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In this text, we first consider the existence conditions and the construction of Hermitian self-dual θ-cyclic and θ-negacyclic codes over IF p 2 , where p is a prime number and θ is the Frobenius automorphism over IF p 2 . We then give necessary and sufficient conditions for the existence of Hermitian self-dual θ-cyclic and θ-negacyclic codes over IFpe where e is an even integer greater than 2.

Introduction

For θ an automorphism of a finite field IF q , θ-cyclic codes (also called skew cyclic codes) of length n were defined in [START_REF] Boucher | Skew-cyclic codes[END_REF]. These codes are such that a right circular shift of each codeword gives another word which belongs to the code after application of θ to each of its n coordinates. If θ is the identity, θ-cyclic codes are cyclic codes.

Skew cyclic codes have an interpretation in the Ore ring R = IF q [X; θ] of skew polynomials where multiplication is defined by the rule X • a = θ(a)X for a in IF q . Euclidean self-dual skew cyclic codes of length n over IF q have been considered in many previous works among which [START_REF] Caruso | Selfdual skew cyclic codes[END_REF][START_REF] Irwansyah | A note on the construction and enumeration of Euclidean selfdual skew-cyclic codes[END_REF]. Their existence conditions were first established in [START_REF] Boucher | A note on the existence of self-dual skew codes over finite fields[END_REF], then their construction and enumeration were obtained over IF p 2 when p is a prime number ( [START_REF] Boucher | Construction and number of self-dual skew codes over IF p 2[END_REF]) and over IF p n when p is a prime number and θ is the Frobenius automorphism ( [START_REF] Batoul | A construction of self-dual skew cyclic and negacyclic codes of length n over IF p n[END_REF]). In this text we are concerned with Hermitian self-dual skew cyclic and skew negacyclic codes whose study was briefly initiated in [START_REF] Boucher | A first step towards the skew duadic codes[END_REF]. We first consider Hermitian self-dual θ-cyclic and θ-negacyclic codes over IF p 2 where p is a prime number and θ is the Frobenius automorphism over IF p 2 . Then we give necessary and sufficient existence conditions for Hermitian self-dual skew cyclic and skew negacyclic codes over IF q .

The text is organized as follows. In Section 2, we first give generalities on θ-cyclic and θ-negacyclic codes. In Section 3, we consider Hermitian self-dual θ-cyclic and θnegacyclic codes over IF p 2 when θ is the Frobenius automorphism. In subsection 3.1, we first characterize these codes by a system of homogeneous polynomial equations of degree p + 1 (Algorithm 1). Then, in subsection 3.2, by using factorization properties of skew polynomials, we prove that there exists no Hermitian self-dual θ-cyclic code of any dimension over IF p 2 (Theorem 2). We also provide a construction and an exact formula for the number of Hermitian self-dual θ-negacyclic codes (Algorithm 5 and Theorem 1). We give many examples of Hermitian self-dual codes over IF 4 and IF 9 , including a [68,34,[START_REF] Yang | On self-dual constacyclic codes over finite fields[END_REF] Hermitian self-dual code over IF 4 , which improves the best known Hermitian self-dual code of length 68 over IF 4 (according to [START_REF] Gaborit | Table of Hermitian self-dual codes over IF 4[END_REF]). All the computations were made with the Magma algebra system ( [START_REF] Bosma | The Magma algebra system. I. The user language[END_REF]). In Section 4, we prove that there is no Hermitian self-dual θ-cyclic code over any finite field IF p e with e even and p odd (Theorem 2). Then we give necessary and sufficient existence conditions for Hermitian self-dual θ-negacyclic codes defined over IF p e with e > 2 (Theorem 3).

Generalities on self-dual skew constacyclic codes

For a finite field IF q and θ an automorphism of IF q one considers the ring R = IF q [X; θ] where addition is defined to be the usual addition of polynomials and where multiplication is defined by the rule: for a in IF q X • a = θ(a) X.

(

) 1 
The ring R is called a skew polynomial ring or Ore ring (cf. [START_REF] Ore | Theory of non-commutative polynomials[END_REF]) and its elements are skew polynomials. When θ is not the identity, the ring R is not commutative, it is a left and right Euclidean ring whose left and right ideals are principal. Left and right gcd (gcld, gcrd) and lcm (lclm, lcrm) exist in R and can be computed using the left and right Euclidean algorithms. The center of R is the commutative polynomial ring Z(R) = IF θ q [X ] where IF θ q is the fixed field of θ and is the order of θ. Definition 1 ([6, Definition 1]). Consider a non-zero element a of IF q and two integers n, k such that 0 ≤ k ≤ n. A (θ, a)-constacyclic code or skew constacyclic code C of length n is a left R-submodule Rg/R(X n -a) ⊂ R/R(X n -a) in the basis 1, X, . . . , X n-1 where g is a monic skew polynomial dividing X n -a on the right in R with degree n -k. If a = 1, the code is θ-cyclic and if a = -1, it is θ-negacyclic. The skew polynomial g is called skew generator polynomial of C.

If θ is the identity then θ-cyclic and θ-negacylic codes are respectively cyclic and negacyclic codes.

Definition 2 ([6, Definition 2]). Consider an integer d and h =

d i=0 h i X i in R of degree d. The skew reciprocal polynomial of h is h * = d i=0 X d-i • h i = d i=0 θ i (h d-i ) X i .
If m is the degree of the trailing term of h, the left monic skew reciprocal polynomial of h is h :=

1 θ d-m (hm) • h * .
The Euclidean dual of a linear code C of length n over IF q is defined as

C ⊥ = {x ∈ IF n q | ∀y ∈ C, x, y = 0} where for x, y in IF n q , x, y := n i=1 x i y i is the (Euclidean) scalar product of x and y. The code C is Euclidean self-dual if C is equal to C ⊥ .
Assume that q is an even power of an arbitrary prime and denote σ the automorphism of IF q defined by σ(a) = a √ q for a in IF q . The Hermitian dual of a linear code C of length n over IF q is defined as

C ⊥ H = {x ∈ IF n q | ∀y ∈ C, x, y H = 0} where for x, y in IF n q , x, y H := n i=1 x i σ(y i ) is the (Hermitian) scalar product of x and y. The code C is Hermitian self-dual if C is equal to C ⊥ H .
In what follows we will only consider (θ, ε)-constacyclic codes with ε 2 = 1 and with length n divisible by the order of θ. That implies that the skew polynomial X n -ε is a central polynomial. Following [START_REF] Boucher | Autour de codes définis à l'aide de polynômes tordus[END_REF]Proposition 2], the Hermitian dual of a (θ, ε)constacyclic code C of length n and skew generator polynomial g is a (θ, ε)-constacyclic code of skew generator polynomial σ(h ) where h is defined by h•g = g•h = X n -ε and where the automorphism σ is extended to R by a i X i → σ(a i )X i . In particular the code C is Hermitian self-dual if, and only if,

σ(h ) • h = X n -ε. (2) 
The equation ( 2) is called Hermitian self-dual skew equation.

For F = F (X ) in IF θ q [X ], we define

H F := {h ∈ R | h is monic and σ(h ) • h = F (X )}.
3 Hermitian self-dual θ-cyclic and θ-negacyclic codes over IF p 2

We consider here the existence and the construction of Hermitian self-dual θ-cyclic and θ-negacyclic codes of length n = 2k defined over IF p 2 where θ is the Frobenius automorphism over IF p 2 . As q = p 2 , the automorphisms θ and σ are both equal to the Frobenius automorphism. The fixed field IF θ q of IF q is therefore IF p and the order of θ is = 2.

A first result was obtained in [START_REF] Boucher | A first step towards the skew duadic codes[END_REF] for θ-cyclic codes with dimension coprime with p. Namely, there exists a Hermitian self-dual θ-cyclic code of dimension coprime to p over IF p 2 if, and only if, p = 2. Furthermore, the number of Hermitian self-dual θ-cyclic codes with odd dimension over IF 4 was computed in [9, Theorem 3.7].

Polynomial system strategy

Hermitian self-dual θ-cyclic (resp. θ-negacyclic) codes of dimension k are completely determined by the set H X 2k -ε where = 1 (resp. = -1). In order to compute H X 2k -ε , a first strategy consists of solving the polynomial system satisfied by the coefficients of the solutions h of the equation θ(h ) • h = X n -(the automorphism θ being naturally extended to R by :

a i X i → θ(a i )X i ). Namely consider h = k i=0 h i X i in R with h 0 = 0, then θ(h ) • h = 1 θ k+1 (h 0 ) 2k =0   min(k, ) i=max(0, -k) θ i (θ(h k-i )h -i )   X .
Therefore we get that θ(h

) • h = X 2k -if, and only if,                          θ k+1 (h 0 ) = -h 0 = 0, ∀ ∈ {1, . . . , k -1}, i=0 θ i (θ(h k-i )h -i ) = 0, k i=0 θ i (θ(h k-i )h k-i ) = 0, ∀ ∈ {k + 1, . . . , 2k -1}, k i= -k θ i (θ(h k-i )h -i ) = 0.
The symmetries of the system enable to get rid of the last k -1 equations and we get :

θ(h )•h = X 2k -⇔                θ k+1 (h 0 ) = -h 0 = 0, ∀ ∈ {1, . . . , k -1}, 0≤i≤ i mod 2=0 h p k-i h -i + 0≤i≤ i mod 2=1 h k-i h p -i = 0, k i=0 h p+1 i = 0.
Remark 1. The solutions of the above system belong to the non-degenerate Hermitian variety defined by h p+1 0

+ • • • + h p+1 k-1 + h p+1 k = 0.
Therefore according to Theorem 8.1 of [START_REF] Bose | Hermitian varieties in a finite projective space PG(N, q 2 )[END_REF], there are at most

(p k+1 -(-1) k+1 )(p k -(-1) k ) p 2 -1
solutions. Furthermore, according to Theorem 6.3 of [START_REF] Datta | Number of solutions of systems of homogeneous polynomial equations over finite fields[END_REF], the number of solutions of this homogeneous polynomial system of k linearly independent equations into k + 1 variables with degree p + 1 is at most

p 2k-1 + p 2k-2 -1 p 2 -1 .
The aim of this section is to give an exact formula for the number of solutions of this system by using an approach based on the factorization of skew polynomials (Theorem 1). and assume that h k = 1. Then we get

θ(h )•h = X 2k -⇔            ∀ ∈ {N + 1, . . . , k -1}, 0≤i≤ i mod 2=0 h p k-i h -i + 0≤i≤ i mod 2=1 h k-i h p -i = 0, k i=0 h p+1 i = 0, where      θ k+1 (h 0 ) = -h 0 = 0, ∀ ∈ {1, . . . , N }, h = - 1≤i≤ i mod 2=0 h p k-i × h -i - 1≤i≤ i mod 2=1 h k-i × h p -i .
Therefore we get a polynomial system of N equations with k -N unknowns which we solve in Algorithm 1 by using an exhaustive search. Example 1. We consider the Hermitian self-dual θ-cyclic codes of dimension k = 3 over IF 4 = IF 2 (a) where a 2 +a+1 = 0. Their skew check polynomials h = X 3 +h 2 X 2 + h 1 X + h 0 satisfy the polynomial system :

h 2 + h 2 h 2 1 + h 2 1 h 0 = 0, h 3 0 + h 3 1 + h 3 2 + 1 = 0, where h 0 ∈ IF * 4 , h 1 + h 2 h 2 0 = 0.
We get 9 solutions :(a, 0, 0), (a 2 , 0, 0), (1, 0, 0) which give three Hermitian self-dual [START_REF] Boucher | Self-dual skew codes and factorization of skew polynomials[END_REF][START_REF] Bose | Hermitian varieties in a finite projective space PG(N, q 2 )[END_REF][START_REF] Blake | Explicit factorization of x 2 k + 1 over IF p with prime p ≡ 3 mod 4[END_REF] codes and (1, a, a), (1, a 2 , a 2 ), (a, 1, a 2 ), (a, a 2 , a 2 ), (a 2 , 1, a), (a 2 , a, a), which give 6 Hermitian self-dual [START_REF] Boucher | Self-dual skew codes and factorization of skew polynomials[END_REF][START_REF] Bose | Hermitian varieties in a finite projective space PG(N, q 2 )[END_REF][START_REF] Bosma | The Magma algebra system. I. The user language[END_REF] codes. Example 2. We consider the Hermitian self-dual θ-negacyclic codes of dimension k = 2, 3, 4 over IF 9 = IF 3 (a) where a 2 + 2a + 2 = 0.

• k = 2
The skew check polynomials h = X 2 + h 1 X + h 0 of the Hermitian self-dual codes of dimension 2 satisfy the polynomial system

   h 3 0 -h 0 = 0, h 4 0 + h 4 1 + 1 = 0, h 1 + h 3 1 h 0 = 0.
The set of solutions is {(-1, -1), (-1, 1), (-1, a 6 ), (-1, a 2 )}. The corresponding codes are [START_REF] Bosma | The Magma algebra system. I. The user language[END_REF][START_REF] Blake | Explicit factorization of x 2 k + 1 over IF p with prime p ≡ 3 mod 4[END_REF][START_REF] Bose | Hermitian varieties in a finite projective space PG(N, q 2 )[END_REF] 9 Hermitian self-dual codes.

• k = 3 Algorithm 1 Computation of H X n -wit 2 = 1 (polynomial system strategy) Require: k, such that 2 = 1 Ensure: H X 2k - 1: h k ← 1 2: F 0 ← {h 0 ∈ IF * p 2 | θ k+1 (h 0 ) = -h 0 } 3: M ← k-1 2 4: E ← F 0 × IF k-N -1 p 2 5: while E = ∅ do 6: Pick (h 0 , h N +1 , . . . , h k-1 ) in E 7: for = 1, . . . , N do 8: h ← - 1≤i≤ i mod 2=0 h p k-i × h -i - 1≤i≤ i mod 2=1 h k-i × h p -i 9:
end for 10:

if k i=0 h p+1 i = 0 then 11:
go to 6:

12: end if 13: for = 1, . . . , k -1 -N do 14: if 0≤i≤ +N i mod 2=0 h p k-i × h +N -i + 0≤i≤ +N i mod 2=1 h k-i × h p +N -i = 0 then 15:
go to 6: 

H ← H ∪ {X k + k-1 i=0 h i X i } 19: E ← E \ {(h 0 , h N +1 , . . . , h k-1
)} 20: end while 21: return H We look for (h 0 , h 1 , h 2 ) ∈ IF 3 9 such that :

h 2 + h 2 h 3 1 + h 3 1 h 0 = 0, h 4 0 + h 4 1 + h 4 2 + 1 = 0,
where

h 0 ∈ IF * 9 , h 1 + h 2 h 3 0 = 0.
We get the set of solutions {(a, 0, 0), (a 3 , 0, 0), (a 5 , 0, 0), (a 7 , 0, 0), (a, 1, a), (a, a, a 2 ), (a, a 3 , 2), (a 3 , 1, a 3 ), (a 3 , a, 2), (a 3 , a 3 , a 6 ), (a 5 , a 3 , 1), (a 5 , 1, a 5 ), (a 5 , a, a 6 ), (a 7 , a, 1), (a 7 , a 3 , a 2 ), (a 7 , 1, a 7 )}, therefore we have 16 Hermitian self-dual θ-negacyclic codes of length 6. For example the Hermitian self-dual θ-negacyclic code of length 6 with skew check polynomial h = X 3 + X 2 + aX + a 7 is a [START_REF] Boucher | Self-dual skew codes and factorization of skew polynomials[END_REF][START_REF] Bose | Hermitian varieties in a finite projective space PG(N, q 2 )[END_REF][START_REF] Bosma | The Magma algebra system. I. The user language[END_REF] code.

• k = 4

We look for (h 0 , h 1 , h 2 , h 3 ) ∈ IF 4 9 such that :

   h 3 + h 3 h 3 2 + h 3 2 h 1 + h 3 1 h 0 = 0, h 2 + h 3 h 3 1 + h 3 2 h 0 = 0, h 4 0 + h 4 1 + h 4 2 + h 4 3 + 1 = 0,
where

h 0 ∈ IF * 3 , h 1 = -h 3 h 0 .
We get the set {(1, 0, a 6 , 0), (1, 0, a 2 , 0), (1, 2, a, 1), (1, a 2 , a 3 , a 6 ), (1, a 6 , a, a 2 ), (2, 0, 2, 0), (1, 1, a, 2), (2, 0, 1, 0), (1, a 6 , a 3 , a 2 ), (1, a 2 , a, a 6 ), (1, 1, a 3 , 2), (1, 2, a 3 , 1)}, therefore we have 12 Hermitian self-dual θ-negacyclic codes of length 8. For example the Hermitian self-dual θ-negacyclic code of length 8 with skew check polynomial h = X 4 + X 3 + a 3 X 2 + 2X + 1 is a [START_REF] Boucher | Construction and number of self-dual skew codes over IF p 2[END_REF][START_REF] Bosma | The Magma algebra system. I. The user language[END_REF][START_REF] Bosma | The Magma algebra system. I. The user language[END_REF] code.

Factorization strategy.

In what follows we propose a strategy which was already used for Euclidean self-dual skew codes over IF p 2 ([8, Theorem 6.1] ) and for Hermitian self-dual θ-negacyclic codes of dimension coprime to p ([9, Theorem 3.7]). We give a practical way to construct the solutions which avoids the resolution of a polynomial system and we provide a counting formula for the number of solutions. This construction is based on Proposition 2 of [START_REF] Boucher | A first step towards the skew duadic codes[END_REF] that we recall below. Proposition 1. Consider IF q a finite field with q = p 2 elements where p is a prime number, θ : x → x p the Frobenius automorphism over

IF p 2 and R = IF q [X; θ]. Consider F (X 2 ) = f 1 (X 2 ) • • • f r (X 2 ) where f 1 (X 2 ), . . . , f r (X 2 ) are pairwise coprime polynomials of IF p [X 2 ] satisfying f i = f i . The map φ : H f1(X 2 ) × • • • × H fr(X 2 ) → H F (X 2 ) (h 1 , . . . , h r ) → lcrm(h 1 , . . . , h r )
is bijective.

We introduce the following notations: for

f = f (X 2 ) ∈ IF p [X 2 ], H f := {h ∈ H f | no non-constant divisor of f (X 2 ) in IF p [X 2 ] divides h in R}, F := {f = f (X 2 ) ∈ IF p [X 2 ] | f = f is irreducible in IF p [X 2 ] and deg X 2 (f ) > 1}, G := {f = f (X 2 ) ∈ IF p [X 2 ] | f = gg with g = g irreducible in IF p [X 2 ]}.

Non-existence of Hermitian self-dual θ-cyclic codes for p odd prime

Recall that there exists a Hermitian self-dual θ-cyclic code of dimension coprime to p over IF p 2 if, and only if, p = 2 (Theorem 3.7 of [START_REF] Boucher | A first step towards the skew duadic codes[END_REF]). In what follows we prove that this result remains true if the dimension of the code is divisible by p (Proposition 2). Lemma 1. If k and p are odd then

H X 2k -1 = ∅. Proof. Assume that H X 2k -1 = ∅. Consider h in H X 2k -1 with constant coefficient h 0 . As θ(h ) • h = X 2k -1, we have θ(1/θ k (h 0 )) × h 0 = -1.
As the order of θ is 2 and k is odd, we get 1/h 0 × h 0 = -1, which is impossible over IF p 2 because p is an odd prime number. Proposition 2. If p is odd, then there exists no Hermitian self-dual θ-cyclic code over

IF p 2 .
Proof. Let us prove that for any k, H X 2k -1 = ∅. Consider s, t in IN such that k = p s ×t and p does not divide t. According to Lemma 1, the set

H X 2p s -1 = H (X 2 -1) p s is empty. We have X 2k -1 = f 1 (X 2 )f 2 (X 2 ) where f 1 (X 2 ) = (X 2 -1) p s = f 1 (X 2 ) and f 2 (X 2 ) = ( t-1 i=0 X 2i ) p s = f 2 (X 2
). As p does not divide t, these two polynomialrs are coprime polynomials of IF p [X 2 ]. Therefore, according to Proposition 1, the set H X 2k -1 is empty.

Construction of H (X 2 +1) p s

The aim of this section is to construct and to enumerate Hermitian self-dual θ-negacyclic codes over IF p 2 whose dimension is p s where θ is the Frobenius automorphism (Proposition 4 and Algorithm 2). In order to construct the set H X 2k +1 = H (X 2 +1) p s , factorization properties specific to IF p 2 [X; θ] will be useful. The following proposition enables to characterize the skew polynomials that have a unique factorization into the product of monic linear skew polynomials dividing X 2 + 1 (see also [START_REF] Boucher | Self-dual skew codes and factorization of skew polynomials[END_REF]Proposition 16]). Proposition 3. Consider p a prime number, θ the Frobenius automorphism over

IF p 2 , R = IF p 2 [X; θ], m a non-negative integer, f (X 2 ) in IF p [X 2 ] irreducible and h = h 1 • • • h m in R
where for all i in {1, . . . , m}, h i is irreducible in R, monic, and divides f (X 2 ). The following assertions are equivalent :

(i) The above factorization of h is not unique. (ii) f (X 2 ) divides h. (iii) There exists i in {1, . . . , m -1} such that h i • h i+1 = f (X 2 ).
Corollary 1. Consider p a prime number, θ the Frobenius automorphism over

IF p 2 , R = IF p 2 [X; θ], m a non-negative integer and h = (X + λ 1 ) • • • (X + λ m ) in R where for all i in {1, . . . , m}, λ p+1 i = -1.
The following assertions are equivalent :

(i) The above factorization of h is not unique. (ii) X 2 + 1 divides h. (iii) There exists i in {1, . . . , m -1} such that (X + λ i ) • (X + λ i+1 ) = X 2 + 1 i.e. λ i λ i+1 = 1.
This proposition and its corollary motivate the following partition (see Lemma 3.2 of [START_REF] Boucher | Construction and number of self-dual skew codes over IF p 2[END_REF]) : Lemma 2. Consider p a prime number, θ the Frobenius automorphism over

IF p 2 , R = IF p 2 [X; θ], s a non-negative integer and f = f (X 2 ) ∈ {X 2 + 1} ∪ F.
One has the following partition :

H f p s = p s 2 i=0 f i • H f p s -2i . (3) 
Lemma 3. Consider p an odd prime number, θ the Frobenius automorphism, R = IF p 2 [X; θ], m a non-negative integer and M = m-1

2

. The number of elements of the set

H (X 2 +1) m is #H (X 2 +1) m =    (p + 1) × p M if p is odd, 3 if p = 2 and m = 1, 0 if p = 2 and m > 1.
If m ≡ 0 (mod 2), then

H (X 2 +1) m = {(X 2 + 2α 1 X -1) • • • (X 2 + 2α M +1 X -1) | α p+1 i = -1, α i+1 = -α i }. If m ≡ 1 (mod 2), then H (X 2 +1) m = {(X 2 +2α 1 X-1) • • • (X 2 +2α M X-1)•(X+α M +1 ) | α p+1 i = -1, α i+1 = -α i }.
Proof.

• One first proves that the elements of H (X 2 +1) m are obtained as products of linear monic skew polynomials (X + λ 1 )

• • • (X + λ m ) where λ 1 , . . . , λ m are elements of IF p 2 such that    ∀i ∈ {1, . . . , m}, λ p+1 i = -1, ∀i ∈ {1, . . . , m -1}, λ i λ i+1 = 1, ∀j ∈ {1, . . . , m 2 }, (λ 2j-1 λ 2j ) 2 = 1. (4) 
Namely, consider h in H (X 2 +1) m . As h divides (X 2 +1) m and as

X 2 +1 is irreducible with degree 1 in IF p [X 2 ]
, h is a (not necessarily commutative) product of linear monic skew polynomials dividing X 2 + 1 ([6, Lemma 13 (2) ] or [16, page 6]). Furthermore, the degree of h is equal to m (because deg(θ(h ) • h) = 2m), therefore there exists λ 1 , . . . , λ m in IF p 2 such that :

h = (X + λ 1 ) • • • (X + λ m ) where ∀i ∈ {1, . . . , m}, λ p+1 i = -1.
In particular, the first relation of ( 4) is satisfied. As X 2 + 1 does not divide h, according to Corollary 1, we have :

∀i ∈ {1, . . . , m -1}, (X + λ i ) • (X + λ i+1 ) = X 2 + 1. (5) 
Therefore ∀i ∈ {1, . . . , m -1}, λ i λ i+1 = 1, which is the second relation of (4). The following expression of h can be obtained using an induction argument (left to the reader) :

h = (X + λm ) • • • (X + λ1 )
where for i in {1, . . . , m}, λi is defined by : λi

:=    -1/λ i × (λ 1 • • • λ i ) 2 if i ≡ 1 (mod 2), -1/λ i × 1 (λ 1 • • • λ i-1 ) 2 if i ≡ 0 (mod 2). (6) Furthermore, X 2 + 1 does not divide h , otherwise X 2 + 1 would divide h. Therefore ∀i ∈ {1, . . . , m -1}, (X + λi+1 ) • (X + λi ) = X 2 + 1. ( 7 
)
The relation θ(h ) • h = (X 2 + 1) m can be written

(X + θ( λm )) • • • (X + θ( λ1 )) • (X + λ 1 ) • • • (X + λ m ) = (X 2 + 1) m . ( 8 
)
As X 2 + 1 is central, the factorization of the skew polynomial (X 2 + 1) m into the product of monic skew polynomials dividing X 2 + 1 is not unique, therefore, according to Corollary 1, X 2 + 1 is necessarily the product of two consecutive monic linear factors of the left hand side of (8). According to ( 5) and ( 7), the only possibility is

(X + θ( λ1 )) • (X + λ 1 ) = X 2 + 1.
As X 2 + 1 is central, the relation ( 8) can be simplified and one gets

(X + θ( λm )) • • • (X + θ( λ2 )) • (X + λ 2 ) • • • (X + λ m ) = (X 2 + 1) m-1 .
By repeating the same argument we get :

(X + θ( λ2 )) • (X + λ 2 ) = X 2 + 1, . . . (X + θ( λm )) • (X + λ m ) = X 2 + 1.
Considering the constant coefficients of the skew polynomials involved in the above equalities, we get that ∀i ∈ {1, . . . , m}, λ i θ( λi ) = 1 ⇔ θ(λ i ) λi = 1, and using the definition of λi given in (6), one gets, for i odd, (λ i λ i+1 ) 2 = 1 (third relation of ( 4)).

Conversely, consider h = (X + λ 1 ) • • • (X + λ m ) where λ 1 , . . . , λ m are elements of IF p 2 satisfying (4). According to the first relation of ( 4), the monic skew polynomials X + λ i divide X 2 + 1. According to the second relation of ( 4) and to Corollary 1,

X 2 + 1 does not divide h. The skew polynomial h is equal to (X + λm ) • • • (X + λ1 )
where λi is defined by the relations [START_REF] Boucher | Self-dual skew codes and factorization of skew polynomials[END_REF]. Furthermore, according to the third relation of ( 4)

, if i is odd, (λ 1 • • • λ i ) 2 = -1
, therefore for all i in {1, . . . , m}, λ i θ( λi ) = 1 and

X 2 + 1 = (X + θ( λi )) • (X + λ i ).
The product θ(h ) • h can be simplified as follows :

θ(h ) • h = (X + θ( λm )) • • • (X + θ( λ1 )) • (X + λ 1 ) • • • (X + λ m ) = (X 2 + 1) • (X + θ( λm )) • • • (X + θ( λ2 )) • (X + λ 2 ) • • • (X + λ m ) (because X 2 + 1 is central) . . . = (X 2 + 1) m-1 • (X + θ( λm )) • (X + λ m ) = (X 2 + 1) m
and one concludes that h belongs to H (X 2 +1) m .

• The relations (4) enable to count the number of elements of H (X 2 +1) m . Namely according to Corollary 1, the elements of H (X 2 +1) m have a unique factorization into the product of linear monic skew polynomials dividing X 2 +1. Therefore the number of elements of the set H (X 2 +1) m is the number of m-tuples (λ 1 , . . . , λ m ) of (IF p 2 ) m satisfying the conditions (4). Assume that p = 2 and that m is an integer greater than 1. Then the conditions λ 1 λ 2 = 1 and (λ 1 λ 2 ) 2 = 1 are not compatible, therefore the set H (X 2 -1) m is empty. If m = 1, it is reduced to {X + 1, X + a, X + a 2 } where a 2 + a + 1 = 0. Assume that p is odd, then according to conditions (4), we have p + 1 choices for λ 1 , 1 choice for λ 2 , p choices for λ 3 , etc ... therefore one gets (p + 1)p (m-1)/2 elements.

• Lastly, thanks to (4), the expression of h = (X +λ 1 ) • • • (X +λ m ) can be simplified as

h = (X+λ 1 )•(X-1 λ1 ) • • • (X+λ 3 )•(X-1 λ3 ) • • • = (X 2 +2λ 1 X-1)•(X 2 +2λ 3 X-1) • • • . Remark 2. Consider p = 2, f (X 2 ) = X 2 + 1
and s a positive integer. According to Lemma 2, the set H (X 2 +1) 2 s can be written as :

H (X 2 +1) 2 s = 2 s-1 i=0 (X 2 + 1) i • H (X 2 +1) 2 s -2i .
According to Lemma 3, the sets H (X 2 +1) 2 s -2i are empty when 2 s -2i ≥ 2. Therefore the above equality can be simplified as follows :

H (X 2 +1) 2 s = (X 2 + 1) 2 s-1 • H (X 2 +1) 0 , = {(X + 1) 2 s }.
One gets that for s > 0 there is only one Hermitian self-dual θ-cyclic code of dimension 

M ← p s -2i-1 2 4: L ← {α ∈ IF M +1 p 2 | α p+1 i = -1, α i+1 = -α i } 5: for α ∈ L do 6: H ← {(X 2 + 1) i • (X 2 + 2α 1 X -1) • • • (X 2 + 2α M X -1) • (X + α M +1 )} ∪ H 7:
end for 8: end for 9: return H

(p + 1) p p s +1 2 -1 p -1 . Proof. Consider R = IF p 2 [X; θ].
The number of Hermitian self-dual θ-negacyclic codes of dimension p s over IF p 2 is equal to #H X 2p s +1 . According to Lemma 2, one has the following partition : 

H X 2p s +1 = M i=0 (X 2 + 1) i • H (X 2 +1) p s -2i , where M = p s -1 2 . According to Lemma 3, one has #H (X 2 +1) p s -2i = (p + 1) × p M -i , therefore #H X 2p s +1 = (p + 1) M i=0 p M -i = (p + 1) p M +1 -1 p -1 .
(h ) • h = X 6 + 1 are h = (X 2 + 1) • (X + α),
where

α 4 = -1 and h = (X 2 + 2α 1 X -1) • (X + α 2 ),
where α 4 1 = α 4 2 = -1 and α 2 = -α 1 . We get the 16 Hermitian self-dual θ-negacyclic codes of dimension 3 over IF 9 obtained in Example 2. Example 4. Consider IF 9 = IF 3 (a) where a 2 + 2a + 2 = 0 and θ the Frobenius automorphism over IF 9 . Consider α = (a, a, a 3 , a, a 3 , a, a, a 3 , a 5 , a 5 , a 7 , a 5 , a 5 , a 3 ) ∈ IF 14 9 .

For all i in {1, . . . , 14}, we have α 4 i = -1 and for all i in {1, . . . , 13}, α i+1 = -α i , therefore according to Lemma 3, the skew polynomial

h = (X 2 + 2α 1 X -1) • • • (X 2 + 2α 13 X -1) • (X + α 14 ) ∈ IF 9 [X; θ],
satisfies θ(h ) • h = X 54 + 1, and the skew polynomial g = θ(h ) generates a [54, 27] 9 Hermitian self-dual code. Furthermore, its minimum distance is 18, which is the best known minimum distance of [54, 27] linear codes over IF 9 .

Construction of H f p s for f in F

The aim of this subsection is to construct H f p s for f in F and to compute its number of elements.

Consider f = f (X 2 ) in F. Recall that according to Lemma 2, one has the partition:

H f p s = p s 2 i=0 f i • H f p s -2i ,
where for m in IN, the set H f m is defined by

H f m = {h ∈ H f m | f does not divide h}.
Lemma 4 below generalizes Lemma 3 and uses the same type of arguments linked to the factorization of skew polynomials. Lemma 4. Consider p a prime number, θ the Frobenius automorphism over

IF p 2 , R = IF p 2 [X; θ], m a non-negative integer and f = f (X 2 ) in F with degree d = 2δ > 1 in X 2 . The set H f m is equal to h 1 • • • h m | h j ∈ H f , h j = θ(h j-1 )
and has (1 + p δ )p δ(m-1) elements.

Proof. To simplify the presentation, the following notations will be used in this proof: h = h(X), f = f (X 2 ).

Consider h in H f m . As h divides f m and f is irreducible in IF p [X 2 ], all the irreducible factors of h divide f and have the same degree d ([6, Lemma 13 (2)] or [16, page 6]):

h = m i=1 h i , h i monic, deg(h i ) = d, h i |f, h i irreducible.
Furthermore, f does not divide h, therefore according to Proposition 3, for all j in {1, . . . , m -1}, h j • h j+1 is distinct from f . Using an induction argument (left to the reader), one gets the following expression of h :

h = m-1 i=0 1 µ m-i h m-i • µ m-i ,
where µ 1 = 1 and for i ∈ {2, . . . , m},

µ i = (h 1 • • • h i-1 ) 0 is defined as the constant coef- ficient of h 1 • • • h i-1 .
Furthermore, this factorization (into the product of irreducible monic polynomials of same degree d dividing f ) is unique (because the factorization of h is unique).

As the factorization of f m into the product of irreducible factors is not unique (because f m is central), according to Proposition 3, f m = θ(h ) • h must have two consecutive irreducible monic factors whose product is f . As h and h do not possess two consecutive factors whose product is f , necessarily, θ( 1 µ1 h 1 • µ 1 ) • h 1 = f , and proceeding by induction, one gets ∀j ∈ {1, . . . , m}, θ

1 µ j h j • µ j • h j = f and h j+1 = θ( 1 µ j h j • µ j ) when j = m. (9) Conversely, consider h = h 1 • • • h m with θ( 1 µj h j • µ j ) • h j = f, h j+1 = θ( 1 µj h j • µ j ) and µ j constant coefficient of h 1 • • • h j-1 . Then θ(h ) • h = f m and h j • h j+1 = f .
Furthermore, the skew polynomials h j are all irreducible because they are non-trivial factors of f , and f is irreducible in IF p [X 2 ]. Therefore according to Proposition 3, the skew polynomial h is not divisible by f and it belongs to H f m .

To conclude, we get that

h ∈ H f m ⇔              h = h 1 • • • h m , θ( 1 µj h j • µ j ) • h j = f, h j+1 = θ( 1 µj h j • µ j ), µ 1 = 1, µ j = (h 1 • • • h j-1 ) 0 , j = 1. Lastly, as f (X 2 ) = f (X 2
), the degree of f (X 2 ) in X 2 is even, therefore, from the equality (9), one gets that for all j ∈ {1, . . . , m}, the degree of h j is even and the constant coefficient of h j is

1 θ deg(h j ) ((hj )0) = 1
(hj )0 . Furthermore, the constant coefficient of f is equal to 1 because f (X 2 ) = f (X 2 ), therefore, following (9), we get ∀j ∈ {1, . . . , m}, θ 1 µ j 1 (h j ) 0 µ j (h j ) 0 = 1 and ∀j ∈ {1, . . . , m}, θ((h j ) 0 ) = (h j ) 0 . As µ j is defined as the constant coefficient of h 1 • • • h j-1 , it is fixed by θ, therefore we get :

h ∈ H f m ⇔    h = h 1 • • • h m , θ(h j ) • h j = f, h j+1 = θ(h j ).
The number of elements of H f m follows from the fact that H f has 1 + p δ elements ([9, Lemma 3.3]).

Algorithm 3 Computation of H

f p s for f ∈ F Require: f, s, Ensure: H f p s 1: H f ← {h ∈ R | θ(h ) • h = f (X 2 )} 2: H ← ∅ 3: for i = 0, . . . , p s -1 2 do 4: m ← p s -2i 5: L ← {u = (u 1 , . . . , u m ) ∈ H f m | u i+1 = θ(u i )} 6:
for u ∈ L do 7:

H ← {f (X 2 ) i • u 1 • • • u m } ∪ H 8:
end for 9: end for 10: return H The construction of the set H f p s for f in F is deduced from Lemma 2 and Lemma 4. Proposition 5. Consider p a prime number, θ the Frobenius automorphism over

IF p 2 , R = IF p 2 [X; θ], s a non-negative integer and f = f (X 2 ) in F with degree d = 2δ > 1 in X 2 . The set H f p s has p δ(p s +1) -1 p δ -1 elements. Proof. According to Lemma 2, H f p s = p s 2 i=0 f i • H f p s -2i and according to Lemma 4, H f m has (1 + p δ )(p δ ) m-1 if m = 0 and 1 element if m = 0. Therefore H f p s has (p s -1)/2 i=0 (1 + p δ )(p δ ) p s -2i-1 elements if p is odd and 1 + 2 s-1 -1 i=0 (1 + 2 δ )(2 δ ) 2 s -2i-1
elements otherwise. In both cases one gets #H f p s = p δ(p s +1) -1

p δ -1
.

Corollary 2. If X 4δ + 1 belongs to F, then there are p δ(p s +1) -1

p δ -1
Hermitian self-dual θ-negacyclic codes of length n = 4δp s over IF p 2 .

Proof. We apply Proposition 5 to f = f (X 2 ) = X 4δ + 1.

Example 5. We give here an example of a [36, [START_REF] Yang | On self-dual constacyclic codes over finite fields[END_REF][START_REF] Gaborit | Table of Hermitian self-dual codes over IF 4[END_REF] Hermitian self-dual code over IF 9 = IF 3 (a) where a 2 + 2a + 2 = 0. Consider θ the Frobenius automorphism over IF 9 and the skew polynomial ring R = IF 9 [X; θ]. We have X 4 + 1 ∈ F, and the set

H X 4 +1 of the irreducible skew polynomials H satisfying θ(H ) • H = X 4 + 1 is equal to {X 2 + X + 2, X 2 + a 2 X + 2, X 2 + 2X + 2, X 2 + a 6 X + 2}.
Consider the product of 9 elements of

H X 4 +1 : h = (X 2 + X + 2) • (X 2 + X + 2) • (X 2 + a 2 X + 2) • (X 2 + a 2 X + 2) • (X 2 + X + 2) • (X 2 + a 2 X + 2) • (X 2 + a 2 X + 2) • (X 2 + a 2 X + 2) • (X 2 + 2X + 2) = X 18 + a 3 X 17 + a 5 X 16 + 2X 15 + a 2 X 14 + a 2 X 13 + aX 12 + a 7 X 11 + a 7 X 10 + a 3 X 9 + a 3 X 8 + a 7 X 7 + a 5 X 6 + a 2 X 5 + a 6 X 4 + 2X 3 + aX 2 + a 3 X + 2 in R.
The skew polynomial h belongs to H (X 4 +1) 9 and the skew polynomial g = θ(h ) generates a Hermitian self-dual θ-negacyclic [36, [START_REF] Yang | On self-dual constacyclic codes over finite fields[END_REF][START_REF] Gaborit | Table of Hermitian self-dual codes over IF 4[END_REF] code over IF 9 .

Construction of H f p s for f in G

In this section we propose an algorithm for the construction of H f p s for f = gg in G which relies on the construction of all the irreducible skew polynomials dividing g(X 2 ) in R (see Appendix A of [START_REF] Boucher | A first step towards the skew duadic codes[END_REF] ).

We first recall that the set H f p s can be partitioned as follows (see Lemma 3.2 of [START_REF] Boucher | Construction and number of self-dual skew codes over IF p 2[END_REF]). Lemma 5. Consider p a prime number, θ the Frobenius automorphism over

IF p 2 , R = IF p 2 [X; θ], s a non-negative integer and f = f (X 2 ) = g(X 2 )g (X 2 ) in G with g = g(X 2 ) = g (X 2 ) irreducible in IF p [X 2
]. One has the following partition

H f p s = p s i=0 p s -i j=0 g i g j • H f p s -(i+j) .
The construction of each set H f m will rely on the construction of a new set of special factors of g(X 2 ) m . Lemma 6. Consider p a prime number, θ the Frobenius automorphism over

IF p 2 , R = IF p 2 [X; θ]. Consider g(X 2 ) an irreducible polynomial of IF p [X 2 ] and R g(X 2
) m the set of all right factors u of g(X 2 ) m which are not divisible by g(X 2 ) and which do not divide g(X 2 ) m-1 . We have

R g(X 2 ) m = {u 1 • • • u m | u i monic irreducible, u i |g(X 2 ) and u i • u i+1 = g(X 2 )}. Proof. 1. As g(X 2 ) is irreducible in IF p [X 2 ]
, it is the product of two irreducible skew polynomials of degree equal to deg X 2 g(X 2 ), therefore g(X 2 ) m is the product of 2m irreducible skew polynomials of same degree. Assume that g(X 2

) m = u 1 • • • u r • v 1 • • • v s with r + s = 2m and r ≥ m + 1; then g(X 2 ) divides u := u 1 • • • u r . Namely, assume that g(X 2 ) does not divide u. As g(X 2 ) divides u 1 • • • u r • v 1 • • • v s then, according to Proposition 3, g(X 2 ) = u r • v 1 or there exists i in {1, . . . , s -1} such that g(X 2 ) = v i • v i+1 , therefore g(X 2 ) m-1 = ũ1 • • • ũr • ṽ1 • •
• ṽs with r ≥ m and r + s = 2(m -1); using an induction argument, we get a contradiction. 2. Assume that u = u 1 • • • u m where for i in {1, . . . , m}, u i is a monic irreducible skew polynomial dividing g(X 2 ) and u i • u i+1 = g(X 2 ) for i ∈ {1, . . . , m -1}. As u i divides g(X 2 ), u divides g(X 2 ) m . Furthermore, according to Proposition 3, g(X 2 ) does not divide u because

u i • u i+1 = g(X 2 ). Assume that u divides g(X 2 ) m-1 , then there exist m -2 irreducible skew polynomials v 1 , . . . , v m-2 such that g(X 2 ) m-1 = u 1 • • • u m • v 1 • • • v m-2 = u 1 • • • u r • v 1 • • • v s with r + s = 2(m -1)
and r ≥ m. Then according to point 1 of the proof, g(X 2 ) divides u, which is impossible. 3. Assume that u divides g(X 2 ) m , u does not divide g(X 2 ) m-1 and g(X 2 ) does not divide u. Consider r ≤ 2m such that u = u 1 • • • u r where u i is irreducible and divides g(X 2 ). Necessarily, u divides g(X 2 ) r , therefore, as u does not divide g(X 2 ) m-1 , we have r ≥ m. Assume that r ≥ m + 1, then according to point 1 of the proof, g(X 2 ) divides u, which is impossible. Therefore, r = m and as g(X 2 ) does not divide u, according to Lemma 3, we have for all i in {1, . . . , r -1},

u i • u i+1 = g(X 2 ).
Proposition 6. Consider p a prime number, θ the Frobenius automorphism over

IF p 2 , R = IF p 2 [X; θ]. Consider f (X 2 ) = g(X 2 )g (X 2 ) where g(X 2 ) = g (X 2 ) is an irreducible polynomial of IF p [X 2
] and the map φ defined by :

φ : R g(X 2 ) m → H f (X 2 ) m u → lcrm(u, v) where θ(u ) • v = g (X 2 ) m .
The map φ is a bijection and the set H f (X 2 ) m has (1 + p δ )p δ(m-1) elements where δ is the degree of g(X 2 ) in X 2 .

Proof.

• First the map φ is well defined. Namely, consider u in R g(X 2 ) m , then u divides g(X 2 ) m , it does not divide g(X 2 ) m-1 and it is not divisible by g(X 2 ). Furthermore, according to Lemma 6, the degree of u is equal to δm. Consider v in R such that g (X 2 ) m = θ(u ) • v and h = lcrm(u, v), then the degree of v is δm and as u and v are leftcoprime, the degree of h is equal to 2δm. As g(X 2 ) does not divide u and g (X 2 ) does not divide v, g(X 2 ) and g (X 2 ) do not divide h. Consider ũ and ṽ in R

such that h = u • ũ = v • ṽ. Then, θ(h ) • h = V • θ(v ) • u • ũ = U • θ(u ) • v • ṽ is divisible by the central polynomials θ(v ) • u = g(X 2 ) m and θ(u ) • v = g (X 2 ) m , therefore f (X 2 ) m divides θ(h ) • h. Considerations on the degrees lead to θ(h ) • h = f (X 2 ) m . • Consider h in H f (X 2 ) m , then θ(h ) • h = f (X 2 ) m with g(X 2 ) h and g (X 2 ) h. Then h = lcrm(u, v) where u = gcld(h, g(X 2 ) m ) and v = gcld(h, g(X 2 ) m ).
The skew polynomial u belongs to the set R g(X 2 ) m . Namely, u divides g(X 2 ) m by construction; g(X 2 ) does not divide h, therefore it does not divide u; lastly u does not divide g(X 2 ) m-1 , otherwise g(X 2 ) would divide θ(h ), which is impossible. Therefore, according to Lemma 6, u = u 1 • • • u m where u 1 , . . . , u m are m irreducible skew polynomials dividing g(X 2 ) and such that u i •u i+1 = g(X 2 ) for i in {1, . . . , m-1}.

In the same way, one gets that v = v 1 • • • v m where v 1 , . . . , v m are m irreducible skew polynomials dividing g (X 2 ) and such that

v i • v i+1 = g (X 2 ) for i in {1, . . . , m -1}. Now consider U and V in R such that h = u • U = v • V , then θ(h ) = Ṽ • θ(v ) and θ(h ) • h = Ṽ • θ(v ) • u • U . As θ(h ) • h = g(X 2 ) m g (X 2 ) m is central, we get θ(v ) • u • U • Ṽ = g(X 2 ) m g (X 2
) m . We deduce from this equality that lclm(g

(X 2 ) m , U • Ṽ ) divides θ(v ) • u • U • Ṽ . Therefore g(X 2 ) m divides θ(v )
• u and considerations on the degrees of the polynomials lead to g(X 2 ) m = θ(v ) • u. • The elements of R g(X 2 ) m are of the form g 1 • • • g m where g 1 , . . . , g m are irreducible monic factors of g(X 2 ) and g i • g i+1 = g(X 2 ). As g(X 2 ) has 1 + p δ monic irreducible factors ( [START_REF] Odoni | On additive polynomials over a finite field[END_REF] or [9, Appendix A]), we get that #H f (X 2 ) m = (1 + p δ )p δ(m-1) .

Proposition 7. Consider p a prime number, θ the Frobenius automorphism over

IF p 2 , R = IF p 2 [X; θ], s a non-negative integer and f = f (X 2 ) in G with degree d = 2δ > 1 in X 2 . The set H f p s has (p δ(p s +1) -2p s -3)(1+p δ )+4p s +4 (p δ -1) 2 elements. Algorithm 4 Computation of H f p s for f = g • g ∈ G Require: f ∈ G, s Ensure: H f p s 1: I ← set of monic irreducible right divisors of g(X 2 ) in R 2: H ← ∅ 3: for i = 0, . . . , p s do 4:
for j = 0, . . . , p s -i do

5: m ← p s -i -j 6: R ← {u 1 • • • u m | u i ∈ I, u i • u i+1 = g(X 2 )} 7:
for u ∈ R do 8:

v ← quotient of the division of g (X 2 ) m by θ(u )

9:

H ← {g(X 2 ) i • g (X 2 ) j • lcrm(u, v)} ∪ H 10:
end for 11:

end for 12: end for 13: return H Corollary 3. If X 4δ + 1 belongs to G, then there are

(p δ(p s +1) -2p s -3)(1+p δ )+4p s +4 (p δ -1) 2 Hermitian self-dual θ-negacyclic codes of length n = 4δp s over IF p 2 .
Proof. We apply Proposition 7 to

f = f (X 2 ) = X 4δ + 1. Example 6. The polynomial f (X 2 ) = X 16 + 1 factorizes over IF 3 [X 2 ] as f (X 2 ) = g(X 2 )g (X 2 ) where g(X 2 ) = X 8 + X 4 + 2 and g (X 2 ) = X 8 + 2X 4 + 2 are irreducible in IF 3 [X 2 ]. Consider IF 9 = IF3(a)
with a 2 + 2a + 2 = 0 and θ Frobenius automorphism over IF 9 . Consider the following irreducible skew polynomials dividing 3 and h = lcrm(u, v). Then the skew polynomial g = θ(h ) = X 24 +aX 23 +a 5 X 22 +X 21 +X 20 +aX 19 +a 6 X 18 +a 2 X 17 +a 3 X 15 +X 14 + a 7 X 13 +a 6 X 12 +a 3 X 11 +X 10 +a 7 X 9 +a 6 X 7 +a 6 X 6 +a 5 X 5 +X 4 +2X 3 +a 5 X 2 +a 5 X +1 generates a [48, 24, 16] Hermitian self-dual θ-negacyclic code over IF 9 .

X 8 + X 4 + 2 in R = IF 9 [X; θ] : u 1 = X 4 + a 3 X 3 + a 7 X 2 + 2X + a 7 , u 2 = X 4 + a 6 X 3 + 2X 2 + a 2 X + a 7 and u 3 = X 4 + a 2 X 2 + a 5 X + a. As u 1 • u 2 and u 2 • u 3 are distinct of X 8 + X 4 + 2, the skew polynomial u = u 1 • u 2 • u 3 belongs to R (X 8 +X 4 +2) 3 . Consider v in R such that θ(u ) • v = (X 8 + 2X 4 + 2)

Construction and enumeration of Hermitian self-dual

θ-negacyclic codes.

Recall that there is a counting formula for Hermitian self-dual θ-cyclic codes of odd dimension over IF 

X 2k +1 = N × f ∈F ,f |X 2k +1 deg(f )=2δ p δ(p s +1) -1 p δ -1 × f ∈G,f |X 2k +1 deg(f )=2δ (p δ(p s +1) -2p s -3)(1 + p δ ) + 4p s + 4 (p δ -1) 2
where 

N =      3 if p = 2
: Compute f 1 (X 2 ), . . . , f r (X 2 ) ∈ {X 2 + 1} ∪ F ∪ G such that X 2t + 1 = f 1 (X 2 ) • • • f r (X 2 ) in IF p [X 2 ] and gcd(f i (X 2 ), f j (X 2 )) = 1 in IF p [X 2
] for i = j. H ← H ∪ {lcrm(h 1 , . . . , h r )} 7: end for 8: return H Example 7. We give here an example of a [30, [START_REF] Jacobson | The Theory of Rings[END_REF][START_REF] Datta | Number of solutions of systems of homogeneous polynomial equations over finite fields[END_REF] Hermitian self-dual code over IF 9 = IF 3 (a) where a 2 + 2a + 2 = 0. Consider θ, the Frobenius automorphism over IF 9 and the skew polynomial ring R = IF 9 [X; θ]. We have X 30 + 1 = ((X 2 ) 5 + 1) 3 = (X 2 + 1) 3 (X 8 -X 6 + X 4 -X 2 + 1) 3 .

Consider 3 and h 2 = X 12 + aX 11 + a 7 X 10 + X 9 +a 5 X 8 +a 6 X 7 +2X 6 +a 2 X 5 +a 5 X 4 +2X 3 +a 7 X 2 +a 5 X+1 ∈ H (X 8 -X 6 +X 4 -X 2 +1) 3 , then the skew polynomial h = lcrm(h 1 , h 2 ) belongs to H X 30 +1 and the skew polynomial g = θ(h ) generates a [30, [START_REF] Jacobson | The Theory of Rings[END_REF][START_REF] Datta | Number of solutions of systems of homogeneous polynomial equations over finite fields[END_REF] Hermitian self-dual θ-negacyclic code over IF 9 .

h 1 = X 3 + a 2 X 2 + a 3 X + a 7 ∈ H (X 2 +1)
Example 8. We consider here Hermitian self-dual θ-cyclic codes with length 68 over IF 4 = IF 2 (a) where a 2 + a + 1 = 0 and θ is the Frobenius automorphism over IF 4 . According to [START_REF] Gaborit | Table of Hermitian self-dual codes over IF 4[END_REF], the best known minimum distance of Hermitian self-dual codes of length 68 over IF 4 is equal to 16. We provide here an example of a [68, 34, 18] Hermitian self-dual code over IF 4 . Consider h 1 = X 2 + 1, h 2 = (X 8 +X 5 +X 4 +X 3 +1)•(X 8 +a 2 X 7 +aX 6 +a 2 X 5 +a 2 X 4 +a 2 X 3 +aX 2 +a 2 X +1) and 2 , therefore h = lcrm(h 1 , h 2 , h 3 ) belongs to H (X 34 +1) 2 . One checks that the θ-cyclic code of length 68 and skew generator polynomial g = Θ(h * ) is a Hermitian self-dual [68,34,[START_REF] Yang | On self-dual constacyclic codes over finite fields[END_REF] code. We give below the expression of g : g = X 34 + aX 33 + a 2 X 32 + aX 31 + aX 30 + a 2 X 26 + aX 23 + a 2 X 22 + X 21 + a 2 X 20 + a 2 X 19 + a 2 X 15 + a 2 X 14 + X 13 + a 2 X 12 + aX 11 + a 2 X 8 + aX 4 + aX 3 + a 2 X 2 + aX + 1. In what follows, we assume that q = p e where p is a prime number and e is an even integer. Therefore the automorphism σ is defined by σ = F rob e 2 : x → x p e 2 where F rob : x → x p is the Frobenius automorphism over IF q . We consider the non-negative integer r defined by θ = F rob r : x → x p r , and the ring R = IF q [X; θ] of skew polynomials. We denote the order of θ and IF θ q the fixed field of θ. We denote µ the integer such that 2 µ || p + 1, which means that 2 µ divides p + 1 and 2 µ+1 does not divide p + 1.

h 3 = (X 8 +a 2 X 7 +aX 5 +X 4 +aX 3 +a 2 X +1)•(X 8 +a 2 X 7 +X 5 +X 4 +X 3 +a 2 X +1). We have h 1 ∈ H (X 2 +1)
We recall that for F = F (X ) in IF θ q [X ], the set H F is defined by

H F := {h ∈ R := IF q [X; θ] | h is monic and σ(h ) • h = F (X )}.
The Hermitian self-dual θ-cyclic codes of length n over IF q are completely determined by the set H X n -1 while the Hermitian self-dual θ-negacyclic codes are determined by H X n +1 . Recall also that we assume here that the order of θ divides the length n of the considered codes.

Existence conditions of Hermitian self-dual θ-cyclic codes

over IF p e with e > 2 even.

Recall that over IF p 2 , there is no Hermitian self-dual θ-cyclic code if p is an odd prime number. In what follows we prove that this non-existence result can be extended to IF q = IF p e . We start with an intermediate lemma :

Lemma 7. Consider F (X ) = F 1 (X )F 2 (X ) ∈ IF θ q [X ] where F 1 (X ) and F 2 (X ) are coprime in IF θ q [X ] and such that σ(F i ) = F i . If H F = ∅ then H Fi = ∅. Proof. Consider h in R such that σ(h ) • h = F (X ). Consider, for i ∈ {1, 2}, h i = gcld(h, F i (X )) and H i in R such that h = h i •H i . We have σ(h ) = Hi •σ(h i ) where Hi is in R. Therefore F (X ) = σ(h ) • h = H1 • σ(h 1 ) • h 1 • H 1 . As F (X ) is central, we get that σ(h 1 ) • h 1 divides F (X ). As F 2 (X ) also divides F (X ), lcrm(σ(h 1 ) • h 1 , F 2 (X )) divides F (X ). But F 2 (X ) is a central polynomial which has no common factor with σ(h 1 ) • h 1 because h 1 and σ(h 1 ) both divide F 1 (X ) = σ(F 1 (X )) and F 1 (X ) is co- prime with F 2 (X ). Therefore lcrm(σ(h 1 ) • h 1 , F 2 (X )) = σ(h 1 ) • h 1 • F 2 (X ) divides F (X ) = F 1 (X )F 2 (X ) and σ(h 1 ) • h 1 divides F 1 (X ). In the same way, σ(h 2 ) • h 2 divides F 2 (X ). We conclude by noticing that 2 deg(h) = 2(deg(h 1 ) + deg(h 2 )) = deg(F 1 ) + deg(F 2 ). Assume that 2 deg(h 1 ) < deg(F 1 ), then deg(F 1 ) + deg(F 2 ) < deg(F 1 ) + 2 deg(h 2 ), therefore deg(F 2 ) < 2 deg(h 2 ), which is impossible. Therefore we get that σ(h 1 ) • h 1 = F 1 (X ).
Theorem 2. If p is an odd prime number then there is no Hermitian self-dual θ-cyclic code over IF p e .

Proof.

Assume that there exists a Hermitian self-dual θ-cyclic code of dimension k over IF p e . Then the set H X 2k -1 is non-empty. Consider f 1 (X ) = (X -1) p s and f 2 (X ) = (X 2k -1)/(X -1) p s . As f 1 (X ) is a central polynomial coprime with f 2 (X ) and satisfying σ(f 1 ) = f 1 , according to Proposition 7, the set H f1(X ) is non-empty. Consider H ∈ IF p e [X; θ] with degree d and constant coefficient α such that

σ(H ) • H = X -1 p s . Then we have σ 1 θ d (α) α = -1.
Furthermore, we have = e gcd(e, r) therefore r = eµ where µ = r gcd(e, r) and we have :

σ • θ d = F rob e 2 + r p s 2 = F rob e 2 + eµp s 2 = F rob e 2 (1+µp s ) = σ 1+µp s .
As the order of σ is 2, if µ is odd, then σ • θ d is the identity and we have -

1 = σ 1 θ d (α)
α = 1 which is not possible because the characteristic of the field is odd. If µ is even, we have σ • θ d = σ. Therefore θ d is the identity, so divide d = 2 p s , which is impossible because p is odd. In what follows, we will give necessary and sufficient conditions for the existence of Hermitian self-dual θ-negacyclic codes over IF p e where p is an odd prime number. Lemma 8. If one of the following conditions is satisfied, then there exists a Hermitian self-dual θ-negacyclic code of dimension k over IF p e :

Existence conditions of

(i) e 2 ≡ 1 (mod 2) and r ≡ 1 (mod 2); (ii) p ≡ 1 (mod 4); (iii) p ≡ 3 (mod 4) and e 2 ≡ 0 (mod 2); (iv) p ≡ 3 (mod 4), e 2 ≡ 1 (mod 2), r ≡ 0 (mod 2) and k ≡ 0 (mod 2 µ-1 ). Proof. Assume that (i) is satisfied, then the restrictions of θ and of σ to IF p 2 are equal to the Frobenius automorphism, therefore according to Theorem 1, there is a monic skew polynomial h in IF p 2 [X; θ] ⊂ R such that σ(h ) • h = X 2k + 1.

Assume that one of the assertions (ii), (iii) or (iv) is satisfied. As the order of θ is equal to e gcd(e,r) , if (iii) is satisfied, we have k × gcd(e, r) ≡ 0 (mod 2) and r × k ≡ 0 (mod 2). Therefore, according to [7, Proposition 4 and Proposition 5 or Table 1], the equation h •h = X 2k +1 has a solution in IF p e/2 [X; θ]. Furthermore, as σ is the identity over IF p e/2 , we get that there exists h in IF p e/2 [X; θ] ⊂ R such that σ(h ) • h = X 2k + 1.

Lemma 9. Assume that p ≡ 3 (mod 4), e 2 ≡ 1 (mod 2), r ≡ 0 (mod 2). If k ≡ 0 (mod 2 µ-1 ), then there is no Hermitian self-dual θ-negacyclic of length n = 2k over IF p e . Proof. Assume that there exists a Hermitian self-dual θ-negacyclic code of length n over IF p e , then H X n +1 = ∅. Consider s ∈ IN, t ∈ IN * not divisible by p such that n = tp s and a in IN * such that 2 a-1 divides exactly k. That means that 2 a-1 divides k but 2 a does not divide k. Furthermore, p ≡ 3 (mod 4), e 2 ≡ 1 (mod 2), r ≡ 0 (mod 2), therefore p and = e gcd(e,r) are odd numbers, and 2 a divides exactly t. As a consequence, we have

X n + 1 = X t + 1 p s = X 2 a + 1 p s F (X ) p s ,
where F (X ) ∈ IF p [X ] is coprime with X 

Y 2 a + 1 = f 1 (Y ) • • • f 2 a-1 (Y ),
where

f i = Y 2 + b i Y + 1 is irreducible in IF p [Y ]. Furthermore f i (Y ) = g i g i over IF p 2
where g i = Y + a i . One has g i = Y + 1 a i and σ(g i ) = g i .

Therefore, according to Lemma 7 applied to F 1 (X ) = g i (X )

p s
and F 2 (X ) = (X n + 1)/F 1 (X ), there exists a skew polynomial H i ∈ IF p e [X; θ] such that σ(H i ) • H i = g i (X )

p s = X + a i p s .
The degree of σ(H i ) • H i is even and the degree of X + a i p s is odd, a contradiction. Theorem 3. Consider p an odd prime number, e an even positive integer, r a non-negative integer, k a positive integer and θ the automorphism over IF q = IF p e defined by: a → a p r . There exists a Hermitian self-dual θ-negacyclic code over IF p e of dimension k if, and only if, one of the following conditions is satisfied :

1. p ≡ 1 (mod 4); 2. p ≡ 3 (mod 4) and e 2 ≡ 0 (mod 2); 3. p ≡ 3 (mod 4), e 2 ≡ 1 (mod 2) and r ≡ 1 (mod 2); 4. p ≡ 3 (mod 4), e 2 ≡ 1 (mod 2), r ≡ 0 (mod 2) and k ≡ 0 (mod 2 µ-1 ). Proof. The proof is directly deduced from Lemma 8 and Lemma 9.

Remark 3. Recall that if θ = id (i.e. r = 0), and e = 2, we get Hermitian self-dual negacyclic codes over IF p 2 . According to Theorem 3, there exists a Hermitian self-dual negacyclic code of dimension k over IF p 2 if, and only if, one of the following conditions is satisfied 1. p ≡ 1 (mod 4) 2. p ≡ 3 (mod 4) and k ≡ 0 (mod 2 µ-1 ) where 2 µ ||p + 1. This is equivalent to p + 1 ≡ 0 (mod 2 a+1 ) where 2 a || n and we get the existence conditions given in [START_REF] Yang | On self-dual constacyclic codes over finite fields[END_REF]Theorem 3.9]. Remark 4. If θ is the Frobenius automorphism (i.e. r = 1), then there always exists a Hermitian self-dual θ-negacyclic code of any dimension over IF p e .

Conclusion.

This text gives an overview of the construction of Hermitian self-dual θ-cyclic and θ-negacyclic codes of length n over IF p 2 when θ is the Frobenius automorphism. Existence conditions for these codes over any finite finite field IF q where q is an even power of a prime number are also given. The construction of this family of codes could be generalized over IF p n following [START_REF] Batoul | A construction of self-dual skew cyclic and negacyclic codes of length n over IF p n[END_REF]. Furthermore it happens that one can also consider Hermitian self-dual skew constacyclic codes which are not skew negacyclic nor skew cyclic, on the contrary to Euclidean self-dual skew constacyclic codes which are necessarily skew cyclic or skew negacyclic.

Example 3 .

 3 Consider IF 9 = IF 3 (a) where a 2 + 2a + 2 = 0 and θ the Frobenius automorphism over IF 9 . The monic solutions h ∈ IF 9 [X; θ] to the self-dual skew equation θ
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  Existence conditions of Hermitian self-dual θ-cyclic and θ-negacyclic codes over IF p e with e > 2 even.

  Hermitian self-dual θ-negacyclic codes over IF p e with e > 2 even.

.

  As k ≡ 0 (mod 2 µ-1 ), we have µ > a, therefore, according to [2, Theorem 1], the factorization of Y 2 a + 1 ∈ IF p [Y ] over IF p into the product of distinct irreducible polynomials is of the form

  2 s over IF 4 . Proposition 4 below gives a formula for the number of Hermitian self-dual θ-negacyclic codes whose dimension is a power of p when p is an odd prime number. Proposition 4. Consider p an odd prime number, s a non-negative integer and θ the Frobenius automorphism over IF p 2 . The number of Hermitian self-dual θ-negacyclic codes of dimension p s over IF p 2 is Algorithm 2 Computation of H X 2p s +1 for p odd prime Require: s Ensure: H X 2p s +1 1: H ← ∅ 2: for i = 0, . . . , p s -1

	2	do
	3:	

  [START_REF] Bosma | The Magma algebra system. I. The user language[END_REF] . In what follows we give a formula for the number of Hermitian self-dual θ-negacyclic codes of any dimension over IF p 2 where p is a prime number and θ is the Frobenius automorphism over IF p 2 . When p is even, θ-negacyclic codes are θ-cyclic codes. Theorem 1. Consider p a prime number, θ the Frobenius automorphism over IF p 2 , k a positive integer, s, t two integers such that k = p s × t and p does not divide t. The number of self-dual θ-negacyclic codes over IF p 2 with dimension k is #H

  + 1 does not divide X 2k + 1, #H (X 2 +1) p s otherwise. Therefore, N = 1 if t is even and p odd; otherwise N = #H (X 2 +1) p s is given by Remark 2 and Proposition 4. Furthermore, for f in F ∪ G, #H f p s is given by Proposition 5 and Proposition 7. Computation of H X n +1 (factorization strategy) Require: k Ensure: H X 2k +1 1: Compute s, t such that k = p s × t and p t 2

			and s = 0,
	1		if p = 2 and s > 0 or p odd and t even,
		p s +1	
	(p + 1) p	2 p-1 -1	if p odd and t is odd.
	Proof. According to Proposition 1 we have
	#H X 2k +1 = N ×	#H f p s
			f ∈F ∪G,f |X 2k +1,
			deg(f )=2δ
	where		
	N = if X 2 Algorithm 5 1

3 :

 3 Using Algorithms 2, 3 and 4, computeH fi(X 2 ) p s 4: H ← ∅ 5: for (h 1 , . . . , h r ) ∈ H f1(X 2 ) p s × • • • × H fr(X 2 ) p s do

	6:

  2 , h 2 ∈ H (X 16 +X 10 +X 8 +X 6 +1) 2 and h 3 ∈ H (X 16 +X 14 +X 12 +X 8 +X 4 +X 2 +1)
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