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PHYSICALLY-CONSTRAINED BLOCK-TERM TENSOR DECOMPOSITION
FOR POLARIMETRIC IMAGE RECOVERY

Saulo Cardoso Barreto, Julien Flamant, Sebastian Miron, and David Brie

Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France

ABSTRACT

This paper introduces a complete approach for the recovery of po-
larimetric images from experimental intensity measurements. In
many applications, such images collect, at each pixel, a Stokes vec-
tor encoding the polarization state of light. By representing a Stokes
vector image as a third-order tensor, we propose a new physically-
constrained block-term tensor decomposition called Stokes-BTD.
The proposed model is flexible and comes with broad identifiability
guarantees. Moreover, physical constraints ensure meaningful inter-
pretation of low-rank terms as Stokes vectors. In practice, Stokes
images must be recovered from indirect, intensity measurements.
To this aim, we implement two recovery algorithms for Stokes-
BTD based on constrained alternated optimization and highlight
constraints related to Stokes vectors. Numerical experiments on
synthetic and real data illustrate the potential of the approach.

Index Terms— block-term tensor decomposition, Stokes polari-
metric imaging, alternated constrained optimization.

1. INTRODUCTION

Polarimetric imaging is crucial for many applications including bio-
logical tissue assessment [1], remote sensing [2], and material char-
acterization [3]. It exploits light polarization, a fundamental vector
property describing the trajectory of the electromagnetic (EM) field.
The interaction of polarized light with polarization-sensitive media
makes polarization properties change, therefore revealing key phys-
ical features (e.g., anisotropy) that are inaccessible to conventional
imaging techniques. As a result, polarimetric imaging is often used
to build highly contrasted images, which can be further processed
depending on the task at hand.

Polarization information can be represented in many ways [4].
The choice of one representation over the others usually depends on
the wavelength (e.g., radar or optical frequencies). This work fo-
cuses on the optical imaging context: in this setting, the polarization
properties of the EM field are, at each pixel, encoded by a four-
dimensional real vector called Stokes vector. However, such Stokes
polarimetric images cannot be measured directly. Instead in prac-
tice, several polarimetric projections (i.e., intensity measurements
through different polarizers) are performed, and the Stokes polari-
metric image has to be recovered in a second step. Several methods
for the recovery of Stokes images from intensity measurements have
been proposed. These include Bayesian approaches [5, 6], non-local
means [7], regularized [8] and min-max optimization [9]. In con-
trast, this paper exploits the natural representation of a Stokes image
as a third-order tensor to leverage the powerful framework of multi-
linear algebra, in particular, low-rank tensor decompositions [10].
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Fig. 1: Stokes vectors of linear, circular, and elliptical polarization
states.

This work proposes a new constrained block-term tensor decom-
position (BTD) for the recovery of Stokes polarimetric images from
noisy intensity measurements. The approach allows simultaneously:
i) the reconstruction of a physically meaningful Stokes image and ii)
the segmentation of the Stokes image into distinct areas with iden-
tical polarization properties. The proposed model, called Stokes-
BTD, incorporates physical constraints related to the interpretation
of Stokes parameters. It is flexible and benefits from broad identifia-
bility guarantees. Two constrained optimization strategies for fitting
Stokes-BTD are proposed and carefully evaluated on synthetic and
real-world polarized microscopy data.

2. STOKES POLARIMETRIC IMAGING

2.1. Stokes parameters

In optical polarimetric imaging, the polarization state of light is
described by a Stokes vector s = [s0, s1, s2, s3]

⊤ ∈ R4 where
s0, s1, s2 and s3 are the Stokes parameters [4]. These four real
values are interpreted as follows: the first parameter s0 indicates the
total intensity, i.e., the sum of intensities of the polarized and unpo-
larized part of light. The three remaining parameters s1, s2, and s3
describe the polarized part. The value of s1 represents the amount
of horizontal or vertical polarization, while s2 gives the polarized
component along the 45°/ 135° axis. Lastly, s3 indicates the prepon-
derance between left and right circular polarizations. Importantly,
there is a one-to-one correspondence between a Stokes vector and an
oriented ellipse, called polarization ellipse in polarimetric imaging.
Fig. 1 shows this correspondence for some elementary polarization
states. For s3 = 0 this ellipse degenerates into a line segment (lin-
ear polarization) while for s1 = s2 = 0 it becomes a circle. For
arbitrary s1, s2, s3 polarization is in general elliptic. Stokes vectors
must respect strong physical constraints. In particular, a Stokes
vector s = [s0, s1, s2, s3]

⊤ must belong to R4
S where S denotes the

set of constraints given by

s0 ≥ 0 and s20 ≥ s21 + s22 + s23. (S)

The first constraint s0 ≥ 0 is classical and simply refers to the in-
terpretation of s0 as an intensity. The second constraint involves all
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Fig. 2: Direct measurement model of Stokes polarimetric data (2).

four components of s and defines the set of physical polarization pa-
rameters s1, s2, and s3. From a mathematical viewpoint, the subset
R4

S ⊂ R4 defines a second-order cone which can be interpreted as
an extension of the classical non-negativity constraint to the vector
case. To see this, one must exploit the bijective mapping between a
Stokes vector s and the so-called coherence matrix J(s) given by [4]

J(s) =
1

2

[
s0 + s1 s2 + is3
s2 − is3 s0 − s1

]
∈ C2×2. (1)

By physical construction [4], the matrix J must be a covariance ma-
trix and hence positive semi-definite (or simply, non-negative defi-
nite). Moreover, straightforward calculations show that s ∈ R4

S ⇔
J(s) ⪰ 0. This can be easily shown using the fact that a 2-by-2
complex matrix is positive semi-definite if and only if its trace and
determinant are both non-negative. We will exploit this equivalence
in the sequel for the practical implementation of (S).

2.2. Stokes polarimetric image measurement

A Stokes polarimetric image collects, for each pixel, the Stokes vec-
tor encoding the polarization state of light. Formally, for a grid of I×
J pixels, a Stokes polarimetric image defines a three-dimensional ar-
ray or third-order tensor X ∈ RI×J×4

S such that the pixel (i, j) reads
X ij: = s(i, j) ∈ R4

S . However, in optical imaging, only intensity
measurements can be performed, making it impossible to retrieve the
Stokes vector image X directly. Instead, the measurement of Stokes
parameters relies on performing a sequence of M polarimetric pro-
jections [11], leading to M intensity images Y1,Y2, . . . ,YM ∈
RI×J . This is easily implemented in practice by using optical com-
ponents called polarizers. Formally, the m-th intensity image Ym

can be related to the Stokes tensor X by the pixel-wise operation
Ym(i, j) = p⊤

mX ij:, where pm ∈ R4
S is a reference Stokes vector

supposed known. Physically, the image Ym encodes the intensity of
light polarized along pm in X . Finally, note that in experiments an
overcomplete set of measurements is always considered (M ≥ 4),
such that the instrument matrix P ∈ RM×4 gathering reference po-
larization states has full column rank.

The Stokes polarimetric image measurement model can be writ-
ten efficiently using tensor algebra. Let Y ∈ RI×J×M be the
tensor gathering the M intensity measurements in its frontal slices
Y1,Y2, . . . ,YM ∈ RI×J . The measurement model then reads

Y = X•3P+N , (2)

where •3 denotes the tensor mode product along the third dimen-
sion and N encodes measurement noise with i.i.d. Gaussian entries

N ijm ∼ N (0, σ2) with noise variance σ2 – a reasonable assump-
tion for many applications. See Fig. 2 for illustration.

It is important to note that a common practice in optics is to
directly invert the model (2) by using the unconstrained least square
solution X̂ ULS = Y•3P†, where P† is the pseudo-inverse of P.
However, this approach does not guarantee at all that estimated
Stokes vectors satisfy the physical constraints (S). Moreover, the
analysis and decomposition of the Stokes polarimetric image into
elementary regions has to be performed in a second step, e.g., using
clustering approaches such as k-means or spatial mixture models
[6]. This paper proposes to address these two limitations by taking
advantage of the tensor nature of Stokes polarimetric images.

3. CONSTRAINED BLOCK-TERM DECOMPOSITION

3.1. Stokes-BTD model

In many practical settings, it is reasonable to suppose a linear mix-
ture model for X . Under this assumption, the Stokes vector X ij: =
s(i, j) at a pixel (i, j) can be written as the linear combination of
R elementary Stokes vectors s1, . . . , sR ∈ R4

S such that X ij: =∑R
r=1(Xr)ij ·sr , where X1, . . .XR ∈ RI×J

+ are the corresponding
R spatial mixing matrices. This model corresponds to the incoherent
superposition of Stokes vectors associated with the different regions
of the polarimetric image [4]. It can also be viewed as the polarimet-
ric counterpart of the standard linear mixing model in hyperspectral
imaging [12]. The model can be written in a compact way as

X ≈
R∑

r=1

Xr ◦ sr, (3)

where the symbol ◦ denotes the tensor dot product. The matrices Xr

are assumed to be non-negative, which ensures their interpretation as
activation maps of the corresponding Stokes parameters vector sr .
This also guarantees that (3) represents a combination of elements
in R4

S that lie within a cone, assuring that each pixel in the recon-
structed polarimetric image is a Stokes vector, i.e. it satisfies the
constraints specified in (S).

To reduce the number of parameters appearing in (3), a common
approach is to model each spatial mixture matrix Xr by a (low-)
rank L approximation where L ≪ I, J . Formally, one has Xr ≈
ArB

⊤
r , where Ar ∈ RI×L

+ and Br ∈ RJ×L
+ inherit non-negativity

constraints from Xr . Finally, the proposed Stokes-BTD model for a
Stokes tensor X reads

X ≈
R∑

r=1

(Ar B
⊤
r ) ◦ sr := [[A,B,S ]]SBTD (4)

where the matrices A = [A1 · · ·AR] ∈ RI×LR
+ and B =

[B1 · · ·BR] ∈ RJ×LR
+ collect the R blocks of size I × L and

J × L, respectively, and where S = [s1 · · · sR] ∈ R4×R
S gathers

the R elementary Stokes vectors. The Stokes-BTD model defines a
constrained block-term tensor decomposition (BTD) (also known as
a rank-(L,L, 1) decomposition [13]). These constraints encode the
physics of Stokes polarimetric images and ensure the meaningful
interpretation of the low-rank terms of the decomposition (4) [14].

One of the key features of the Stokes-BTD model is that it is
identifiable under broad conditions. Recall that a tensor decomposi-
tion is identifiable if the only ambiguities are the trivial ambiguities
of the model. In particular, for (4) these correspond to permuta-
tion of the R different terms or a scale factor λr ̸= 0 such that



(λrArB
⊤
r ) ◦ (λ−1

r sr) = ArB
⊤
r ◦ sr . Moreover, only the sub-

space generated by Ar and Br is identifiable since it is always pos-
sible to find an invertible matrix D so that ArB

⊤
r = ArDD−1B⊤

r .
The interpretation of (4) as a specific BTD model makes it possible
to leverage existing sufficient uniqueness guarantees (see, e.g., [13,
Sec. 4]) to study the identifiability of the Stokes-BTD model. The
simplest condition states that if A and B are full column-rank and S
does not have collinear columns, then the model (4) is identifiable.
Finally, note that in practical experiments where the Stokes polari-
metric image X has to be retrieved from measurements Y ≈ X•3P,
identifiability of the Stokes-BTD model is preserved by the forward
model (2) since the instrument matrix P ∈ RM×4 will always be
designed to have full column rank.

3.2. Algorithms for Stokes-BTD

We now consider algorithms for reconstructing a Stokes-BTD po-
larimetric image X̂ = [[Â, B̂, Ŝ]]SBTD ∈ RI×J×4 given a (noisy)
tensor Y ∈ RI×J×M of M ≥ 4 intensity images given by the
measurement model (2). Since noise is assumed i.i.d. Gaussian, the
inverse problem admits the constrained least squares formulation

(Â, B̂, Ŝ) = argmin
A,B≥0,S∈R4×R

S

∥Y − [[A,B,S]]SBTD •3 P∥2. (5)

The problem (5) is convex in each matrix variable separately, since
the cost is quadratic and associated constraints are convex (non-
negativity and polarization constraint). However it is not jointly
convex in (A,B,S). Therefore, we adopt a classical constrained al-
ternating minimization approach which consists in solving (5) suc-
cessively for A,B, and S. We rely on the fact that the cost func-
tion in (5) can be conveniently expressed using tensor unfoldings
and factor matrices of the BTD model. Let us denote by Y(1) ∈
RJM×I ,Y(2) ∈ RIM×J ,Y(3) ∈ RIJ×M the unfoldings of Y
along its three modes. Then, at a given iteration k, the alternated
optimization strategy reads explicitly

Ak+1 ← argmin
A∈RI×RL

+

∥Y(1) − (Bk ⊙PS̃
k
)A⊤∥2F, (6)

Bk+1 ← argmin
B∈RJ×RL

+

∥Y(2) − (PS̃
k ⊙Ak+1)B⊤∥2F, (7)

Sk+1 ← argmin
S∈R4×R

S

∥Y(3) − (Ak+1 ⊙Bk+1)(PS̃)⊤∥2F, (8)

repeated until convergence. Note that to simplify expressions in (6)–
(8), we used the notation S̃ := S blkdiag(1⊤

L · · ·1⊤
L ) ∈ R4×LR

where each column of S is repeated L times.
The outer loop iterations (6) – (8) define the backbone of the al-

gorithms for Stokes-BTD studied in this paper. Two iterative meth-
ods – proximal gradient and alternating direction method of multi-
pliers (ADMM) – are considered to solve the three convex subprob-
lems. This results in two standard (constrained) tensor factorization
algorithms known as block-proximal gradient (BPG) [15] and AO-
ADMM [16], which have to be tailored to impose the physical con-
straints of Stokes-BTD. We implement BPG for Stokes-BTD follow-
ing guidelines presented in [17], including FISTA-like acceleration
and backtracking step-size procedures to ensure sufficient decay of
the objective function. The implementation of AO-ADMM is stan-
dard [16, 18] with the penalty parameter ρ being determined a priori
and subproblem convergence being assessed by monitoring primal
and dual residues. Both BPG and AO-ADMM offer guarantees of
convergence to a stationary point of the cost function (5).

Explicit updates of BPG and AO-ADMM for the Stokes-BTD
optimization problem (5) can be easily derived from the original
papers [15, 16] and are omitted for space considerations. How-
ever, both algorithms require the computation of a projection op-
erator for each constraint which we provide below for complete-
ness. The projection of matrices A and B onto the set of matrices
with non-negative entries is classic, i.e., ΠA(A) = max(0,A) and
ΠB(A) = max(0,B) with the maximum being applied element-
wise. In contrast, the projection of S onto R4×R

S is less common. It
consists in projecting each column s1, . . . , sR of S onto R4

S . As de-
tailed in Section 2.1 this is equivalent to projecting the 2-by-2 com-
plex matrix J(sr) given by (1) onto the set of positive semidefinite
matrices C2×2

+ . Let {ηi,vi} represent the eigenvalues and eigen-
vectors of J(sr) such that J(sr) =

∑2
i=1 ηiviv

H
i , where vH

i is the
conjugate-transpose of vi. The projection of J(sr) onto C2×2

+ reads

ΠC2×2
+

(J(sr)) =

2∑
i=1

max(0, ηi)viv
H
i =

[
α γ
γ β

]
(9)

where α, β ∈ R and γ ∈ C can be determined explicitly. Since
sr 7→ J(sr) is bijective, the projection of a single Stokes vector sr
onto R4

S can be expressed from (9) as

ΠR4
S
(sr) = [(α+ β), (α− β), 2Re (γ), 2 Im (γ)]⊤ ∈ R4

S , (10)

and as a result, the projection of S onto R4×R
S is obtained column-

wise as ΠS(S) = [ΠR4
S
(s1) · · ·ΠR4

S
(sR)].

3.3. Initialization strategies

Since the optimization problem (5) is non-convex, the choice of ini-
tial points plays an important role in reconstruction performance of
the algorithms. In this paper, we consider two initialization strate-
gies: 1) random initialization of the factor matrices A,B,S and 2)
a k-means based approach exploiting an initial guess of X .

Random initialization draws the entries of matrices A and B
from i.i.d. uniform distribution on [0, 1]. For S, we draw at random
each column sr as follows. We first generate a random complex
Gaussian vector b ∈ C2 with unit variance and form the rank-one
matrix bbH ∈ C2×2

+ . The vector sr is then obtained using the in-
verse mapping to R4

S given by (10). This ensures that the initial
points satisfy the physical constraints of the Stokes-BTD model.

The second initialization strategy starts by computing the un-
constrained least square solution X̂ ULS = Y•3P†. A k-means algo-
rithm is then applied on the fibers of X̂ ULS with a number of clusters
set to the number of terms R of the decomposition. Centroids of
each cluster define the initial values of each column of S, where pro-
jection ΠS was applied to ensure that (S) is met. Then, for each r,
one draws a random array Ur ∈ RI×J with i.i.d. uniform entries in
[0, 1] and the corresponding feature map identified by the k-means
algorithm is used as a binary mask for non-zero values. Finally, a
non-negative matrix factorization (NMF) with rank L is applied to
Ur to get initial guesses for matrices Ar and Br .

4. NUMERICAL EXPERIMENTS AND DISCUSSION

4.1. Comparison of algorithms for Stokes-BTD

We first investigate the behavior of BPG and AO-ADDM algorithms
for Stokes-BTD, We fix L = 6 and R = 5 and generate a syn-
thetic ground-truth tensor X 0 = [[A,B,S]]SBTD ∈ R100×100×4

where factor matrices A,B,S are drawn at random and satisfy
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Fig. 3: Performance analysis of BPG and AO-ADMM algorithms.
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the physical constraints of the Stokes-BTD model. The instrument
matrix P is chosen to represent the standard deterministic Stokes
measurement scheme [11] which uses M = 6 polarimetric projec-
tions. Finally, we add i.i.d. Gaussian noise following the forward
model (2) such that the resulting signal-to-noise ratio (SNR) is 25
dB, where SNR = ∥X•3P∥2F/(IJMσ2) with σ2 being the noise
variance. The noisy measurement tensor Y ∈ R100×100×6 is fixed
for all experiments. Both algorithms were run for 1000 outer loop
iterations, starting from the same points (for fair comparisons). Two
figures of merits are used to evaluate the performance of algorithms.
The first is the normalized mean squared error (NMSE) defined

as NMSE(Â, B̂, Ŝ) =
1

R

R∑
r=1

∥ArB
⊤
r ◦ sr − ÂrB̂

⊤
r ◦ ŝr∥2F

∥ArB
⊤
r ◦ sr∥2F

, which

quantifies the reconstruction quality of the R block terms. The sec-
ond is the value of the cost function (5) which monitors convergence.

Fig. 3 depicts the performances of the proposed algorithms with
the initialization strategies proposed on Section 3.3, averaged over
50 independent Monte Carlo runs. For both initialization strategies,
AO-ADMM provides faster convergence and smaller error, both in
terms of NMSE and cost function value. Moreover, we observe that
k-means initialization provides faster decrease of the NMSE for both
BPG and AO-ADMM algorithms, while cost functions values show
no significant differences. Runtimes for 1000 iterations are compa-
rable, with on average 9.3s for BPG and 13.7s for AO-ADMM on a
2021 M1 Max MacbookPro using Python 3.11.

4.2. Validation on real data and discussion

We now demonstrate the ability of the Stokes-BTD approach to pro-
vide a meaningful decomposition of real-world polarimetric images.
We consider data [19] acquired in a polarized microscopy experi-
ment of a mouse brain tissue. This setting uses the minimal number
M = 4 of polarimetric projections such that the instrument matrix
P ∈ R4×4 is known and invertible. After downsampling, we obtain
an intensity measurement tensor Y of size 250 × 250 × 4. Follow-
ing our analysis of Section 4.1, we only consider the AO-ADMM
algorithm and use k-means initialization. The algorithm was run for
a maximal number of 1000 outer loop iterations, stopping whenever
the relative improvement of the solution did not exceed 10−4.

We first analyze the choice of R and L of the Stokes-BTD
model. The value of R depends on a priori information of the data
i.e., the expected number of different constant polarization states.
For this data, R = 4 elementary polarimetric regions can be eas-
ily identified, e.g., by k-means analysis, so that we focus on the
choice of L instead. Intuitively, a larger rank for Ar and Br enables
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Stokes-BTD to represent more complex spatial information, thus
improving the reconstruction error ∥Y − X̂•3P∥2F. However, the
dimensions of the factor matrices grow linearly with L, leading to an
increased computational burden. Fig. 4 illustrates this trade-off for
values of L ranging from L = 3 to L = 100 (maximum value guar-
anteeing identifiablity of Stokes-BTD). From Fig. 4a) we observe
that the reconstruction error decreases rapidly with L, showing no
significant improvements after L = 50. In contrast, Fig. 4b) shows
that the average AO-ADMM runtime (over 50 realizations) increases
with L and might become prohibitive for large L values.

Fig. 5 shows the decomposition of the real data with Stokes-
BTD for L = 10 and L = 30. As expected, a greater value of L
allows the model to represent more complex spatial information. We
also note that the polarization states are almost identical for both L
values, which shows the robustness of Stokes-BTD with respect to
polarization information. From a physical standpoint, we observe
that Stokes-BTD is able to recover the strongly circularly polarized
background (first column), together with three other regions (last
three columns) with different levels of linear birefringence (i.e. spe-
cific polarimetric properties that encode distinct biological features).

Real data experiments in polarimetric microscopy highlight the
Stokes-BTD approach’s potential for interpretable reconstructions
and segmentation of Stokes polarimetric data. This physically-
informed low-rank tensor model, leveraging tensor algebra, exhibits
scalable resolution while enjoying broad identifiability guarantees.
The AO-ADMM algorithm coupled with a k-means initialization
approach provides an efficient reconstruction strategy. This new tool
offers promising research avenues for practical applications relying
on polarimetric imaging, e.g., cancerous tissue characterization [1].
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