, Proposition 4 and Proposition 5 or Table 1], the
equation h-h = X2k 41 has a solution in F,c/2 [X; 0]. Furthermore, as o is the identity
over IF /2, we get that there exists & in IF./2[X; 6] C R such that o(h%)-h = X?* +1.

Lemma 9. Assume that p = 3 (mod 4), § =1 (mod 2), 7 =0 (mod 2). Ifk # 0
(mod 2#~1), then there is no Hermitian self-dual 0—negacyclic of length n = 2k over
Fpe.

Proof. Assume that there exists a Hermitian self-dual §—negacyclic code of length
n over IFpe, then Hxniy # 0. Consider s € IN, t € IN* not divisible by p such that
n = ltp* and a in IN* such that 2! divides exactly k. That means that 2¢~! divides
k but 2¢ does not divide k. Furthermore, p = 3 (mod 4), § = 1 (mod 2), r = 0
(mod 2), therefore p and ¢ = m are odd numbers, and 2% divides exactly t. As a
consequence, we have

X" 41 =

s

((Xé)t n 1) |
= (X9 +1)" Pxoy,

2% p
where F(X*) € IF,[X"] is coprime with <(X[) + 1)
As k # 0 (mod 2#71), we have p > a, therefore, according to [2, Theorem 1],
the factorization of Y2* + 1 € IF,[Y] over I, into the product of distinct irreducible
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polynomials is of the form
Y 4 1=f(Y) - faar(Y),

where f; = Y2 4 b;Y + 1 is irreducible in IF,[Y]. Furthermore f;(Y) = gig° over IF)2
1

where g; =Y + a;. One has gE =Y + — and U(g?) = g;.
py

Therefore, according to Lemma 7 applied to Fy (X*) = (g; (Xf))ps and Fp(X?) =
(X" +1)/F1(X"), there exists a skew polynomial H; € IF,¢[X; 6] such that

s

o(H}) - H; = (gi(Xe))pS = (X* +a¢)p .

The degree of O'(HE) -H; is even and the degree of (X + ai)ps is odd, a contradiction.
|

Theorem 3. Consider p an odd prime number, e an even positive integer, r a
non-negative integer, k a positive integer and 6 the automorphism over Fy = Fpe
defined by: a — a?" . There exists a Hermitian self-dual 6—negacyclic code over Fpe of
dimension k if, and only if, one of the following conditions is satisfied :

1. p=1 (mod 4);

2. p=3 (mod 4) and § =0 (mod 2);

3. p=3 (mod4), §=1 (mod2) andr =1 (mod 2);

4. p=3 (mod4), £=1 (mod2), r =0 (mod 2) and k=0 (mod 2#~1).

Proof. The proof is directly deduced from Lemma 8 and Lemma 9. =

Remark 3. Recall that if 0 = id (i.e. r =0), and e = 2, we get Hermitian self-dual
negacyclic codes over IF 2. According to Theorem 3, there exists a Hermitian self-dual
negacyclic code of dimension k over IFy,2 if, and only if, one of the following conditions
is satisfied

1. p=1 (mod 4)
2. p=3 (mod 4) and k =0 (mod 2*71) where 2#||p + 1.

This is equivalent to p + 1 # 0 (mod 2°T1) where 2% || n and we get the existence
conditions given in [18, Theorem 3.9].

Remark 4. If 0 is the Frobenius automorphism (i.e. r = 1), then there always exists
a Hermitian self-dual 0-negacyclic code of any dimension over IFp..

5 Conclusion.

This text gives an overview of the construction of Hermitian self-dual #-cyclic and
f-negacyclic codes of length n over IF,> when 6 is the Frobenius automorphism. Exis-
tence conditions for these codes over any finite finite field IF; where ¢ is an even power
of a prime number are also given. The construction of this family of codes could be
generalized over IF,» following [1]. Furthermore it happens that one can also con-
sider Hermitian self-dual skew constacyclic codes which are not skew negacyclic nor
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skew cyclic, on the contrary to Euclidean self-dual skew constacyclic codes which are
necessarily skew cyclic or skew negacyclic.
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