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Variational excess risk bound for general state space models

. When independent trajectories of sequences are observed and under strong mixing assumptions on the state space model and on the variational distribution, we provide an oracle inequality explicit in the number of samples and in the length of the observation sequences. We then derive consequences of this theoretical result. In particular, when the data distribution is given by a state space model, we provide an upper bound for the Kullback-Leibler divergence between the data distribution and its estimator and between the variational posterior and the estimated state space posterior distributions. Under classical assumptions, we prove that our results can be applied to Gaussian backward kernels built with dense and recurrent neural networks.

Introduction

Deep generative models have been increasingly used and analyzed for the past few years. In this setting, Variational autoencoders (VAEs) offer the possibility to simultaneously model and train (i) the conditional distribution of the observation given latent variables referred to as the decoder, and (ii) a variational approximation of the conditional distribution of the latent variable given the observation referred to as the encoder. They have been successfully applied in many contexts such as image generation [Vahdat and Kautz, 2020], text generation [START_REF] Bowman | Generating sentences from a continuous space[END_REF], state estimation and image reconstruction [START_REF] Cohen | Diffusion bridges vector quantized variational autoencoders[END_REF].

Variational inference has been widely and satisfactorily used for many practical applications but its theoretical properties has been analyzed only very recently. Theoretical guarantees have been mostly proposed for variational inference procedures in settings where datasets are based on independent data and for mean-field approximations. In [Huggins et al., 2020], the authors provided variational error bounds, in particular for the estimation of the posterior mean and covariance. In [START_REF] Chérief-Abdellatif | Consistency of variational Bayes inference for estimation and model selection in mixtures[END_REF], the authors established the concentration of variational approximations of posterior distributions for mixtures of general laws using PAC-Bayesian theory.

The PAC-Bayesian theory has also been used in [Mbacke et al., 2023] where the authors controlled in particular the L 2 reconstruction loss under the true data distribution for VAEs. In addition, [Tang and Yang, 2021] provided a theoretical analysis of the excess risk for Empirical Bayes Variational Autoencoders for both parametric and nonparametric settings. They derived a set of generic assumptions to obtain an oracle inequality explicit in the number of samples and proposed an upper bound for the total variation distance between the true distribution of the observations and a variational approximation combining the empirical distribution of the dataset and the proposed VAE architecture.

In this paper, we aim at extending the theoretical results on variational inference procedures in two directions. First, we set the focus on the use of VAEs for general state space models, i.e. settings where the decoding distribution P Y θ of the observations depends on an unobserved Markov chain. In addition, instead of using mean-field approximations, we consider variational encoding distributions Q ϕ satisfying a backward factorization as proposed in [START_REF] Campbell | Online variational filtering and parameter learning[END_REF], Chagneux et al., 2022]. In [START_REF] Chagneux | Additive smoothing error in backward variational inference for general state-space models[END_REF], the authors derived the first theoretical results providing upper bounds on the state decoding estimation error when using variational inference with backward factorization and no such results were proposed for state space models using a mean-field approximations. This factorization was used in [START_REF] Campbell | Online variational filtering and parameter learning[END_REF] to define new online variational estimation algorithms, where observations are processed on-the-fly.

In this paper, we provide the first (up to our knowledge) theoretical guarantees on the trained variational approximation in the setting of independent copies of sequences with distribution P D when using a backward variational factorization.

• We provide assumptions on the decoding and variational encoding kernels under which we prove an oracle inequality for the risk explicit in particular in the number of samples and in the length of the observation sequences, see Theorem 3.1. This result is established using an alternative formulation of [Tang and Yang, 2021, Theorem 3] in our state space setting and with an explicit dependency on some constants to track all terms depending on the number of observations. This allows to understand when the procedure leads to a decoding distribution that approximates well the data distribution together with a coding distribution which approximates well the decoding state distribution.

• In particular, when data are generated from a general state space model, and when P D belongs to the decoding family of distributions, we give an upper bound also explicit in the way the backward coding kernels approximate the backward decoding kernels, see Corollary 3.2.

• We analyse settings in which our results hold, in particular settings with Gaussian backward kernels based on Multi-Layer Perceptrons (MLPs) and on Recurrent Neural Networks (RNNs).

The paper is organised as follows. The general setting and notations for state space models and variational learning are given in Section 2. Assumptions and theoretical results are proposed in Section 3 along with discussions on specific deep architectures used in practice. A discussion with insights for future works is given in Section 4. Detailed proofs of theoretical results are given in Appendices B and C. Additional proofs to highlight that when the state and observation spaces are compact our main results hold are given in Appendix D.

t=1 M θ (x t-1 , dx t )g yt θ (x t )
.

The probability density of Φ y0:T θ,0:T |T is denoted by φ y0:T θ,0:T |T . In the following, we use the notation Φ y0:t θ,t = Φ y0:t θ,0:t|t to denote the the filtering distribution at time t, i.e. the conditional distribution of X t given Y 0:t , with a similar convention for the probability densities. The joint smoothing distribution can also be written

Φ y0:T θ,0:T |T (dx 0:T ) = Φ y0:T θ,T (dx T ) T -1 t=0 B y0:T -t-1 θ,T -t-1|T -t (x T -t , dx T -t-1 ) ,
where

B y0:T -t-1 θ,T -t-1|T -t (x T -t , dx T -t-1
) is the backward kernel at time T -t defined by

B y0:T -t-1 θ,T -t-1|t (x T -t , dx T -t-1 ) ∝ Φ y0:T -t-1 θ,T -t-1 (dx T -t-1 )m θ (x T -t-1 , x T -t ) ,
with a probability density with respect to µ denoted by b

y0:T -t-1 θ,T -t-1|T -t (x T -t , •)
. For all T , θ, y 0:T ∈ Y T +1 , the loglikelihood of the observations is:

ℓ y0:T T (θ) = log L y0:T T (θ) , where L y0:T T (θ) = p θ,0:T (x 0:T , y 0:T )µ(dx 0:T ) .
The joint smoothing distribution is usually intractable and we focus in this paper on variational learning to perform approximate maximum likelihood. Following [START_REF] Campbell | Online variational filtering and parameter learning[END_REF], Chagneux et al., 2022], we propose a backward variational formulation:

Q y0:T ϕ,0:T (dx 0:T ) = Q y0:T ϕ,T (dx T ) T -1 t=0 Q y0:T ϕ,T -t-1|T -t (x T -t , dx T -t-1 ) ,
where ϕ ∈ Φ ⊂ R dϕ , and where

Q y0:T ϕ,T -t-1|T -t (x T -t , •) (resp. Q y0:T ϕ,T
) has probability density q y0:T ϕ,T -t-1|T -t (x T -t , •) (resp. q y0:T ϕ,T ) with respect to the reference measure µ. In this setting, the ELBO writes, for all θ ∈ Θ, ϕ ∈ Φ, and for a sequence of observations Y 0:T ,

ELBO Y0:T T (θ, ϕ) = ℓ Y0:T T (θ) -KL Q Y0:T ϕ,0:T Φ Y0:T θ,0:T |T .
Let (Y i 0:T ) 1≤i≤n be i.i.d. sequences with distribution P D with density p D . Maximizing (θ, ϕ)

→ n i=1 ELBO Y i 0:T T (θ, ϕ
) is equivalent to minimizing the following loss function

L n,T (θ, ϕ) = 1 n n i=1 m(θ, ϕ, Y i 0:T ) ,
where

m(θ, ϕ, Y i 0:T ) = log p D (Y i 0:T ) L Y i 0:T T (θ) + KL Q Y i 0:T ϕ,0:T Φ Y i 0:T θ,0:T |T . Define ( θ n,T , ϕ n,T ) ∈ argmin θ∈Θ,ϕ∈Φ L n,T (θ, ϕ) .
Such a procedure is a so-called M -estimation method in the statistical literature. The intuition is that with large data sets, that is when n is large, the ELBO is closed to the expected value of m under the unknown distribution of the data, and the estimated decoding and coding parameters are close to minimize this expected value. An important body of work in the statistical community has been devoted to develop very general settings in which non asymptotic bounds on the risk of M -estimators, referred to as oracle inequalities, can be given, see [van de Geer, 2000] as early reference, or [Wainwright, 2019] and the references therein for more recent results. Moreover, oracle inequalities are obviously the only property one can hope for such estimators, the other properties being consequences of the oracle inequality. In the following section, we thus first provide assumptions under which we obtain an oracle inequality and then discuss consequences.

Main results

3.1 Notations.

In the following, for all measures λ and η on (X, X ) and all transition kernels K we consider the following notations. For all measurable sets A ⊂

X × X, λ ⊗ η(A) = 1 A (x, x ′ )λ(dx)η(dx ′ ) and λ ⊗ K(A) = 1 A (x, x ′ )λ(dx)K(x, dx ′ ), for all measurable sets B ⊂ X, λK(B) = λ(dx)1 B (x ′ )K(x, dx ′ ),
and for all real-valued measurable functions h on (X, X ), λ(h) = λ(dx)h(x). For all measurable functions h 1 , h 2 , we write

h 1 ⊗ h 2 : (x, x ′ ) → h 1 (x)h 2 (x ′
). For all α > 0, define on R + the function ψ α : x → exp(x α ) -1. For all real-valued random variables X, define the Orlicz norm of order α by

X ψα = inf λ>0 {E [ψ α (|X|/λ)] ≤ 1} .
For all probability measures P and Q defined on the same probability space, P -Q tv will denote the total variation norm between P and Q, and KL (Q P ) their Kullback-Leibler divergence, that is KL (

Q P ) = E Q [log(dQ/dP )].

Assumptions

In this section, we propose a set of assumptions on the kernel densities m θ and q y0:T ϕ,t|t+1 , 0 ≤ t ≤ T -1, and on the conditional densities g y θ , under which we are able to prove an oracle inequality. In the state space model literature, Assumption H1 is usual to control smoothing expectations and H2 for the study of asymptotic properties of maximum likelihood estimators. More assumptions are needed to manage the complexity of the models and to get a nonasymptotic control of the risk of the estimators. These controls are obtained with Assumptions H3-6. We discuss in Section 3.4 how they can be applied to specific architectures used in practice. Additional discussions on the assumptions are provided in Appendix D where we prove that usual compact state space models are covered by our theory.

H1 There exist probability measures η -and η + on (X, X ) and constants 0 < σ -< σ + < ∞ such that for all θ ∈ Θ, x ∈ X, all measurable set A,

σ -η -(A) ≤ χ(A) ≤ σ + η + (A) and σ -η -(A) ≤ M θ (x, A) ≤ σ + η + (A) .
There exist probability measures λ -and λ + on (X, X ) such that for all y 0:T ∈ Y T +1 , there exist ϑ y0:T -> 0 and ϑ y0:T + > 0 such that for all ϕ ∈ Φ, t ≥ 0, x ∈ X, all measurable set A,

ϑ y0:T -λ -(A) ≤ Q y0:T ϕ,t|t+1 (x, A) ≤ ϑ y0:T + λ + (A) .
In addition, for all ϕ ∈ Φ, all y 0:T ∈ Y T +1 , and all measurable set A,

ϑ y0:T -λ -(A) ≤ Q y0:T ϕ,T (A) ≤ ϑ y0:T + λ + (A).
H2 For all y ∈ Y, inf θ∈Θ g y θ (x)η -(dx) = c -(y) > 0 and sup θ∈Θ g y θ (x)η + (dx) = c + (y) < ∞.

We consider also the following notation sup θ∈Θ g yt θ = ḡyt and inf θ∈Θ g yt θ = g yt . We constrain the kernels and the conditional densities to be Lipschitz in the parameters with a Lipschitz coefficient depending on the variables.

H3 There exists M such that for all θ, θ ′ ∈ Θ and x, x ′ ∈ X,

|m θ (x, x ′ ) -m θ ′ (x, x ′ )| ≤ M (x, x ′ ) θ -θ ′ 2 .
For all 1 ≤ t ≤ T , y 0:T ∈ Y T +1 , there exists K y0:T t-1|t such that for all ϕ, ϕ ′ ∈ Φ and x, x ′ ∈ X,

q y0:T ϕ,t-1|t (x, x ′ ) -q y0:T ϕ ′ ,t-1|t (x, x ′ ) ≤ K y0:T t-1|t (x ′ , x) ϕ -ϕ ′ 2 .
In addition, there exists K y0:T T such that for all ϕ, ϕ ′ ∈ Φ and x ∈ X,

q y0:T ϕ,T (x) -q y0:T ϕ ′ ,T (x) ≤ K y0:T T (x) ϕ -ϕ ′ 2 .
For all y ∈ Y, there exists G y such that for all θ, θ ′ ∈ Θ and x ∈ X,

|g y θ (x) -g y θ ′ (x)| ≤ G y (x) θ -θ ′ 2 . Define, for 1 ≤ t ≤ T -1, h y0:T t,θ,ϕ (x t-1 , x t ) = log q y0:T ϕ,t-1|t (x t , x t-1 ) -log b y0:t-1 θ,t-1|t (x t , x t-1 ) (1)
and, by convention,

h y0:T T,θ,ϕ (x T -1 , x T ) = log q y0:T ϕ,T -1|T (x T , x T -1 )-log b y0:T -1 θ,T -1|T (x T , x T -1 )+log q y0:T ϕ,T (x T )- log φ y0:T θ,T (x T ).
H4 For all y 0:T ∈ Y T +1 and all 0 ≤ t ≤ T , sup θ∈Θ,ϕ∈Φ

λ + (dx) h y0:T t,θ,ϕ (x, •) ∞ = υ y0:T t < ∞ ,
and for all θ, θ ′ ∈ Θ, ϕ, ϕ ′ ∈ Φ, 1 ≤ t ≤ T ,

λ + ⊗ λ + (dxdx ′ ) log q y0:T ϕ,t-1|t (x, x ′ ) -log q y0:T ϕ ′ ,t-1|t (x, x ′ ) ≤ c y0:T 1,t ϕ -ϕ ′ 2 , λ + ⊗ λ + (dxdx ′ ) log b y0:t-1 θ,t-1|t (x, x ′ ) -log b y0:t-1 θ ′ ,t-1|t (x, x ′ ) ≤ c y0:t-1 2,t θ -θ ′ 2 , λ + (dx) log q y0:T ϕ,T (x) -log q y0:T ϕ ′ ,T (x) ≤ c y0:T 3,T ϕ -ϕ ′ 2 , λ + (dx) log φ y0:T θ,T (x) -log φ y0:T θ ′ ,T (x) ≤ c y0:T 4,T θ -θ ′ 2 ,
where λ + is defined in H1.

Our upper bounds require to prove that m is a Lipschitz function of the parameters, and we need an upper bound on the L 2 -norm of the Lipschitz coefficient. For this, we consider the following moment assumptions.

H5 There exists A such that the following inequalities are satisfied.

E ϑ Y0:T + c Y0:T 3,T 2 ≤ A , E ϑ Y0:T + c Y0:T 4,T 2 ≤ A , for all 0 ≤ t ≤ T , E µ(G Yt ) 2 c -(Y t ) 2 ≤ A , E (ϑ Y0:T + ) 2 c Y0:T 1,t 2 ≤ A , for all 1 ≤ t ≤ T , E (ϑ Y0:T + ) 2 c Y0:t-1 2,t 2 ≤ A , E η + ⊗ µ(M ⊗ ḡYt-1 ḡYt ) 2 c -(Y t-1 ) 2 c -(Y t ) 2 ≤ A , E   ϑ Y0:T + T s=t-1 λ + ⊗ λ + (K y0:T s|s+1 )ρ(Y 0:T ) s-t 2   ≤ A ,
where for all y 0:T , ρ(y

0:T ) = 1 -ϑ y0:T -, for all 0 ≤ s, t ≤ T , E c + (Y t ) 2 µ(G Ys ) 2 c -(Y t ) 2 c -(Y s ) 2 ≤ A ,
and for all 0

≤ t ≤ T , all 1 ≤ s ≤ T , E c + (Y t )η + ⊗ µ(M ⊗ ḡYs-1 ḡYs ) c -(Y s-1 )c -(Y s )c -(Y t ) 2 ≤ A .
The following assumption is used to have concentration properties, as usual in the statistical literature to get theoretical guarantees with finite samples.

H6 There exists α * and B > 0 such that for all T ≥ 1,

log p D (Y 0:T ) ψα * ≤ BT and (ϑ Y0:T + ) 2 • sup θ,ϕ,χ T t=1 λ + ⊗ λ + h y0:T t,θ,ϕ ψα * ≤ BT ,
and for all 0

≤ t ≤ T , | log c + (Y t )| ∨ | log c -(Y t )| ψα * ≤ B .

Oracle inequalities and consequences

Our main result is an oracle inequality for the risk. The so-called variance term has the usual rate 1/n up to log n terms in the sample size n. It is proved to grow as much as T 3 in the length T of the sample sequences. We assume that Θ and Φ are compact spaces, and that the sum of their diameters is bounded by d 0 .

Theorem 3.1. Assume that H1-H6 hold. Then, there exist constants c 0 , c 1 , c 2 , D which depend on σ + , σ -, α * , A, B and d 0 only, such that with probability at least We now prove that Condition A of Theorem 3.1 holds with a 1 ≤ CT 2 for some C > 0. Write, for all θ, ϕ 1 , ϕ 2 , y 0:T ,

1 -c 0 exp(-c 1 {d * log n} 1∧α * ), m( θ n,T , ϕ n,T , y 0:T )p D (y 0:T )dµ(y 0:T ) ≤ inf γ>0 (1 + γ)E T + c 2 (1 + γ -1 ) Dd * T 3 n log(d * n)(log n) 1/
E y0:T (θ, ϕ 1 , ϕ 2 ) = E q y 0:T ϕ 1 ,0:T log q y0:T ϕ2,0:T (X 0:T ) φ y0:T θ,0:T |T (X 0:T ) . Note that ∆(θ, θ ′ , ϕ, ϕ ′ , y 0:T ) ≤ |ℓ y0:T T (θ) -ℓ y0:T T (θ ′ )| + |E y0:T (θ, ϕ, ϕ) -E y0:T (θ ′ , ϕ ′ , ϕ ′ )| . Write |E y0:T (θ, ϕ) -E y0:T (θ ′ , ϕ ′ )| ≤ ∆ 1 (θ, ϕ, ϕ ′ , y 0:T ) + ∆ 2 (θ, θ ′ , ϕ, ϕ ′ , y 0:T ) ,
where

∆ 1 (θ, ϕ, ϕ ′ , y 0:T ) = |E y0:T (θ, ϕ, ϕ) -E y0:T (θ, ϕ ′ , ϕ)| , ∆ 2 (θ, θ ′ , ϕ, ϕ ′ , y 0:T ) = |E y0:T (θ, ϕ ′ , ϕ) -E y0:T (θ ′ , ϕ ′ , ϕ ′ )| . Therefore, ∆(θ, θ ′ , ϕ, ϕ ′ , y 0:T ) ≤ |ℓ y0:T T (θ) -ℓ y0:T T (θ ′ )| + ∆ 1 (θ, ϕ, ϕ ′ , y 0:T ) + ∆ 2 (θ, θ ′ , ϕ, ϕ ′ , y 0:T ) .
By Proposition B.1, Proposition B.2 and Proposition B.3, we get that for all θ, θ ′ , ϕ, ϕ ′ , and all

y 0:T , ∆(θ, θ ′ , ϕ, ϕ ′ , y 0:T ) ≤ (κ 1 (y 0:T ) + κ 4 (y 0:T )) θ -θ ′ 2 + (κ 2 (y 0:T ) + κ 3 (y 0:T )) ϕ -ϕ ′ 2 ,
where

κ 1 (y 0:T ) = σ + η + (G y0 ) σ -c -(y 0 ) + T t=1 σ + σ -c -(y t ) c + (y t )L t-1 (y 0:t-1 ) + η + ⊗ µ(M • ḡyt-1 ⊗g yt ) σ -c -(y t-1 ) + η + (G yt ) , (2) with M • ḡyt-1 ⊗ ḡyt (x, x ′ ) = M (x, x ′ )ḡ yt-1 (x)ḡ yt (x ′ ), and for all t, L t (y 0:t ) = 4σ 2 + σ 2 - t s=0 ε t-s 1 c -(y s ) 1 σ -c -(y s-1 ) η + ⊗ µ (M • ḡys-1 ⊗ ḡys ) + µ(G ys ) , (3) 
with ε = 1 -σ -/σ + , κ 2 (y 0:T ) = (ϑ y0:T + ) 3 T t=1 υ y0:T t T s=t-1 λ + ⊗ λ + (K y0:T s|s+1 )ρ(y 0:T ) s-t , (4) 
κ 3 (y 0:T ) = ϑ y0:T + ϑ y0:T + T t=1 c y0:T 1,t + c y0:T 3,T , (5) 
and

κ 4 (y 0:T ) = ϑ y0:T + ϑ y0:T + T t=1 c y0:t-1 2,t + c y0:T 4,t , (6) 
in which

υ y0:T t , c y0:T 1,t , c y0:t-1 2,t
, c y0:T 3,T and c y0:T 4,t are defined in H4. Using H5, it is easy to prove that 

E[κ 1 (y 0:T ) 2 ], E[κ 2 (y 0:T ) 2 ], E[κ 3 (y 0:T ) 2 ],
E T = min θ∈Θ,ϕ∈Φ KL P D P Y θ + E PD KL Q Y 1 0:T ϕ,0:T Φ Y 1 0:T θ,0:T |T .
In case the data follows a state space distribution given by some decoding distribution, that is if there exists θ * ∈ Θ such that P D = P Y θ * , the oracle inequality in Theorem 3.1 becomes, by taking

θ = θ * to upper bound E T , KL P Y θ * P Y θn,T + E P Y θ * KL Q Y 1 0:T ϕn,T ,0:T Φ Y 1 0:T θn,T ,0:T |T ≤ (1 + γ)min ϕ∈Φ E P Y θ * KL Q Y 1 0:T ϕ,0:T Φ Y 1 0:T θ * ,0:T |T + c 2 (1 + γ -1 ) Dd * T 3 n log(d * n)(log n) 1/α * (7)
for any γ > 0. In the following corollary, we assume that the coding backward kernels are chosen such that they are good approximations of the backward decoding kernels in Kullback-Leibler divergence.

H7 There exists ǫ > 0, such that for all θ ∈ Θ there exists ϕ ∈ Φ such that for all

y 0:T ∈ Y T +1 , KL Q y0:T ϕ,T Φ y0:T θ * ,T ≤ ǫ and for all 1 ≤ t ≤ T , KL Q y0:T ϕ,t-1|t B y0:t-1 θ,t-1|t ≤ ǫ .
Corollary 3.2. Assume there exists θ * ∈ Θ such that P D = P Y θ * . Assume moreover H7. Then under the same assumptions as in Theorem 3.1, for the constants c 0 , c 1 , c 2 , D in Theorem 3.1, with probability at least 1 -c 0 exp(-c 1 {d * log n} 1∧α * ), for any γ > 0,

KL P Y θ * P Y θn,T + E P Y θ * KL Q Y 1 0:T ϕn,T ,0:T Φ Y 1 0:T θn,T ,0:T |T ≤ (1 + γ)(T + 1)ǫ + c 2 (1 + γ -1 ) Dd * T 3 n log(d * n)(log n) 1/α * .
When the data distribution is given by a state space model, Corollary 3.2 provides an upper bound for the Kullback-Leibler divergence between the data distribution and its estimator and between the variational posterior and the estimated state space posterior distributions. This result sheds additional light on the quality of variational reconstruction in state space models with respect to [Chagneux et al., 2022, Proposition 3]. In [Chagneux et al., 2022, Proposition 3], the authors provided upper bounds on the error between conditional expectations of state functionals under the true posterior distribution and under its variational approximation. In both settings, designing coding backward kernels that are good approximations of the true backward decoding kernels is enough to obtain quantitative controls on the reconstruction error.

Proof. The result follows from equation 7, H7 and the fact that for any θ ∈ Θ and ϕ ∈ Φ, for any

y 0:T , KL Q y0:T ϕ,0:T Φ y0:T θ * ,0:T |T = T t=1 KL Q y0:T ϕ,t-1|t B y0:t-1 θ,t-1|t + KL Q y0:T ϕ,T Φ y0:T θ * ,T .

Applications

In this section, we consider generative models where the transition kernels and emission distributions are Gaussian in various classical settings. We show that under weak assumptions on these models, some assumptions of our main results hold. Establishing that all assumptions are satisfied in general settings, i.e. without very specific assumptions on the architectures, is a more challenging problem. We prove in Appendix D that H1 holds in particular for compact state spaces. We also prove that the functions h y0:T t,θ,ϕ are upper-bounded explicitly, and that φ y0:t θ,t and b y0:t-1 θ,t-1|t are lower and upper-bounded explicitly. This allows to obtain explicit constants in H4. Providing additional comments on the assumptions requires assumptions on the observation space or on the dependency of the variational distributions on the observations. When the observation space is compact we can also obtain a uniform control with respect to the observations of these upper bounds which is crucial to check H5 and H6.

Gaussian backward kernels with dense networks.

We consider a generative model where the transition kernels and emission distributions are Gaussian and parameterized by dense networks.

• For all x ∈ X, x ′ → m θ (x, x ′ ) is the Gaussian probability density function with mean µ θ (x), and variance Σ θ (x) where (µ θ (x), Σ θ (x)) = MLP θ (x) with MLP θ a dense Multi-layer network with input x and weights given by θ. In this case, if the output layer of MLP θ is such that µ θ is bounded and Σ ≤ Σ -1 θ (x) ≤ Σ (i.e. Σ -1 θ (x) -Σ and Σ -Σ -1 θ (x) are positive semi-definite matrices) for all x ∈ X, then there exist constants c, c such that for all x, x ′ ∈ X,

c exp -λx ⊤ x ≤ m θ (x ′ , x) ≤ c exp (-λα(x)) ,
where λ is the smallest eigenvalue of Σ and λ is the largest eigenvalue of Σ and where

α(x) = 1 2 ( x -M ) 2 1 x ≥M + ( x -m) 2 1 x ≤m + (M -m) 2 1 m≤ x ≤M ,
with m = inf x∈X,θ∈Θ µ θ (x) and M = sup x∈X,θ∈Θ µ θ (x) . This implies that H1 holds.

In order to check H3, if we assume also that for all x ∈ X, θ → µ θ (x) and θ → Σ -1 θ (x) are continuously differentiable and that Θ is compact then there exists M such that for all θ, θ ′ ∈ Θ and x, x ′ ∈ X,

|m θ (x, x ′ ) -m θ ′ (x, x ′ )| ≤ M (x, x ′ ) θ -θ ′ 2 .
We can check H4 for log b y0:t-1 θ,t-1|t , as other items can be verified following the same steps. Assuming that b y0:t-1 θ,t-1|t (x, •) is a Gaussian probability density with mean µ y0:t-1 θ,t-1|t (x) and variance Σ y0:t-1 θ,t-1|t (x). Under similar regularity assumptions on the networks providing µ y0:t-1 θ,t-1|t (x) and Σ y0:t-1 θ,t-1|t (x), when Θ is compact, H4 holds.

• For all 1 ≤ t ≤ T , x ∈ X, x ′ → q y0:T ϕ,t-1|t (x, x ′ ) is the Gaussian probability density function with mean µ y0:T ϕ,t-1|t (x), and variance Σ y0:T ϕ,t-1|t (x) where (µ y0:T ϕ,t-1|t (x), Σ y0:T ϕ,t-1|t (x)) = MLP y0:T ,ϕ t-1|t (x) with MLP y0:T ,ϕ t-1|t a dense Multi-layer network with input x and weights depending on ϕ. In this case, is the output layer of MLP y0:T ,ϕ t-1|t is such that µ y0:T ϕ,t-1|t is bounded and Σ

y0:T t-1|t ≤ (Σ y0:T ϕ,t-1|t (x)) -1 ≤ Σ y0:T t-1|t (i.e. (Σ y0:T ϕ,t-1|t (x)) -1 -Σ y0:T t-1|t and Σ y0:T t-1|t -(Σ y0:T ϕ,t-1|t (x)) -1 are positive
semi-definite matrices) for all x ∈ X, then there exist constants c y0:T t-1|t , c y0:T t-1|t such that for all x, x ′ ∈ X,

c y0:T t-1|t exp -λ y0:T t-1|t x ⊤ x ≤ q y0:T ϕ,t-1|t (x ′ , x) ≤ c y0:T t-1|t exp -λ y0:T t-1|t β(x) ,
where λ y0:T t-1|t is the smallest eigenvalue of Σ y0:T t-1|t and λ

y0:T t-1|t is the largest eigenvalue of Σ y0:T t-1|t
and where

β(x) = 1 2 ( x -M y0:T t-1|t ) 2 1 x ≥M y 0:T t-1|t + ( x -m y0:T t-1|t ) 2 1 x ≤m y 0:T t-1|t +(M y0:T t-1|t -m y0:T t-1|t ) 2 1 m y 0:T t-1|t ≤ x ≤M y 0:T t-1|t
, with m y0:T t-1|t = inf x∈X µ y0:T t-1|t (x) and M y0:T t-1|t = sup x∈X µ y0:T t-1|t (x) . Similar assumptions can be used for q y0:T ϕ,T using dense neural networks with bounded output. Under similar regularity assumptions on µ y0:T ϕ,t-1|t , and Σ y0:T ϕ,t-1|t than for µ θ , and variance Σ θ , we may prove that H3 holds when Φ is compact.

Gaussian backward kernels with recurrent networks.

A natural parameterization is also to use a recurrent neural network which updates an internal state (s t ) t≥0 from which the backward variational kernels and filtering density are built. For all t ≥ 0, define s t = RNN ϕ (s t-1 , y t ) where RNN ϕ is a recurrent neural network, and let x ′ → q y0:T ϕ,t-1|t (x, x ′ ) be the Gaussian probability density function with mean µ y0:T t-1|t , and variance Σ y0:T t-1|t where (µ t , Σ t ) = MLP ϕ (s t ). If the network MLP ϕ is bounded similarly as in the dense neural network case, then the backward variational kernels satisfy H1.

Functional autoregressive models.

The discussion on neural networks also indicates that the assumptions can be verified for some classical statistical models. Assume for instance that X = R and that for all θ ∈ Θ, x ∈ X, x ′ → m θ (x, x ′ ) is the Gaussian probability density function with mean f θ (x), and variance σ 2 θ (x). Then, H1 holds for m θ when -∞ < inf x∈X,θ∈Θ f θ (x) ≤ sup x∈X,θ∈Θ f θ (x) < ∞ and -∞ < inf x∈X,θ∈Θ σ θ (x) ≤ sup x∈X,θ∈Θ σ θ (x) < ∞.

Gaussian emission densities.

Assume that at each time t ≥ 0, Y t = h θ (X t ) + ε t , where {ε t } t≥0 are independent Gaussian random variables. Assume also that h θ (X t ) = MLP θ (X t ) where MLP θ is a dense neural network with bounded output layer, then H2 holds. Assume that for all x ∈ X, θ → h θ (x) is continuously differentiable and that Θ is compact, for all y ∈ Y, there exists G y such that for all θ, θ ′ ∈ Θ and x ∈ X,

|g y θ (x) -g y θ ′ (x)| ≤ G y (x) θ -θ ′ 2 ,
which means that H3 holds for the emission distributions.

Discussion

In this paper, we used a backward decomposition of variational posterior distributions to propose the first theoretical results for variational autoencoders (VAE) applied to general state space models.

Under strong mixing assumptions on the state space model and on the variational distribution, we provide in particular an oracle inequality and an upper bound for the Kullback-Leibler divergence between the data distribution and its estimator.

Although these results are the first theoretical guarantees for VAE in the context of state space models, we believe that this is the first step to solve challenging open problems. First, in order to cover a wider variety of applications, weakening the strong mixing assumptions, for instance using local Doeblin assumptions, would be very interesting although it is a challenge when analyzing the stability of smoothing distributions. Another research direction is to understand how our results can be extended in settings where the observations are processed online, i.e. in cases where the parameters are updated when new observations are received but never stored. To the best of our knowledge, online variational estimation has recently been explored with new methodologies but without any theoretical guarantees.

[ Douc et al., 2014] A An oracle inequality adapted from [Tang and Yang, 2021] We propose an alternative formulation of Theorem 3 in [Tang and Yang, 2021] in which we provide the precise behavior of the constant in the variance term. To avoid introducing too many new notations, we formulate the results of [Tang and Yang, 2021] choosing the observation to be Y 0:T , the latent variables to be X 0:T in our setting.

Condition A. There exist a 1 > 0 and a function b such that for all θ ∈ Θ,

θ ′ ∈ Θ, ϕ ∈ Φ, ϕ ′ ∈ Φ, y 0:T ∈ Y T +1 , |m(θ, ϕ, y 0:T ) -m(θ ′ , ϕ ′ , y 0:T )| ≤ b(y 0:T ) (θ, ϕ) -(θ ′ , ϕ ′ ) 2 , with E[b 2 (Y 0:T )] ≤ a 1 .
Assumption A. There exist α * > 0 and D > 0 such that sup θ,ϕ log

L Y0:T T (θ) p D (Y 0:T ) + KL Q Y0:T ϕ,0:T φ Y0:T θ,T ψα * ≤ D . ( 8 
)
Theorem A.1. Assume that Θ and Φ are compact spaces and that the sum of their diameter is upper bounded by d 0 . Assume moreover that Condition A and Assumption A hold. Then, there exist constants c 0 , c 1 , which depend on d 0 , a 1 and α * , and a universal constant c 2 , such that with probability at least 1 -c 0 exp(-c 1 {d * log n} 1∧α * ),

m( θ n,T , ϕ n,T , y 0:T )p D (y 0:T )dµ(y 0:T ) ≤ inf γ>0 (1 + T + c 2 (1 + γ -1 ) a 1 Dd * n log(d * n)(log n) 1/α * ,
where E T = min θ∈Θ,ϕ∈Φ m(θ, ϕ, y 0:T )p D (y 0:T )dµ(y 0:T ) and

d * = d θ + d ϕ .
Proof. We follow the proof of [Tang and Yang, 2021, Theorem 3], in which we track the dependencies of the constants with respect to a 1 . In [Tang and Yang, 2021, Lemma 14], a multiplicative term √ a 1 is required on the r.h.s. of the inequality. Then on page 24 third line the inequality needs again √ a 1 on the r.h.s., and the end of the proof follows by multiplying δ n by √ a 1 . We obtain that in [Tang and Yang, 2021, Theorem 3], their constant c 2 is proportional to a 1 .

B Additional proofs

Proposition B.1. Assume that H1-3 hold. For all θ, θ ′ ∈ Θ, and all y 0:T ∈ Y T +1 ,

|ℓ y0:T T (θ) -ℓ y0:T T (θ ′ )| ≤ κ 1 (y 0:T ) θ -θ ′ 2 ,
where

κ 1 (y 0:T ) = σ + η + (G y0 ) σ -c -(y 0 ) + T t=1 σ + σ -c -(y t ) c + (y t )L t-1 (y 0:t-1 ) + η + ⊗ µ(M • ḡyt-1 ⊗g yt ) σ -c -(y t-1 ) + η + (G yt ) , with M • ḡyt-1 ⊗ ḡyt (x, x ′ ) = M (x, x ′ )ḡ yt-1 (x)ḡ yt (x ′ ), where L t-1 is defined in Lemma C.2.
Proof. For all θ, θ ′ ∈ Θ, and all y 0:T ∈ Y T +1 , with the convention p θ (y 0 |y -1 ) = p θ (y 0 ),

ℓ y0:T T (θ) -ℓ y0:T T (θ ′ ) = T t=0
(log p θ (y t |y 0:t-1 ) -log p θ ′ (y t |y 0:t-1 )) .

For all t > 0,

p θ (y t |y 0:t-1 ) = Φ y0:t-1 θ,t-1 (dx t-1 )M θ (x t-1 , dx t )g yt θ (x t ) .
Note first that p θ (y t |y 0:t-1 ) ≥ σ -c -(y t ) , so that

|ℓ y0:T T (θ) -ℓ y0:T T (θ ′ )| ≤ |p θ (y 0 ) -p θ ′ (y 0 )| σ -c -(y 0 ) + T t=0 |p θ (y t |y 0:t-1 ) -p θ ′ (y t |y 0:t-1 )| σ -c -(y t ) .
For t = 0, using that p θ (y 0 ) = χ(dx 0 )g y0 θ (x 0 ), Assumptions H1 and H3 yield

|p θ (y 0 ) -p θ ′ (y 0 )| ≤ σ + η + (G y0 ) θ -θ ′ 2 .
In addition, p θ (y t |y 0:t-1 ) -p θ ′ (y t |y 0:t-1 ) = Φ

y0:t-1 θ,t-1 (dx t-1 ) -Φ y0:t-1 θ ′ ,t-1 (dx t-1 ) M θ (x t-1 , dx t )g yt θ (x t ) + Φ y0:t-1 θ ′ ,t-1 (dx t-1 ) (M θ (x t-1 , dx t ) -M θ ′ (x t-1 , dx t )) g yt θ (x t )+ Φ y0:t-1 θ ′ ,t-1 (dx t-1 )M θ ′ (x t-1 , dx t ) (g yt θ (x t ) -g yt θ ′ (x t )) .
Using Lemma C.1, Assumptions H1 and H3, we get

|p θ (y t |y 0:t-1 ) -p θ ′ (y t |y 0:t-1 )| ≤ σ + c + (y t ) Φ y0:t-1 θ,t-1 -Φ y0:t-1 θ ′ ,t-1 tv + σ + σ -c -(y t-1 ) η + ⊗ µ(dxdx ′ )(M (x, x ′ )ḡ yt-1 (x)ḡ yt (x ′ )) + σ + η + (G yt ) θ -θ ′ 2 .
The proof is completed by using Lemma C.2.

Proposition B.2. Assume that H1-4 hold. Then,

∆ 1 (θ, ϕ, ϕ ′ , y 0:T ) ≤ κ 2 (y 0:T ) ϕ -ϕ ′ 2 ,
where ∆ 1 (θ, ϕ, ϕ ′ , y 0:T ) = E q y 0:T ϕ,0:T log q y0:T ϕ,0:T (X 0:T ) φ y0:T θ,0:T |T (X 0:T ) -E q y 0:T ϕ ′ ,0:T log q y0:T ϕ,0:T (X 0:T ) φ 

λ + ⊗ λ + (K y0:T s|s+1 )ρ(y 0:T ) s-t . Proof. For all ϕ, ϕ ′ ∈ Φ, 0 ≤ t ≤ T -1, define qy0:T ϕ,ϕ ′ ,t|T (x 0:T ) = q y0:T ϕ,T (x T ) t+1 u=T q y0:T ϕ,u-1|u (x u , x u-1 ) 1 u=t q y0:T ϕ ′ ,u-1|u (x u , x u-1 ) -q y0:T ϕ,T (x T ) t+2 u=T q y0:T ϕ,u-1|u (x u , x u-1 ) 1 u=t+1 q y0:T ϕ ′ ,u-1|u (x u , x u-1 )
with the convention

T +1
u=T q y0:T ϕ,u-1|u (x u , x u-1 ) = 1 and 1 u=0 q y0:T ϕ ′ ,u-1|u (x u , x u-1 ) = 1, and for t = T , qy0:T ϕ,ϕ ′ ,T |T (x 0:T ) = q y0:T ϕ,T (x T )

1 u=T q y0:T ϕ ′ ,u-1|u (x u , x u-1 ) -q y0:T ϕ ′ ,T (x T ) 1 u=T q y0:T ϕ ′ ,u-1|u (x u , x u-1 ) . Therefore, ∆ 1 (θ, ϕ, ϕ ′ , y 0:T ) = T t=1 E q y 0:T ϕ,0:T h y0:T t,θ,ϕ (X t-1 , X t ) -E q y 0:T ϕ ′ ,0:T h y0:T t,θ,ϕ (X t-1 , X t ) , = T t=1 T s=0 E qy 0:T ϕ,ϕ ′ ,s|T h y0:T t,θ,ϕ (X t-1 , X t ) ,
where h y0:T t,θ,ϕ , 1 ≤ t ≤ T , are defined in equation 1. Note first that if t > s+1, then E qy 0:T ϕ,ϕ ′ ,s|T

h y0:T t,θ,ϕ (X t-1 , X t ) = 0 so that ∆ 1 (θ, ϕ, ϕ ′ , y 0:T ) = T t=1 T s=t-1 E qy 0:T ϕ,ϕ ′ ,s|T h y0:T t,θ,ϕ (X t-1 , X t ) .
For all t ≤ s + 1, write for all measurable set A,

µ y0:T ϕ,s (A) = 1 A (x s )q y0:T ϕ,T (x T )µ(dx T ) s+1 u=T q y0:T ϕ,u-1|u (x u , x u-1 )µ(dx u-1 ) , μy0:T ϕ,ϕ ′ ,s (A) = 1 A (x s )q y0:T ϕ,T (x T )µ(dx T ) s+2 u=T q y0:T ϕ,u-1|u (x u , x u-1 )µ(dx u-1 )q y0:T ϕ ′ ,s|s+1 (x s+1 , x s )µ(dx s ) .
Therefore,

E qy 0:T ϕ,ϕ ′ ,s|T h y0:T t,θ,ϕ (X t-1 , X t ) = µ y0:T ϕ,s -μy0:T ϕ,ϕ ′ ,s t+1 u=s Q y0:T ϕ ′ ,u-1|u Q y0:T ϕ ′ ,t-1|t h y0:T t,θ,ϕ .
Using H1, the backward variational kernels satisfy a Doeblin condition, see [Douc et al., 2014, Section 6.1.3], so that

E qy 0:T ϕ,ϕ ′ ,s|T h y0:T t,θ,ϕ (X t-1 , X t ) ≤ 1 2 µ y0:T ϕ,s -μy0:T ϕ,ϕ ′ ,s tv ρ(y 0:T ) s-t osc Q y0:T ϕ ′ ,t-1|t h y0:T t,θ,ϕ
, where for all measurable functions f , osc(f

) = sup x,x ′ ∈X |f (x) -f (x ′ )|. By H1 and H4, osc Q y0:T ϕ ′ ,t-1|t h y0:T t,θ,ϕ ≤ 2 q y0:T ϕ ′ ,t-1|t (•, x t-1 )h y0:T t,θ,ϕ (x t-1 , •)µ(dx t-1 ) ∞ , ≤ 2ϑ y0:T + h y0:T t,θ,ϕ (x t-1 , •) λ + (dx t-1 ) ∞ , ≤ 2ϑ y0:T + υ y0:T t .
Noting that by H3,

µ y0:T ϕ,s -μy0:T ϕ,ϕ ′ ,s tv ≤ Q y0:T ϕ,T t+1 s=T Q y0:T ϕ,s-1|s K y0:T s|s+1 ϕ -ϕ ′ 2 ≤ (ϑ y0:T + ) 2 λ + ⊗ λ + (K y0:T s|s+1 ) ϕ -ϕ ′ 2 ,
concludes the proof.

Proposition B.3. Assume that H1-4 hold. Then,

∆ 2 (θ, θ ′ , ϕ, ϕ ′ , y 0:T ) ≤ κ 3 (y 0:T ) ϕ -ϕ ′ 2 + κ 4 (y 0:T ) θ -θ ′ 2 , where ∆ 2 (θ, θ ′ , ϕ, ϕ ′ , y 0:T ) = E q y 0:T ϕ ′ ,0:T log q y0:T ϕ,0:T (X 0:T ) φ y0:T θ,0:T |T (X 0:T ) -E q y 0:T ϕ ′ ,0:T log q y0:T ϕ ′ ,0:T (X 0:T ) φ y0:T θ ′ ,0:T |T (X 0:T ) , with κ 3 (y 0:T ) = ϑ y0:T + ϑ y0:T + T t=1 c y0:T 1,t + c y0:T 3,T
and κ 4 (y 0:T ) = ϑ y0:T

+ ϑ y0:T + T t=1 c y0:t-1 2,t + c y0:T 4,t
, and where c y0:T 1,t , c

y0:t-1 2,t
, c y0:T 3,T and c y0:T 4,t are defined in H4. Proof. By definition,

∆ 2 (θ, θ ′ , ϕ, ϕ ′ , y 0:T ) = E q y 0:T ϕ ′ ,0:T log q y0:T ϕ,0:T (X 0:T ) φ y0:T θ,0:T |T (X 0:T ) -E q y 0:T ϕ ′ ,0:T log q y0:T ϕ ′ ,0:T (X 0:T ) φ y0:T θ ′ ,0:T |T (X 0:T ) , ≤ E q y 0:T ϕ ′ ,0:T log q y0:T ϕ,0:T (X 0:T ) φ y0:T θ,0:T |T (X 0:T ) -log q y0:T ϕ ′ ,0:T (X 0:T ) φ y0:T θ ′ ,0:T |T (X 0:T ) , ≤ T t=1 E q y 0:T ϕ ′ ,0:T h y0:T t,θ,ϕ (X t-1 , X t ) -h y0:T t,θ ′ ,ϕ ′ (X t-1 , X t ) ,
where h y0:T t,θ,ϕ , 1 ≤ t ≤ T , are defined in equation 1. For t < T and all x t-1 , x t ∈ X,

h y0:T t,θ,ϕ (x t-1 , x t ) -h y0:T t,θ ′ ,ϕ ′ (x t-1 , x t ) ≤ log q y0:T ϕ,t-1|t (x t , x t-1 ) -log q y0:T ϕ ′ ,t-1|t (x t , x t-1 ) + log b y0:t-1 θ,t-1|t (x t , x t-1 ) -log b y0:t-1 θ ′ ,t-1|t (x t , x t-1 ) .
Using H1 and H4, E q y 0:T ϕ ′ ,0:T log q y0:T ϕ,t-1|t (x t , x t-1 ) -log q y0:T ϕ ′ ,t-1|t (x t , x t-1 )

≤ (ϑ y0:T + ) 2 λ + ⊗ λ + (dxdx ′ ) log q y0:T ϕ,t-1|t (x, x ′ ) -log q y0:T ϕ ′ ,t-1|t (x, x ′ ) , ≤ (ϑ y0:T + ) 2 c y0:T 1,t ϕ -ϕ ′ 2 . Similarly, E q y 0:T ϕ ′ ,0:T log b y0:t-1 θ,t-1|t (x t , x t-1 ) -log b y0:t-1 θ ′ ,t-1|t (x t , x t-1 ) ≤ (ϑ y0:T + ) 2 λ + ⊗ λ + (dxdx ′ ) log b y0:t-1 θ,t-1|t (x, x ′ ) -log b y0:t-1 θ ′ ,t-1|t (x, x ′ ) , ≤ (ϑ y0:T + ) 2 c y0:t-1 2,t
θ -θ ′ 2 . For t = T , it remains to bound E q y 0:T ϕ ′ ,0:T [| log q y0:T ϕ,T (X T )-log q y0:T ϕ ′ ,T (X T )|+| log φ y0:T θ,T (X T )-log φ y0:T θ ′ ,T (X T )|], which is straightforward by using H1 and H4. As p θ (y 0 ) = χ(dx 0 )g y0 θ (x 0 ), by H1-2, σ -c -(y 0 ) ≤ p θ (y 0 ) ≤ σ + c + (y 0 ). For all t > 0,

p θ (y t |y 0:t-1 ) = Φ y0:t-1 θ,t-1 (dx t-1 )M θ (x t-1 , dx t )g yt θ (x t ) ,
so that by H1-2 σ -c -(y t ) ≤ p θ (y t |y 0:t-1 ) ≤ σ + c + (y t ). Using the second point in H6 and the triangular inequality concludes the proof.

Proposition B.5. Assume that H1 and H6 hold. Then, there exists B > 0 such that

sup θ∈Θ,ϕ∈Φ,χ KL Q Y0:T ϕ,0:T φ Y0:T θ,T ψα * ≤ BT , Proof. For all θ ∈ Θ, ϕ ∈ Φ, y 0:T ∈ Y T +1 , KL Q y0:T ϕ,0:T φ y0:T θ,T = E q y 0:T ϕ,0:T log q y0:T ϕ,0:T (X 0:T ) φ y0:T θ,0:T |T (X 0:T ) = T t=1 E q y 0:T ϕ,0:T h y0:T t,θ,ϕ (X t-1 , X t ) ,
where h y0:T t,θ,ϕ , 1 ≤ t ≤ T , are defined in equation 1. By H1, for all 1 ≤ t ≤ T , E q y 0:T ϕ,0:T h y0:T t,θ,ϕ (X t-1 , X t ) ≤ (ϑ y0:T + ) 2 λ + ⊗ λ + h y0:T t,θ,ϕ , which concludes the proof by H6.

C Technical results

Lemma C.1. Assume that H1 and H2 hold. For all θ ∈ Θ, all t ≥ 0, all y

0:t ∈ Y T +1 , positive measurable function h, σ -η -(g yt θ h) σ + c + (y t ) ≤ Φ y0:t θ,t (h) ≤ σ + η + (g yt θ h) σ -c -(y t )
.

Proof. At time 0, we have Φ y0 θ,0 (dx 0 ) ∝ χ(dx 0 )g y0 θ (x 0 ) so that by H1-2,

σ -η -(g y0 θ h) σ + c + (y 0 ) ≤ Φ y0 θ,0 (h) ≤ σ + η + (g y0 θ h) σ -c -(y 0 )
.

Similarly,

Φ y0:t θ,t (dx t ) ∝ g yt θ (x t ) Φ y0:t-1 θ,t-1 (dx t-1 )M θ (x t-1 , dx t ) ,
so that by H1 and H2,

σ -η -(g yt θ h) σ + c + (y t ) ≤ Φ y0:t θ,t (h) ≤ σ + η + (g yt θ h) σ -c -(y t )
.

Lemma C.2. Assume that H1, H2 and H3 hold. Then, for all θ, θ ′ ∈ Θ, t ≥ 1,

Φ y0:t θ,t -Φ y0:t θ ′ ,t tv ≤ L t (y 0:t ) θ -θ ′ 2 ,
where

L t (y 0:t ) = 4σ 2 + σ 2 - t s=0 ε t-s 1 c -(y s ) 1 σ -c -(y s-1 ) η + ⊗ µ (ḡ ys-1 ⊗ ḡys • M ) + η + (G ys ) , with ε = 1 -σ -/σ + .
Proof. The proof follows the same lines as the proof of [De Castro et al., 2017, Proposition 2.1], which was in the setting of a discrete state space. For t > 0, note that Φ y0:t θ,t (dx t ) = g yt θ (x t ) Φ y0:t-1 θ,t-1 (dx t-1 )M θ (x t-1 , dx t )/c where c θ,t (y 0:t ) = g yt θ (x t )Φ y0:t-1 θ,t-1 (dx t-1 )M θ (x t-1 , dx t ). Consider the forward kernel at time t defined, for all θ ∈ Θ, all y t ∈ Y, x ∈ R d , and probability measure γ by

F yt θ,t γ(x) = m θ (x ′ , x)g yt θ (x)γ(dx ′ ) m θ (x ′ , x ′′ )g yt θ (x ′′ )γ(dx ′ )µ(dx ′′ )
.

Therefore, Φ y0:t θ,t = F yt θ,t Φ y0:t-1 θ,t-1 and for all θ, θ ′ ∈ Θ,

Φ y0:t θ,t -Φ y0:t θ ′ ,t = F yt θ,t Φ y0:t-1 θ,t-1 -F yt θ ′ ,t Φ y0:t-1 θ ′ ,t-1 , = t-1 s=0 ∆ t,s (y s:t ) + F yt θ,t Φ y0:t-1 θ ′ ,t-1 -F yt θ ′ ,t Φ y0:t-1 θ ′ ,t-1 , where ∆ t,s (y s:t ) = F yt θ,t • • • F ys+1 θ,s+1 F ys θ,s Φ y0:s-1 θ ′ ,s-1 -F yt θ,t • • • F ys+1 θ,s+1 Φ y0:s θ ′ ,s
with the convention F y0 θ,0 Φ y-1 θ ′ ,-1 = Φ y0 θ,0 . Consider also the backward function β ys+1:t s|t and the forward smoothing kernel F ys:t s|t,θ defined by

β ys+1:t θ,s|t (x s ) = M θ (x s , dx s+1 )g ys+1 θ (x s+1 ) • • • M θ (x t-1 , dx t )g yt θ (x t ) , F ys:t θ,s|t (x s-1 , x s ) = β ys+1:t s|t (x s )m θ (x s-1 , x s )g ys θ (x s ) β ys+1:t s|t (x)M θ (x s-1 , dx)g ys θ (x)
.

Following for instance [Cappé et al., 2005, Chapter 4], we can write for all probability measure γ,

F yt θ,t • • • F ys+1 θ,s+1 γ = γ θ,s|t F ys+1:t θ,s+1|t • • • F yt θ,t|t ,
where γ θ,s|t ∝ β ys+1:t θ,s|t γ. Therefore,

Φ y0:t θ,t -Φ y0:t θ ′ ,t = t-1 s=0 γ θ,θ ′ ,s|t F yt θ,s+1|t • • • F ys+1 θ,t|t -γθ,θ ′ ,s|t F yt θ,s+1|t • • • F ys+1 θ,t|t +F yt θ,t Φ y0:t-1 θ ′ ,t-1 -F yt θ ′ ,t Φ y0:t-1 θ ′ ,t-1 ,
where γ θ,θ ′ ,s|t ∝ β ys+1:t θ,s|t F ys θ,s Φ y0:s-1 θ ′ ,s-1 and γθ,θ ′ ,s|t ∝ β ys+1:t θ,s|t Φ y0:s θ ′ ,s . Note that by H1, for all measurable sets A,

F ys:t θ,s|t (x s-1 , A) ≥ σ - σ + η -(dx s )1 A (x)β ys+1:t s|t (x)g ys θ (x) η + (dx)β ys+1:t s|t (x)g ys θ (x) , so that γ θ,θ ′ ,s|t F yt θ,s+1|t • • • F ys+1 θ,t|t -γθ,θ ′ ,s|t F yt θ,s+1|t • • • F ys+1 θ,t|t tv ≤ ǫ t-s γ θ,θ ′ ,s|t -γθ,θ ′ ,s|t tv , with ǫ = 1 -σ -/σ + . This yields Φ y0:t θ,t -Φ y0:t θ ′ ,t tv ≤ t-1 s=0 ǫ t-s γ θ,θ ′ ,s|t -γθ,θ ′ ,s|t tv + F yt θ,t Φ y0:t-1 θ ′ ,t-1 -F yt θ ′ ,t Φ y0:t-1 θ ′ ,t-1 tv .
For all bounded measurable functions h,

γ θ,θ ′ ,s|t (h) -γθ,θ ′ ,s|t (h) = β ys+1:t θ,s|t (x s )F ys θ,s Φ y0:s-1 θ ′ ,s-1 (x s )h(x s )µ(dx s ) β ys+1:t θ,s|t (x s )F ys θ,s Φ y0:s-1 θ ′ ,s-1 (x s )µ(dx s ) - β ys+1:t θ,s|t (x s )Φ y0:s θ ′ ,s (x s )h(x s )µ(dx s ) β ys+1:t θ,s|t (x s )Φ y0:s θ ′ ,s (x s )µ(dx s ) , ≤ δ y0:t θ,θ ′ ,1 (h) + δ y0:t θ,θ ′ ,2 (h) ,
where

δ y0:t θ,θ ′ ,1 (h) = β ys+1:t θ,s|t (x s ) F ys θ,s Φ y0:s-1 θ ′ ,s-1 (x s ) -F ys θ ′ ,s Φ y0:s-1 θ ′ ,s-1 (x s ) h(x s )µ(dx s ) β ys+1:t θ,s|t (x s )F ys θ,s Φ y0:s-1 θ ′ ,s-1 (x s )µ(dx s ) , δ y0:t θ,θ ′ ,2 (h) = β ys+1:t θ,s|t (x s )Φ y0:s θ ′ ,s (x s )h(x s )µ(dx s ) β ys+1:t θ,s|t (x s )Φ y0:s θ ′ ,s (x s )µ(dx s ) β ys+1:t θ,s|t (x s ) F ys θ,s Φ y0:s-1 θ ′ ,s-1 (x s ) -F ys θ ′ ,s φ y0:s-1 θ ′ ,s-1 (x s ) µ(dx s ) β ys+1:t θ,s|t (x s )F ys θ,s Φ y0:s-1 θ ′ ,s-1 (x s )µ(dx s )
.

Note that for all x s ∈ X, by H1,

σ -η -(dx s+1 )g ys+1 θ (x s+1 ) • • • m θ (x t-1 , x t )g yt θ (x t )µ(dx s+2:t ) ≤ β ys+1:t θ,s|t (x s ) ≤ σ + η + (dx s+1 )g ys+1 θ (x s+1 ) • • • m θ (x t-1 , x t )g yt θ (x t )µ(dx s+2:t ) , so that δ y0:t θ,θ ′ ,1 (h) + δ y0:t θ,θ ′ ,2 (h) ≤ 2 h ∞ F ys θ,s Φ y0:s-1 θ ′ ,s-1 -F ys θ ′ ,s Φ y0:s-1 θ ′ ,s-1 tv β ys+1:t θ,s|t ∞ inf x∈X β ys+1:t θ,s|t (x s ) ≤ 2 σ + σ - h ∞ F ys θ,s Φ y0:s-1 θ ′ ,s-1 -F ys θ ′ ,s Φ y0:s-1 θ ′ ,s-1 tv . y0:s-1 θ ′ ,s-1 tv ≤ 2σ + σ -c -(y s ) 1 σ -c -(y s-1 ) η + ⊗ µ (ḡ ys-1 ⊗ ḡys • M ) + η + (G ys ) θ-θ ′ 2 ,
which concludes the proof.

D Checking assumptions

In this section, we provide additional assumptions on the state space model and on the variational family to support that our assumptions can be verified.

A1 There exist constants 0 < σ -< σ + < ∞ such that for all x ∈ X,

σ -≤ ζ(x) ≤ σ + and for all θ ∈ Θ, x, x ′ ∈ X, σ -≤ m θ (x, x ′ ) ≤ σ + .
For all y 0:T ∈ Y T +1 , there exist ϑ y0:T -> 0 and ϑ y0:T

+ > 0 such that for all ϕ ∈ Φ, t ≥ 0, all x, x ′ ∈ X, ϑ y0:T - ≤ q y0:T ϕ,t|t+1 (x, x ′ ) ≤ ϑ y0:T + .
In addition, for all ϕ ∈ Φ, all y 0:T ∈ Y T +1 , and all x ∈ X,

ϑ y0:T - ≤ q y0:T ϕ,T (x) ≤ ϑ y0:T + .
Assumption A1 is known as a strong-mixing assumption and allows to verify H1. It is classical to obtain quantitative bounds on approximation of joint smoothing distributions, see for instance [Olsson et al., 2008[START_REF] Chagneux | Additive smoothing error in backward variational inference for general state-space models[END_REF]. It typically requires the state space X to be compact.

In settings where the bacwkard variartional kernels are Gaussian and obtained with neural networks which are uniformly bounded with respect to the time index and the observations, ϑ y0:T + and ϑ y0:T do not depend on the observations. A2 For all y ∈ Y, inf θ∈Θ g y θ (x)µ(dx) = c -(y) > 0 and sup θ∈Θ g y θ (x)µ(dx) = c + (y) < ∞. Lemma D.1, Lemma D.2 and Proposition D.3 allow to obtain explicit constants in H4. We prove that the functions h y0:T t,θ,ϕ are upper-bounded explicitly, and that φ y0:t θ,t and b y0:t-1 θ,t-1|t are lower and upper-bounded explicitly, in particular with respect to the observation sequence.

When the observation space is compact we can also obtain a uniform control with respect to the observations of these quantities which is crucial to check H5 and H6.

Lemma D.1. Assume that A1 and A2 hold. For all θ ∈ Θ, all t ≥ 0, all y 0:t , x t , σ -g yt θ (x t ) σ + c + (y t ) ≤ φ y0:t θ,t (x t ) ≤ σ + g yt θ (x t ) σ -c -(y t ) .

Proof. At time 0, we have φ y0 θ,0 (x 0 ) ∝ ζ(x 0 )g y0 θ (x 0 ) so that by A1-2, σ -g y0 θ (x 0 ) σ + c + (y 0 ) ≤ φ y0 θ,0 (x 0 ) ≤ σ + g y0 θ (x 0 ) σ -c -(y 0 ) .

Similarly, 

φ
(x t-1 ) σ 2 -c -(y t-1 )
, which concludes the proof. In addition, using that where υ y0:T t = sup θ∈Θ,ϕ∈Φ h y0:T t,θ,ϕ ∞ is given in Lemma D.2. For all θ, θ ′ ∈ Θ, ϕ, ϕ ′ ∈ Φ, 1 ≤ t ≤ T , µ ⊗ µ(dxdx ′ ) log q y0:T ϕ,t-1|t (x, x ′ ) -log q y0:T ϕ ′ ,t-1|t (x, x ′ ) ≤ c y0:T

1,t ϕ -ϕ ′ 2 , µ ⊗ µ(dxdx ′ ) log b y0:t-1 θ,t-1|t (x, x ′ ) -log b y0:t-1 θ ′ ,t-1|t (x, x ′ ) ≤ c y0:t-1 2,t θ -θ ′ 2 ,
µ(dx) log q y0:T ϕ,T (x) -log q y0:T ϕ ′ ,T (x) ≤ c y0:T 3,T ϕ -ϕ ′ 2 , µ(dx) log φ y0:T θ,T (x) -log φ y0:T θ ′ ,T (x) ≤ c y0:T 4,T θ -θ ′ 2 ,

  α * , where E T = min θ∈Θ,ϕ∈Φ m(θ, ϕ, y 0:T )p D (y 0:T )dµ(y 0:T ) and d * = d θ + d ϕ . Proof. To prove Theorem 3.1, we use Theorem A.1, which is an alternative formulation of [Tang and Yang, 2021, Theorem 3], proved in Appendix A. First, Assumption A of Theorem 3.1 holds with D = DT for some positive constant D depending on B. This is a consequence of the first point in H6, Proposition B.4 and Proposition B.5.

.

  and E[κ 4 (y 0:T ) 2 ] are upper bounded by cT 2 for a constant c that depends only on σ + , σ -and A, and Theorem 3.1 follows. Note that m( θ n,T , ϕ n,T , y 0:T )p D (y 0:T )dµ(y 0:T ) = KL P D P Y θn,T + E PD KL Q If the upper bound in Theorem 3.1 is small, then the distribution P D of the observations is well approximated by the decoding observational distribution P Y θn,T , and the decoding distribution of the latent state distribution given data Φ

Proposition B. 4 .

 4 Assume that H1-2 and H6 hold. Then, there exists c > 0 such that , For all θ ∈ Θ, and all y 0:T ∈ Y T +1 , with the convention p θ (y 0 |y -1 ) = p θ (y 0 θ (y t |y 0:t-1 ) .

h

  y0:T T,θ,ϕ (x T -1 , x T ) = log q y0:T ϕ,T -1|T (x T , x T -1 ) -log b y0:T -1 θ,T -1|T (x T , x T -1 ) + log q y0:T ϕ,T (x T ) -log φ y0:T θ,T (x T ) yields h y0:T T,θ,ϕ (x T -1 , x t ) ≤ | log 2ϑ -(y 0:T )| ∨ | log 2ϑ + (y 0:T )| + log σ -g yT θ (x T ) σ + c + (y T ) ∨ log σ + g yT θ (x T ) σ -c -(y T ) c -(y T -1 ). Proposition D.3. Assume that A1, A2 and H3 hold. Then H4 holds. More precisely, for all y 0:T ∈ Y T +1 and all 0 ≤ t ≤ T , sup θ∈Θ,ϕ∈Φ µ(dx) h y0:T t,θ,ϕ (x, •)
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  (dx t-1 )m θ (x t-1 , x t )µ(dx t ) , so that by A1 and A2,σ -g yt θ (x t ) σ + c + (y t ) ≤ φ y0:t θ,t (x t ) ≤ σ + ηg yt θ (x t ) σ -c -(y t ). Assume that A1 and A2 hold. For all θ, all 1 ≤ t ≤ T , all y 0:T , x t-1 , x t , -(y t-1 ) and for1 ≤ t ≤ T -1, h y0:T t,θ,ϕ ∞ ≤ | log ϑ -(y 0:T )| ∨ | log ϑ + (y 0:T )| (x t-1 )m θ (x t-1 , x t ) ≤ (x t-1 ) σ -c -(y t-1 ) . (x t-1 )m θ (x t-1 , x t ) φ (x t-1 )m θ (x t-1 , x t )µ(dx t-1 ) we get σ 2 -c -(y t-1 )g Now by equation 1, for 1 ≤ t ≤ T -1, h y0:T t,θ,ϕ (x t-1 , x t ) = log q y0:T ϕ,t-1|t (x t , x t-1 ) -log b (x t-1 , x t ) ≤ | log ϑ -(y 0:T )| ∨ | log ϑ + (y 0:T )|

	Proof. By Lemma C.1,				
		σ 2 -g σ + c + (y t-1 ) yt-1 θ (x t-1 )	≤ φ y0:t-1 θ,t-1 σ 2 + g	yt-1 θ
	Since	b σ 2 y0:t-1 θ,t-1|t (x t , x t-1 ) = θ,t-1 yt-1 y0:t-1 φ θ,t-1 y0:t-1 θ (x t-1 ) + c + (y t-1 ) ≤ b y0:t-1 θ,t-1|t (x t , x t-1 ) ≤	σ 2 + c + (y t-1 )g σ 2 -c -(y t-1 ) yt-1 θ (x t-1 )	.
							y0:t-1 θ,t-1|t (x t , x t-1 )
	so that					
	h y0:T t,θ,ϕ + log	σ 2 -c -(y t-1 )g σ 2 + c + (y t-1 ) yt-1 θ (x t-1 )	∨ log	σ 2 + c + (y t-1 )g	yt-1 θ
	Lemma D.2. σ 2 -g σ 2 + c + (y t-1 ) yt-1 θ (x t-1 ) -c + sup ≤ b y0:t-1 σ 2 + g yt-1 θ θ,t-1|t (x t , x t-1 ) ≤ σ 2 xt-1∈X log σ 2 -c -(y t-1 )g yt-1 (x t-1 ) σ 2 + c + (y t-1 ) ∨ log (x t-1 ) σ 2 + c + (y t-1 )ḡ yt-1 (x t-1 ) σ 2 -c -(y t-1 )
	and					
	h y0:T T,θ,ϕ ∞ ≤ | log 2ϑ y0:T -| ∨ | log 2ϑ y0:T + | + sup xT ∈X	log	σ -g yT (x T ) σ + c + (y T )	∨ log	σ + σ -c -(y T ) ḡyT (x T )
		+ sup xT -1∈X	log	σ 2 -c -(y T -1 )g yT -1 (x T -1 ) σ 2 + c + (y T -1 )	∨ log	σ 2 + c + (y T -1 )ḡ yT -1 (x T -1 ) σ 2 -c -(y T -1 )	,
	where h t,θ,ϕ , 1 ≤ t ≤ T , are defined in equation 1.

y0:t θ,t (x t ) ∝ g yt θ (x t ) Φ y0:t-1 θ,t-1
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where c y0:T 1,t = (ϑ y0:T -) -1 µ ⊗ µ(K y0:T t-1|t ), c y0:t-1 2,t = 2σ + L t-1 (y 0:t-1 )/(σ -inf x∈X g yt-1 (x)), c y0:T 3,t = (ϑ y0:T -) -1 µ(K y0:T T ), and c y0:T 4,T = 2σ + c + (y T )L T (y 0:T )/(σ -inf x∈X g yT (x)).

, so that by A1 and H3, log

an we can choose c y0:T 1,t = (ϑ y0:T -) -1 µ ⊗ µ(K y0:T t-1|t ). Similarly, for all ϕ, ϕ ′ ∈ Φ, log q y0:T ϕ,T (x) -log q y0:T ϕ ′ ,T (x) ≤ q y0:T ϕ,T (x) -q y0:T ϕ ′ ,T (x)

, so that by A1 and H3, log

and we can choose

.

Then, noting that b

and by Lemma D.2, we can choose c y0:t-1 2,t = 2σ + L t-1 (y 0:t-1 )/(σ -inf x∈X g yt-1 (x)). For all θ, θ ′ ∈ Θ, log φ y0:T θ,T (x) -log φ y0:T θ ′ ,T (x) ≤ φ y0:T θ,T (x) -φ y0:T θ ′ ,T (x)

,

Therefore,

and by Lemma D.2, we can choose c y0:T 4,T = 2σ + c + (y T )L T (y 0:T )/(σ -inf x∈X g yT (x)). If the observation space is compact, under standard regularity assumptions, all upper bounds can be obtained uniformly with respect to the observations.