
HAL Id: hal-04344606
https://hal.science/hal-04344606v1

Submitted on 14 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A tool-supported approach for modeling and verifying
hybrid systems using EVENT-B and the differential

equation solver SAGEMATH
Meryem Afendi, Amel Mammar, Régine Laleau

To cite this version:
Meryem Afendi, Amel Mammar, Régine Laleau. A tool-supported approach for modeling and
verifying hybrid systems using EVENT-B and the differential equation solver SAGEMATH. 18th
International Conference on Software Technologies (ICSOFT), Jul 2023, Rome, Italy. pp.71-83,
�10.5220/0012080900003538�. �hal-04344606�

https://hal.science/hal-04344606v1
https://hal.archives-ouvertes.fr

A Tool-Supported Approach for Modeling and Verifying Hybrid
Systems using EVENT-B and the Differential Equation Solver

SAGEMATH

Meryem Afendi1, Amel Mammar2 and Régine Laleau1
1 Univ Paris Est Creteil LACL, F-94010 Creteil, France

2 SAMOVAR, Institut Polytechnique de Paris Télécom SudParis, Evry, France
{meryem.afendi,laleau}@u-pec.fr, amel.mammar@telecom-sudparis.eu

Index Terms—

Cyber-Physical System, EVENT-B, Refinement, Correct-
ness Proof, Ordinary Differential Equation, Differential
Equation Solver.

Abstract—The common mathematical model for
cyber-physical systems is that of hybrid systems that
enable combining both discrete and continuous behav-
iors represented by differential equations. In this paper,
we introduce a formal approach, using EVENT-B and
its refinement strategy, for specifying and verifying
cyber-physical systems whose behavior is described by
ordinary differential equations. To deal with the reso-
lution of ordinary differential equations in EVENT-B,
the approach is based on interfacing the differential
equation solver SAGEMATH (System for Algebra and
Geometry Experimentation) with the RODIN tool, a
platform for EVENT-B projects development. For this
purpose, we modeled and implemented the interface
to the solver in EVENT-B using a RODIN plugin. This
enables to reason on the EVENT-B specification and
prove safety properties. The proposed approach was
successfully applied on a frequently used cyber-physical
system case studies.

I. INTRODUCTION

Hybrid systems involve explicitly and simultane-
ously continuous and discrete behaviors. In general,
the state of a hybrid system is defined by the values of
the continuous variables and the discrete mode of the
controller. The formal modeling, verification and over-
all design of hybrid systems give rise to serious chal-
lenges. The development of techniques and tools to
effectively design and verify hybrid systems has drawn
the attention of many researchers. These approaches
can be grouped into two categories: model-checking-
based approaches and proof-based approaches. Proof-

based approaches use deductive verification to prove
properties of hybrid systems. One of the strong points
of these approaches is that they cover the specification
of large hybrid systems of any kind, such as linear hy-
brid systems, nonlinear hybrid systems, etc. However,
they require significant effort and a high expertise for
the modeling and proof phases.

The work presented in this paper is achieved in
the context of the DISCONT project [1] that aims
at developing formal approaches for building correct
cyber-physical systems (CPSs). The physical parts
behavior of such systems is often described by or-
dinary differential equations (ODEs) [2] that involve
an unknown function depending on a single vari-
able. Following this objective, this paper introduces
a formal approach to model CPSs using EVENT-B
[3]. Our development is inspired by the approach
introduced in [4] that consists in specifying an abstract
model, EventTriggered model, where the controller
interrupts the physical part when a particular event
occurs, and then introducing a more concrete model,
TimeTriggered model, where the controller interrupts
periodically the physical part. The EventTriggered
model describes an ideal behavior where the time is
continuous and the sensors have continuous access
to continuous measurements. TimeTriggered model
represents a more realistic behavior where the sensors
take periodic measurements. In our approach, the
EVENT-B refinement mechanism allows to formalize
and prove the refinement link between EventTriggered
and TimeTriggered models.

The EVENT-B method is designed for modeling
discrete systems, it does not support the resolution
of ODEs. To deal with this limitation, we interface
the RODIN tool, a platform for the EVENT-B mod-
eling language, with a differential equation solver,
SAGEMATH (System for Algebra and Geometry Ex-
perimentation) [5] in our case. This is achieved by
implementing a plugin to RODIN that enables to call
SAGEMATH. In [6], a first attempt at modeling cyber-

physical systems using EVENT-B is introduced. How-
ever, the models have proved to be not suitable to deal
with systems with several properties. Moreover, the
model is abstract and did not consider the resolution
of ODEs. Consequently, it cannot be instantiated for
the verification of a specific application. To overcome
these limitations, the present paper introduces a new
generic EVENT-B modeling for cyber-physical sys-
tems along with instantiation rules to apply for a spe-
cific application. The paper extends and improves the
approach introduced in [6] with a set of instantiation
rules that are defined to systematically build the model
of a specific application. These rules enable to deal
with more complex safety properties (a conjunction of
atomic ones) and make the approach more general. We
also consider the resolution of ODEs by interfacing
RODIN with the SAGEMATH solver.
The contributions of the present paper are as follows:

• a generic formal proof approach for designing a
correct cyber-physical system by considering any
number of safety properties;

• an approach to deal with the resolution of linear
and non-linear ODEs by interfacing RODIN and
SAGEMATH;

• a tool as a bridge between SAGEMATH and the
prover of RODIN.

The paper is organized as follows. The next section
briefly describes the formal EVENT-B method and the
ODE solvers. Section III is dedicated to a state of the
art on proof-based approaches to deal with continuous
aspects of CPSs and the approaches that interface
theorem provers with computer algebra systems. Sec-
tions IV and VI introduce our approach for com-
bining a differential equation solver with EVENT-B
and illustrate it on a frequently used CPS case study.
Section V describes the tool developed to support the
approach. Finally, Section VII concludes and presents
some future work.

II. BACKGROUND

A. EVENT-B

EVENT-B is a formal method introduced by J.
Raymond Abrial to describe discrete systems using
events [3]. It is based on set theory and predicate
logic. An EVENT-B model is composed of machines
and contexts. EVENT-B context represents the static
part and includes constants C, abstract and enumerated
sets S, and their properties specified as axioms A. A
context may be extended by adding new elements.
EVENT-B machine defines variables V which describe
the machine state, invariants Inv which define the
properties that must be satisfied whatever the state of

the system. The behavior of the system is described
by a set of events of the form (ANY X WHERE G
THEN S END), which update the state variables using
the substitution S when its guard or condition G are
satisfied. A machine may see contexts to have access
to their contents. Table I gives the semantics of the
different mathematical symbols used in the rest of the
paper where:

• A and B denote any sets of elements,
• if a and b are elements of A and B respectively,

a 7→ b denotes the tuple (a,b),
• A1 and B1 denote any subsets of A and B

respectively,
• P denotes a predicate,
• S denotes any substitution.
An EVENT-B model gives rise to a set of Proof

Obligations (POs) that aim at verifying its correctness.
Basically, we have to verify that:

• the initialisation establishes the invariant, that
means that the invariant is correct after the ini-
tialisation: [INITIALISATION] Inv, where the ex-
pression [S]Inv denotes the substitution S applied
to the formula Inv; it denotes the weakest con-
straint on the before state such that the execution
of S leads to an after-state satisfying Inv.

• for each event of the form (ANY X WHERE
G THEN S END), we have to prove that the
invariant Inv is preserved by the execution of the
event:
∀(S,C, V,X).(A ∧G ∧ Inv ⇒ [S]Inv)

EVENT-B is supported by the open-source and free
RODIN platform which is an Eclipse-based IDE. New
features can be added to RODIN as plug-ins. For
example, the theory plug-in [7] is a RODIN extension
that allows one to define new data types like REAL,
new operators, etc.

The key feature of EVENT-B to master system
complexity consists in using abstract modeling to
represent the abstract behavior of a given system and
the refinement to introduce details by establishing
the compliance between the abstract and the concrete
models. The EVENT-B refinement technique preserves
all the properties introduced and proved in the abstract
model. To demonstrate that a concrete model Conc
refines an abstract one Abs, it must be proved that
all behaviors of Conc are included in those of Abs.
For each event (ANY X WHERE G THEN S END)
refined by the event (ANY Xr WHERE Gr THEN Sr

END), we have to establish the following two proof
obligations:

• guard refinement: the guard of the refined event
should be stronger than the guard of the abstract

TABLE I
SOME EVENT-B SYMBOLS AND THEIR SEMANTICS

Concept Notation Semantics
R is a relation from A to B R ∈ A ↔ B R ⊆ {a 7→ b·a ∈ A ∧ b ∈ B}
R−1 is the inverse of R R−1 R−1 = {b 7→ a·a 7→ b ∈ R}
Overriding R1 by R2 R1 ◁−R2 if R1 ∈ A ↔ B and R2 ∈ A ↔ B then,

R1 ◁−R2 = {a 7→ b·a 7→ b ∈ R2 ∨ (a 7→ b ∈ R1 ∧ a /∈ dom(R2))}
Image of A1 by R R[A1] R[A1] = {b1 ·(b1 ∈ B ∧ ∃a1 ·(a1 ∈ A1 ∧ a1 7→ b1 ∈ R))}
Domain of R dom(R) dom(R) = {a1 ·(a1 ∈ A ∧ ∃b1 ·(b1 ∈ B ∧ a1 7→ b1 ∈ R))}
Partial function f f ∈ A 7→B f ∈ A ↔ B ∧ ∀a·(a ∈ A ⇒ card(f [{a}]) ≤ 1)

Total function f f ∈ A→B f ∈ A 7→B ∧ dom(f) = A

v := E Assignment substitution Assign the value of the expression E to the variable v

Guarded substitution ANY X WHERE G if there are values of X such that P , then execute S

THEN S END

one:
∀(S,C, Sr, Cr, V, Vr, X,Xr).

(A ∧Ar ∧ Inv ∧ Invr ⇒ (Gr ⇒ G))

• Simulation: the effect of the refined substitution
should be stronger than the effect of the abstract
one:
∀(S,C, Sr, Cr, V, Vr, X,Xr).

(A ∧Ar ∧ Inv ∧ Invr ∧ [Sr]Invr ⇒ [S]Inv)

B. Differential Equation Solvers

In this paper, we focus on ordinary differential
equations (ODEs). An ODE involves an unknown
function that depends on a single variable. The
most common form of the ODEs that describes the
evolution of hybrid systems is: an(t)y

n(t) + +
a2(t)y

′′(t) + a1(t)y
′(t) + a0(t)y(t) = b(t), where the

dependent variable is y and the independent variable is
t. There are many computer algebra systems for solv-
ing ODEs, such as SAGEMATH [5] and Mathematica
[8].

To find symbolic solutions for a given ODE,
SAGEMATH mainly offers two functions : desolve()
and desolve rk4. desolve() that takes as parameters:
(de, dvar, ivar, ics), where: de represents the differ-
ential equation, dvar represents the unknown function,
ivar represents the independent variable and ics is an
optional argument denoting the initial conditions. de-
solve rk4(de,dvar,ivar,ics) is very similar to desolve,
it returns an approximate solution of the ODE in the
form of tuple (t, y).

III. STATE OF THE ART

Today, rigorous development methodologies based
on mathematical and logical foundations are mature
enough to support the development of hybrid sys-
tems. Formal approaches for modeling and verifying

hybrid systems can be divided into two categories:
model checking-based approaches and proof-based ap-
proaches. Model-checking-based approaches use hy-
brid automata to model hybrid systems and algorith-
mic analysis methods to prove their safety properties
[9], [10]. On the other hand, proof-based approaches
use deductive verification to model and prove the
properties of hybrid systems. In this paper, we are
interested in proof-based approaches that can handle
differential equations in hybrid systems modeling.

A. Event-B Modeling of Hybrid Systems

Hybrid EVENT-B, introduced in [11], extends
EVENT-B to model both discrete and physical parts of
CPSs. It defines two kinds of events: mode events that
represent the traditional discrete EVENT-B events and
the pliant events that describe the continuous behavior
of the physical part by specifying the correspond-
ing differential equation using piecewise absolutely
continuous functions. On the domain of reals (IR),
such functions are continuous over intervals, with
possibly different values on the edges. The correctness
of Hybrid EVENT-B models is ensured using a set
of customised proof obligations patterns, defined in
a way similar to classical EVENT-B. The method
was successfully applied on many concrete examples
and has been a source of inspiration for several ap-
proaches [12], [13], [14] including ours. Nevertheless,
its major limitation is that it is not supported by
any automatic tool. Therefore, the proof obligations
must be generated and discharged manually, which
makes it difficult to apply on critical systems since
the proof phase is error-prone. Moreover, Hybrid
EVENT-B does not provide any mechanism for solving

Progress =̂ ANY t1
WHERE t1 ∈ TIME ∧ t < t1
THEN act1: t := t1
END

Fig. 1. The EVENT-B specification of the time progression

differential equations in EVENT-B, which is a strength
of our approach.

The approach, introduced by G. Dupont et al.
in [14], proposes the use of the plug-in Theory of
EVENT-B to handle continuous aspects of CPSs. The
main idea of this approach is to describe the continu-
ous evolution of time t and the generic continuous
measurements, represented by the variable plantV,
using some operators of the DiffEq theory. plantV is
indexed by TIME (plantV ∈ TIME1 → S) where S is a
constant defined in the associated context to be equal
to: IRn with n is the number of the system continuous
variables. The progression of time t is modeled by an
event named Progress (see Figure 1). It states that the
new value of t1 will become greater than its previous
value, (t < t1).

This approach introduces a theory named DiffEq
that provides several abstract operators to model
ODEs in EVENT-B. To prove the safety properties of
hybrid systems, it defines properties on these ODEs
using operators like the operator Solvable which en-
sures that the ODEs are solvable. Nevertheless, no
mechanism is provided to solve the concrete ODEs.
Therefore, this approach remains quite abstract regard-
ing the resolution of differential equations. In this
paper, we extend this abstract model and use some
operators of the theory DiffEq to solve ordinary dif-
ferential equations using EVENT-B and SAGEMATH.
Solving ODEs allows proving the safety properties
of hybrid systems in a Time-Triggered system which
is the most concrete model of CPSs that we could
achieve. Moreover, these solutions will serve in devel-
oping an automation tool to simulate the continuous
behaviors of hybrid systems in EVENT-B.

B. Differential Logic (dL)

In [15], Platzer introduces a proof-based approach
to model and verify hybrid systems. It is based on a
first-order differential logic in the domain of reals (IR),
named dynamic differential logic dL, and its associ-
ated proof calculus. Both are supported by the theorem
prover KeYmaera [16] and its successor KeYmaera X
[17] which is interfaced with the computer algebra
system Mathematica. The advantage of this approach

1Defined on IR+

is its ability to model and verify the evolution of
continuous measurements, represented by differential
equations, using dL formula. Hybrid systems are
described in dL using hybrid programs, whose hy-
brid dynamics arise from combining a specific set of
ordered discrete programming constructs with contin-
uous ODEs. Most hybrid programs are modeled by
the formula, (ctrl; plant)∗, where ctrl denotes the ex-
ecution of the controller (discrete evolution), followed
by the physical part plant (continuous evolution),
with a non-deterministic repetition. dRL (differential
Refinement Logic) [18] extends dL by introducing the
notion of refinement on hybrid systems. Interestingly,
Event- and Time- Triggered systems are specified
with dRL and proof obligations are defined to check
that TimeTriggered is a refinement of EventTriggered.
dRL is not supported by any prover, it cannot be
used for critical systems since the proof obligations
are manually generated and discharged. To overcome
this limit, we proposes a new correct-by-construction
approach to prove this refinement, based on EVENT-B
to take advantage of its well-defined refinement pro-
cess and its support tools. Unlike dRL, developing
hybrid systems with EVENT-B enables to deal with the
complexity of the system by incrementally introducing
the properties. Moreover, EVENT-B enables to have a
good view on the proof activity and its different steps
that helps us to have a better understanding of the
system.

IV. A GENERIC FORMAL APPROACH FOR SOLVING
ORDINARY DIFFERENTIAL EQUATIONS IN

EVENT-B
Besides the proposed formal approaches, Kopetz [4]

introduces an approach that we have found interesting
because it considers a CPS at different levels of
abstraction that allows to deal with the complexity
of such systems. The proposed approach consists in
specifying an abstract model, Event-Triggered model,
in which the controller interrupts the physical part
when certain events occur. Then defining a more
concrete model, Time-Triggered model, in which the
controller interrupts periodically the physical part.

This section describes our contribution in using
the Event-B method and SAGEMATH for modeling
and verifying hybrid systems. Our proposal consists
in modeling the (ctrl; plant)∗ idiom of Event and
Time-triggered models with the event-based paradigm
of EVENT-B. The link between these models are
expressed as a refinement relationship. Our approach
reuses the abstract model and the theories intro-
duced in [14], such as DiffEq, to handle continu-
ous aspects of hybrid systems. This allows us to

model and verify the compliance between Time and
Event-Triggered systems. The approach follows the
development schema depicted in Figure 2. Using
the EVENT-B refinement technique, we start by an
abstract model that specifies the continuous aspects
of CPSs. Then we enrich the model step by step to
introduce a concrete model that includes the solutions
of ODEs. Therefore, the approach consists of four
generic models: model System M denotes the continu-
ous part of CPSs, model EventTriggered M describes
the interaction between the continuous and the dis-
crete parts of CPSs, model TimeTriggered M repre-
sents the discrete time and TimeTriggeredDesolve M
introduces the resolution of ODEs in EVENT-B
by calling the SAGEMATH functions. The whole
models can be downloaded from https://github.com/
CPSsWithEventB/Main/blob/main/README.md.

Fig. 2. Generic EVENT-B specification with the B desolve function

A. Generic System Model

Generic System model consists of the context Sys-
tem Ctx that defines a set of constants and axioms
required to model the continuous part of CPSs, and
the machine System M that introduces two variables:
the independent variable t ∈ IR+ and the contin-
uous variable plantV, defined as a partial function,
plantV ∈ [0, t] ↛ IR. Variable t represents the current
time and evolves according to the event Progress (see
Section III-A) that we have slightly modified to avoid
the Zeno problem, where the time interval continually
gets smaller and smaller which prevents the controller
from reacting exactly at the right moment. For this
purpose, we have defined in the context System Ctx a
constant parameter sigma whose value depends on the
properties of the specific system, sigma ∈ IR+. We
added in the event Progress the constraint: t′ − t ≥

Plant=̂ ANY e, plant1
WHERE

grd1: e ∈ DE(IR)
grd2: Solvable([0, t]− dom(plantV), e)
grd3: plant1 ∈ [0, t]− dom(plantV) → IR∧

AppendSolutionBAP (e, [0, t]− dom(plantV),
[0, t]− dom(plantV), plant1)

THEN
act1: plantV := plantV ◁− plant1
END

Fig. 3. EVENT-B modeling of the plant event

Ctrl =̂
ANY value
WHERE

grd1: exec = ctrl
grd2: value ∈ IR
grd3: ∀p.p ∈ PROP ∧ value /∈ prop evade values(p)

⇒ (prop safe(p))(plantV (t), value) = TRUE
THEN

act1: ctrlV := value
act2: exec := prg

END

Fig. 4. EVENT-B modeling of the controller behaviour

sigma to guarantee that the time progression is always
greater than sigma, where t’ is a parameter of the event
Progress that specifies the new value of time t. t′ is
determined according to the properties of the modeled
system.

The behavior of the physical part is modeled by
the event Plant (see Figure 3). Event Plant uses the
operator AppendSolutionBAP defined in DiffEq, where
e represents the abstract ODE and belongs to DE(S)
which is a set of differential equations built on S.
AppendSolutionBAP enables to update the value of
plantV (plantV◁− plant1) between the last time and
the current value of t ([0, t]− dom(plantV)).

B. Generic EventTriggered model

At this level, we express the properties desired for
the system. To do this, EventTriggereed Ctx extends
System Ctx by adding a set of properties PROP.
Moreover, we define the constant prop safe (resp.
prop evt trig) that maps each property to its safety
envelope (resp. the boundary of the safety envelope).
Note that the safety envelope is calculated from the
safety requirements that the system must satisfy to
guarantee that the controller will react exactly at the
right moment.

EventTriggered M model refines System M model
to specify the idiom (ctrl; plant)⋆ whose semantics
is as follows: the physical part (Plant) evolves in

https://github.com/CPSsWithEventB/Main/blob/main/README.md
https://github.com/CPSsWithEventB/Main/blob/main/README.md

parallel with the time (Progress) and both are inter-
rupted just before crossing the boundary of the safety
envelope, represented by the formula prop evt trig.
Nevertheless in EVENT-B, it is not possible to state
that two events should be executed simultaneously.
A first solution to this limitation is to merge the
events Progress and Plant in order to make both
evolve at the same time. This option has proved to
be unsatisfactory for systems with several physical
parts that are modelled then by several Plant events.
Moreover, making the time progress before the control
may lead to a deadlock if the time progresses too fast
and the controller cannot take any action to guarantee
the safety of the system. So, we have chosen to
keep the time progression as a separate event that
is enabled between the controller and the Plant. For
this purpose, we have introduced two new variables
ctrlV and exec. Variable ctrlV represents the control
variable and belongs to IR, exec takes its value in
{prg, ctrl, plant}; it is a flag used to model the
alternation between the progression of time, the con-
trol and physical parts as follows: (ctrl; prg; plant)∗.
Moreover, we associate with each property a set of
values for variable ctrlV, called prop evade values
that ensure that the boundary of the safety envelope is
never crossed. Thus, the controller is modeled by the
event Ctrl (see Figure 4) that checks, for each property
p, that the safety envelope is true if the chosen value
value for the control variable ctrlV does not belong
to the evade values of p (Guard grd3).

Similarly, the event Progress is refined to specify
that: (1) the event is enabled when it is the turn of time
to progress (Guard grd2) and (2) time must not evolve
beyond a value that makes the physical part cross
the boundary of a safety property (Guard grd3) to
guarantee that the time will not progress too much and
make the safety properties false if the controller fails
to react in time. In other words, the new value of time
t1 should be chosen such that the physical part reacts
safely during the period from the last progression of
time t and t1 (t1 − t). The parts added by refinement
are written in blue (see Figure 5). The physical part,
represented by the event Plant, is refined by replacing
the abstract differential equation e with that defined
for a function denoted f evol plantV to describe the
evolution of the state variable plantV according to the
system discrete state (clause WITH of Figure 6).

C. Generic TimeTriggered Model
The sensors of the TimeTriggered model take peri-

odic measurements of physical parts and its controller
executes for each sensors update. The main difference
between the Event- and the Time- Triggered models

Progress REFINES Progress =̂
ANY t1
WHERE

grd1: t1 ∈ TIME ∧ t1 − t ≥ sigma ∧ t < t1
grd2: exec = prg
grd3: ∀p.p ∈ PROP ∧ ctrlV /∈ prop evade values(p)
⇒ (prop evt trig(p))(plantV (t), t1 − t, ctrlV) = TRUE

THEN
act1: t := t1
act2: exec := plant

END

Fig. 5. Refinement of the Progess event in the EventTriggered level

Plant REFINES Plant =̂
ANY plant1
WHERE grd1: exec = plant

grd2: plant1 ∈ [0, t]− dom(plantV) → IR
grd3:ode(f evol plantV (ctrlV), plant1(t), t) ∈ DE(IR)
grd4: Solvable([0, t]− dom(plantV),

ode(f evol plantV (ctrlV), plant1(t), t))
grd5: AppendSolutionBAP (ode(f evol plantV (ctrlV),

plant1(t), t), [0, t]− dom(plantV),
[0, t]− dom(plantV), plant1)

WITH e : e = ode(f evol plantV (ctrlV), plant1(t), t)
THEN

act1: plantV := plantV ◁− plant1
act2: exec := ctrl

END

Fig. 6. Refinement of the Plant event in the EventTriggered level

is in the modeling of the progression of time. The
longest time between TimeTriggered sensors updates
is bounded by a symbolic duration named epsilon
and which must be defined by the designer of the
specific hybrid system. Thus, the controller is executed
at least every epsilon units of time. So, we refine event
Progress by adding the formula t′ − t ≤ epsilon
to state that the time cannot progress by more than
epsilon units of time. Moreover, since the controller
of a TimeTriggered model must make a choice that
will be safe for up to epsilon units of time, we
define a new safety envelope named prop safeEpsilon.
Event Ctrl is refined by adding a guard to ensure that
prop safeEpsilon is true for the new value of ctrlV
when this later does not belong to the evade values of
a property (grd4 of Figure 7). Let us remark that the
guard related to the formula safe is kept because we
are in a generic model and do not have yet the concrete
expression of safe. This guard will be removed when
modelling a specific application giving rise to a proof
obligation to estabish that the other guards imply it.

Ctrl REFINES Ctrl =̂
ANY value
WHERE

grd1: exec = ctrl
grd2: value ∈ IR
grd3: ∀p.p ∈ PROP ∧ value /∈ prop evade values(p)
⇒ (prop safe(p))(plantV (t), value) = TRUE
grd4: ∀p.p ∈ PROP ∧ value /∈ prop evade values(p)
⇒ (prop safeEpsilon(p))(plantV (t), value) = TRUE

THEN
act1: ctrlV := value
act2: exec := prg

END

Fig. 7. Refinement of the Ctrl event at TimeTriggered level

D. Generic TimeTriggeredDesolve Model

Generic TimeTriggeredDesolve model refines the
generic TimeTriggered model to introduce the reso-
lution of ODEs. Depending on the linearity of ODE,
a specific SAGEMATH Desolve function is used. Thus,
we have to distinguish two cases:

• case of linear ODE: in that case, we use the
function B desolve that is defined to model ana-
lytical solutions of ODEs in EVENT-B. It returns
a function of type IR → IR that represents the
values of the continuous variables of a given
hybrid system. Introducing this function in our
generic approach allows us to prove the safety
properties of hybrid systems in a TimeTriggered-
Desolve system, which was not possible with
the approach introduced in [6]. Moreover, this
function serves to establish the link between our
EVENT-B models and the differential equation
solver SAGEMATH.
B desolve ∈ (IN× IR× (IR+ → IR)× IR+×

(IR+ × IR)) → (IR → IR)

– the first and the second parameters denote
the order and the right term of the considered
ODE.

– the third parameter denotes the unknown
function, represented by a continuous vari-
able.

– the fourth parameter denotes the independent
variable, represented by a discrete variable
and typed by IR+.

– the last parameter denotes the initial values
of both the independent variable and the
unknown function.

Event Plant is refined to calculate the value of
plant1 during the period from lastTime to t using
the function B desolve, which is specified by the
guard grd3 (see Figure 8). This guard is used

Plant REFINES Plant =̂
ANY plant1, lastT ime
WHERE

grd1 : exec = plant
grd2 : lastT ime ∈ IR+∧ dom(plantV) = [0, lastT ime]
grd3 : plant1 = B desolve(1 7→ ctrlV 7→ plantV

7→ t 7→ (lastT ime 7→ plantV (lastT ime)))
grd4: plant1 ∈ [0, t]− dom(plantV) → IR
grd5: ode(f evol plantV (ctrlV), plant1(t), t) ∈ DE(IR)
grd6: Solvable([0, t]− dom(plantV),

ode(f evol plantV (ctrlV), plant1(t), t))
grd7 : AppendSolutionBAP (ode(f evol plantV (ctrlV),

plant1(t), t), [0, t]− dom(plantV),
[0, t]− dom(plantV), plant1)

THEN
act1: plantV := plantV ◁− plant1
act2: exec := ctrl

END

Fig. 8. Refinement of the Plant event by calling the DE solver

to link the abstract event to its refinement. It
enhances the guards grd6 and grd7 that aim at
modeling the differential equation solution using
the operators of the theory DiffEq. It serves to
verify the properties assumed by the operators
Solvable and AppendSolutionBAP about the so-
lutions of the given ODEs in order to establish
a link between our approach and the theory
DiffEq. The parameters dvar, ivar and ics (see
Section II-B) are represented respectively by the
dependent variable plantV and the independent
variable t as well as the initial values of these
variables. The parameter lastTime is introduced
to represent the last progression of time at which
plantV has been calculated. The solution of a
given differential equation is calculated from
lastTime to t in order not to overwrite the old
values of the continuous variable plantV.

• case of non linear ODE: if the ODE is linearis-
able, we apply the same refinement using the De-
solve function on the linear form while proving
such a linearisation using the approach defined
in [19]. Otherwise, we use the SAGEMATH de-
solve rk4() function that returns an approximate
solution for ODEs. This function is defined by:

B desolve rk4 ∈ IR× (IR+ 7→ IR)× IR+×

(IR+ × IR)× (IR+ × IR+) → (IR+ 7→ IR)

B desolve rk4 returns a function of type IR+ 7→
IR that represents the values of the continuous
variables. The first four parameters are the same
parameters as those of B desolve. The last pa-
rameter is used to specify the interval denoted

[t1, t2] for which the values of plantV are calcu-
lated. The refinement of the event Plant in case
of non linear ODE is similar to that for linear
ODE with the guard grd3 replaced with:
plant1 = B desolve rk4(f evol(ctrlV) 7→

plantV 7→ t 7→ (lastT ime 7→ plantV (lastT ime))
7→ (lastT ime 7→ t))

E. Modeling the Safety Properties

The main goal of the discrete part represented
by the controller is to ensure the safety proper-
ties of a specific hybrid system. To model these
safety properties in EVENT-B, a constant function
prop ∈ IRn → BOOL is defined in the context
Desolve where n denotes the number of variables
occurring in the property. Then an invariant is added
in the machine TimeTriggered desolve M, inv2: ∀x ·
x ∈ dom(plantV) ⇒ prop(plantV (x)) = TRUE,
where plantV will be replaced by the specific con-
tinuous variables. To discharge the PO generated
for this invariant, we added to the event Plant the
following guard grd8: ∀xx · xx ∈ dom(plant1) ⇒
prop(plant1(xx)) = TRUE. This guard will be re-
moved on a specific case to generate a proof obligation
that aims at proving that this guard is actually satisfied.

F. Correctness of the Specification

TABLE II
RODIN PROOF STATISTICS FOR THE GENERIC MODELS

Specific Models Total Automatic Interactive
System 8 1 7

EventTriggered 19 11 8

TimeTriggered 2 1 1

TimeTriggeredDesolve 5 3 2

Table II gives the statistics of the POs gener-
ated for the correctness of our generic models. It
is noticeable that 47% of them were automatically
discharged. These POs include the correctness of the
events that model the behavior of the physical parts
and the controller, as well as the correctness of their
refinement. The POs related to the well-definedness
have been interactively discharged under RODIN us-
ing the properties of Reals and DiffEq theories. To
prove the compliance between TimeTriggered M and
EventTriggered M machines, Rodin has generated a

2x and xx enable to cover all the moments from the beginning
until the current time

set of proof obligations that we have discharged in the
TimeTriggered M machine. In these generic models,
as we have kept the guard related to the formula safe
and prop evt trig in the event Progress (see Figure
5), the refinement proofs are rather simple and related
mainly to the type checking of the different variables
and the feasibility of the abstract and the concrete
models.

To prove the correctness of the TimeTriggeredDes-
olve model, RODIN has generated five proof obliga-
tions, three of them were automatically discharged.
The remaining proof obligations are as follows:

• PO1 is a well-definedness proof obligation which
aims at proving that the guard grd3 of the event
Plant (see Figure 8), added to model the so-
lution of the generic ODEs using the function
B desolve, is well defined. This guard assigns to
the parameter plant1 the solution of the generic
ordinary differential equation obtained using the
function B desolve. To discharge this proof obli-
gation, we must prove that the set of the results
returned by B desolve is equal to the set of
definition of plant1. This proof obligation was
discharged using some rewriting rules, the prop-
erties of the Reals theory and some invariants
defined in refined machines.

• PO2 is generated to prove that the event Plant
preserves the system safety property, specified
using the constant prop. This proof obligation
was discharged by replacing the value of plant1
by the result returned by B desolve.

PO1: lastT ime ∈ dom(plantV) ∧ plantV ∈ IR →
IR ∧ 1 7→

ctrlV 7→ plantV 7→ t 7→ (lastT ime 7→
plantV (lastT ime))

∈ dom(B desolve) ∧ B desolve ∈ IN × IR

×P (IR× IR)×
IR× (IR ×IR) → P (IR× IR)

PO2: ∀x · x ∈ dom(plantV ◁− plant1) =⇒
prop((plantV ◁− plant1)(x)) = TRUE

G. Instantiating the Generic Approach

To design a specific case study following our
generic approach, we instantiate the generic TimeTrig-
geredDesolve model by replacing the generic con-
tinuous variable plantV by that or those associated
with the case study. If the case study includes several
continuous variables, it is necessary to define a set
of parameters with the same cardinality as the set of
continuous variables. The function B desolve is then
instantiated by the specific parameters of the modeled
case study. We make the assumption that the safety

property is in a conjunctive normal form (
∧

i=1..n pi)
and that, for each formula pi, the following elements
are specified: event trigi, safei, safeEpsiloni and
a set of evade values evade valuesi for ctrlV. In that
case, the instantiation consists in valuing the set PROP
and the different constants as follows where X ∈
{event trig, safe, safeEpsilon, evade values}:

PROP=
⋃

i=1..n{pi}, prop X=
⋃

i=1..n{pi 7→ vali}

The safety property represented by the formula prop
also needs to be instantiated in the specific model (see
Section VI).

V. A TOOL FOR SUPPORTING THE APPROACH

To make our approach workable, we built a new
RODIN plug-in, called SageMath plug-in, that inter-
faces the RODIN platform with SAGEMATH solver
to calculate the solutions of ODEs. Solving ODEs
is needed for proving the safety property and the
satisfiability of a guard removed in a refinement. In
other words, during the proof of a PO, SAGEMATH
needs to be called on each term B desolve(...) or
B desolve rk4(...) in order to replace it by the solution
of the corresponding ODE.

The use the SAGEMATH plug-in follows the 3-
steps general process: (1) calling SAGEMATH from
RODIN, (2) solving differential equations and (3)
using the result returned in RODIN (see Figure 9).
In the first step, an input field that allows call-
ing SAGEMATH from RODIN appears automatically
when the current PO contains the terms B desolve
(resp. B desolve rk4(...)). The second step consists
in calling manually a predefined script generated
systematically from the function B desolve(...) (resp.
B desolve rk4(...)). The user must generate a spe-
cific SAGEMATH script according to the structure
and the nature of the differential equation to be
solved. The last step consists in manually translating
the result of SAGEMATH according to EVENT-B
syntax. The user must use the theory of reals to
translate the result and add it as an hypothesis
to prove the current PO. The description of the
different stages that constitute the main scenario
use of the SageMath plug-in can be downloaded
from https://github.com/CPSsWithEventB/Main/blob/
main/README.md. Hereafter, we describe each step.

A. Calling SAGEMATH from RODIN (Step1)

To call SAGEMATH from RODIN, a button called
sage has been added in the proof window using an
Eclipse plug-in. The button is made available on
a hypothesis/goal that contains the term B desolve
(resp. B desolve rk4(...)) as shown by Figure 10.

Fig. 9. The general process

Fig. 10. Calling SAGEMATH from RODIN

To develop a RODIN plug-in, Eclipse provides a
set of Java interfaces. These interfaces are intended
to be implemented according to the goal of the plug-
in. To implement the SageMath plug-in using Eclipse
IDE, we define the following Java classes: SageTac-
ticProvider, SageApplication and SageTactic.

1) SageTacticProvider Class: this Java class im-
plements the method getPossibleApplications to
check the presence of the term B desolve (resp.
B desolve rk4(...)) in each proof obligation and re-
turns an instance of the SageApplication class. Func-
tion getPossibleApplications uses two main predicates,
pred, a local variable, and hyp, a parameter of the
function. pred takes as value hyp if this latter is
not null or the current proof obligation otherwise.
If the tags, the left and right parts of the formula
pred, are equal to those of the predicate that contains
B desolve (resp. B desolve rk4(...)), we return the list
of tactics that can be applied as a list of instances of
SageApplication or null otherwise. This is repeated for
each node of the proof tree.

2) SageTactic Class: this Java class implements
the apply() method that creates a process for calling
SAGEMATH. Function apply() contains all the instruc-
tions that will be applied when calling SAGEMATH.
The process for calling SAGEMATH is created using
the predefined Java class Process and provides the

https://github.com/CPSsWithEventB/Main/blob/main/README.md
https://github.com/CPSsWithEventB/Main/blob/main/README.md

path of the executable file of SAGEMATH to the
predefined Java class ProcessBuilder. The Java class
ProcessBuilder can be used to call external applica-
tions thanks to the start() method and the Java class
Process can be used to create new system processes.

3) SageApplication Class: this Java class estab-
lishes the link between the checking of the presence
of the function B desolve (resp. B desolve rk4(...))
in the current proof obligation and the call to
SAGEMATH. It implements in particular two methods:

• getHyperlinkLabel(): allows to display the button
sage in the proof window.

• getTactic(): allows to create an instance of the
class SageTactic to execute the apply() method.

B. Solving ODEs in SAGEMATH (Step1’ and Step2)

In Steps 1′ and 2, the ODE is resolved. Step 1′ is
viewed as a preliminary step of 1. It consists in sys-
tematically generating a SAGEMATH script from the
EVENT-B functions B desolve and B desolve rk4(...),
with all the parameters necessary to execute the
SAGEMATH predefined functions desolve and des-
olve rk4. In such a script, the differential equation
must be expressed depending on the controlled vari-
able ctrlV that links the continuous and the dis-
crete parts of an hybrid system. A script is ex-
ecuted in SAGEMATH using the following com-
mand: load(′scriptName.sage′). The script below
is generated from the formula B desolve(1 7→
ctrlV 7→ plantV 7→ t 7→ (lastT ime 7→
plantV (lastT ime)))(x). It solves a differential equa-
tion plantV ′ = ctrlV , where (see Figure 11):

• Statement 1 is generated using the second param-
eter of B desolve and it specifies the right part
of the ODE plantV ′ = ctrlV .

• Statement 2 is generated using the forth parame-
ter of B desolve and it specifies the definition of
the independent variable t.

• Statement 3 is generated using the third param-
eter of B desolve and it specifies the definition
of the continuous variable represented by plantV.
The definition of this variable must always be
after the definition of the independent variable.

• Statement 4 is generated using the first part of
the parameter that specifies the initial conditions
and it represents the last progression of time from
which we calculate the values of the continuous
variable.

• Statement 5 represents the call to the SAGEMATH
predefined function desolve. The first parameter
of this function is generated using the first,
second and third parameters of B desolve. The

1: ctrlV = var(′ctrlV ′)
2: t = var(′t′)
3: plantV = function(′plantV ′)(t)
4: lastT ime = var(′lastT ime′)
5: eq = desolve(diff(plantV, t, 1) ==
ctrlV, dvar = plantV, ivar = t, ics =
[lastT ime, plantV (lastT ime)])
6: o = open(′sageresult.txt′,′ w′)
7: o.write(str(eq))
8: o.close()

Fig. 11. B desolve script

second, third and forth parameters are generated
respectively using the third, forth and last param-
eters of B desolve.

• Statements 6-8 generate a text file, named
”sageresult.txt”, which stores the result of the
differential equation specified by eq in Statement
5.

C. Using SAGEMATH Results in RODIN (Step3)

In Step 3, the term B desolve() is replaced by the
result returned by SAGEMATH and stored in a text file.
For that purpose, the predicate (B desolve() = sol′)
is added as an additional hypothesis in the current
PO, where sol′ is a rewritten of sol according to
the syntax of the theory of reals. Basically, this
theory adopts a prefix style by defining a keyword
for each operator on the reals like plus for addition,
times for multiplication, etc. So for instance, the
formula ctrlV × lastT ime + plantV (lastT ime) is
rewritten into plus(times(ctrlV 7→ lastT ime) 7→
plantV (lastT ime)).

VI. APPLICATION

To demonstrate the feasabilty of our approach we
have applied it on several frequently CPS case studies
like the following ones:

• The Stop Sign System whose objective is to
stop a car before a stop signal SP. The control
strategy is to adjust the velocity of the car by
accelerating or braking. The continuous behavior
of this system is modeled by the position p and
the velocity v of the car, as well as its acceleration
a. This continuous behavior evolves according to
two linear ODEs, dp

dt = v(t) and dv
dt = a.

• The Hybrid Water Tank System whose objective
is to maintain the water level between a high
level V high and a low level V low with 0 <
V low < V high. The system includes a tank,
a pump to fill the tank and a sensor to get the

level of the water. The water level is specified
by the variable V that evolves according to the
flowing linear ODEs, dV

dt = f in when the pump
is activated and dV

= −f out otherwise. The pump
is activated (resp. disabled) to fill (resp. empty)
the water tank by f in (resp. -f out) as long as
the property V < V high (resp. V > V low) is
true.

These case studies are didactic and quite representa-
tive of linear hybrid systems that admit exact solutions
(polynomial ODE solutions). The continuous behavior
of the Stop Sign case study is represented by two
state variables p and v while that of the Water Tank is
represented by a single state variable V. Moreover, the
Stop Sign case study is represented by three different
modes of control, Accelerating, Braking and Stopped,
that require a single safety envelope. The system can
enter state Accelerating when the car is very far from
the stop signal SP. State Braking is entered when
the car is very close to the stop signal SP. The state
Stopped is entered when the car is stopped i.e v = 0
(consequently a = 0) presumably right before signal
SP. In the other hand, the Water Tank case study is
composed of two modes and when its controller enter
one of these two modes the other one is considered as
an evade mode which requires the use of two safety
envelops. This diversity will allow us to properly
illustrate the use of our generic approach.

For the Water Tank case study, we chose to di-
rectly instantiate the generic model TimeTriggeredDe-
solve in order to use the interface between RODIN
and SAGEMATH to solve the associated ODEs.
For the Stop Sign case study, we chose to start
by modeling the controlled system by refining the
generic EventTriggered model. The associated Stop
Sign EventTriggered model will then be refined
by a Stop Sign TimeTriggered model in which
we directly model the solutions of the associated
ODEs without using the function B desolve. The
whole EVENT-B specification can be downloaded
from https://github.com/CPSsWithEventB/Main/blob/
main/README.md. In this paper, we present in de-
tails the modeling of the Water Tank.

A. The Modeling of the Water Tank System

To model the Water Tank case study using our
approach, we follow the schema depicted by Figure
12. The instantiation starts by directly refining the
generic model TimeTriggeredDesolve M to obtain the
model WaterTank M that sees [3] the context Wa-
terTank Ctx. The safety property is expressed in a
conjunctive normal form (Vlow ≤ V ∧ V ≤ Vhigh).

So the context WaterTank Ctx contains the following
elements3:

Fig. 12. Architecture of the EVENT-B model of the water tank
system

PROP={p1, p2}
prop event trig={p1 7→ (λ V 7→ t1 7→ ctrlV · V ∈ IR∧

ctrlV × t1 ∈ IR | bool(V + ctrlV × t1 ≥ Vlow)),
p2 7→ (λ V 7→ t1 7→ ctrlV · V ∈ IR ∧ ctrlV ∈ IR |

bool(V + ctrlV × t1 ≤ Vhigh))}
prop safe={p1 7→ (λ V 7→ ctrlV · V ∈ IR ∧ ctrlV ∈ IR |

bool(V > V low)),
p2 7→ (λ V 7→ ctrlV · V ∈ IR ∧ ctrlV ∈ IR |

bool(V < Vhigh))}
prop safeEpsilon={p1 7→ (λ V 7→ ctrlV · V ∈ IR ∧ ctrlV ∈ IR |

bool(V + (ctrlV × epsilon) > Vlow)),
p2 7→ (λ V 7→ ctrlV · V ∈ IR ∧ ctrlV ∈ IR |

bool(V + (ctrlV × epsilon) < Vhigh))}
prop evade values={p1 7→ {fin}, p2 7→ {−fout}}

Machine WaterTank M defines the invariants of Fig-
ure 13. Invariant inv1 is defined to replace the generic
continuous variable plantV by the specific one repre-
sented by the water level V. Invariant inv2 specifies
the possible values of the variable ctrlV. Invariant
inv3 models the safety property using the function
prop ∈ IR → BOOL where the formula prop(V(x))
is defined in the context WaterTank Ctx by V (x) ≤
V high ∧ V (x) ≥ V low.

inv1: plantV = V ∧ ran(V) ⊆ IR
inv2: ctrlV ∈ {fin,−fout}
inv3: ∀x · x ∈ dom(V) ⇒ prop(V (x)) = TRUE

Fig. 13. Invariant of the water tank system

The event Plant, of the generic machine TimeTrig-
gered desolve M is refined by replacing the generic
parameters of the function B desolve by those related
to the ODEs: dV

dt = fin if the pump is On and
dV
dt = −fout otherwise (see Figure 14). These ODEs

are expressed in the function B desolve as follows:
B desolve(1 7→ ctrlV 7→ V 7→ t 7→ (lastT ime 7→

3bool(P) gives the boolean value of the predicate P.

https://github.com/CPSsWithEventB/Main/blob/main/README.md
https://github.com/CPSsWithEventB/Main/blob/main/README.md

Plant REFINES Plant
ANY lastT ime, plant1
WHERE

grd1: exec = plant
grd2: lastT ime ∈ IR+ ∧ dom(V) = [0, lastT ime]
grd3: plant1 = B desolve(1 7→ ctrlV 7→ V 7→ t

7→ (lastT ime 7→ V (lastT ime)))
grd4: ode(f evol plantV (ctrlV), plant1(t), t) ∈ DE(IR)
grd5:Solvable([0, t]

−dom(V , ode(f evol plantV (ctrlV), plant1(t), t))
grd6: AppendSolutionBAP (ode(f evol plantV (ctrlV),

plant1(t), t), [0, t]− dom(V), [0, t]− dom(V), plant1)
THEN

act1: V := V ◁− plant1
act2: exec := ctrl

END

Fig. 14. The Plant event associated to the water tank system

V (lastT ime))), where the integer 1 denotes the de-
gree of both ODEs, ctrlV is the controlled variable,
V represents the dependent variable for which we
calculate the values over the time t that denotes the
independent variable, and lastTime and V(lastTime)
represent respectively the initial values of the time t
and the value of continuous variable V at the instant
lastTime.

B. Correctness of the specification of the Water Tank

TABLE III
RODIN PROOF STATISTICS FOR THE SMART HEATING SYSTEM

Specific Models Total Automatic Interactive
WaterTank M 102 40 62

Machine WaterTank M generates 102 POs, 39%
of them are automatically discharged. Like for the
generic models, the POs related to the guard fea-
sibility and well-definedness have been interactively
discharged under RODIN thanks to several provers
like SMT and AtelierB provers but also inference
rules described in the RODIN theory that implements
reals. The use of these inference rules made the proof
activity longer since they are not automatically applied
even on simple examples like the transitivity rule.

To discharge the POs related to the guards feasibil-
ity and well-definedness, we needed to add invariants
that translate implicit properties on the system (see
Figure 15). This invariant specifies that the system
is safe if the controller has chosen a value for ctrlV
that does not belong to the sets prop evade values(x).

inv4: ∀x · x ∈ PROP ∧ ctrlV /∈ prop evade values(x)
∧ exec = prg ⇒

(prop safeEpsilon(x))(V (t) 7→ ctrlV) = TRUE

Fig. 15. Implicit property on the system

inv5 : ∃t1 · t1 ∈ RRealP lus∧
minus(t 7→ t1) 7→ epsilon ∈ leq
dom(V) = Closed2Closed(Rzero, t1)∧
∧(exec ̸= plant ⇒ t1 = t)∧
(exec = plant ⇒ t 7→ t1 ∈ gt) ∧ (∀x · x ∈ PROP∧
ctrlV /∈ prop evade values(x) ∧ exec = plant
⇒ (prop safeEpsilon(x))(V (t1) 7→ ctrlV) = TRUE)

Fig. 16. Preservation of the property during a cycle of ϵ units of
time

Moreover, we added an invariant which ensures that
before executing the physical part, the safety property
is satisfied during the period epsilon (see Figure 16).

The most important part in the proof phase is the
one concerning the safety property specified using
the invariant inv3. RODIN generated for this invariant
the PO of Figure 17 for removing the grd8 defined
in Section IV-E. This PO is obtained by replacing
plant1 in V := V ◁− plant1 by B desolve(1 7→
ctrlV 7→ V 7→ t 7→ (lastT ime 7→ V (lastT ime)))
(see grd3 of event Plant). To discharge this PO, we
call SAGEMATH to obtain the exact solution of the
related ODE.

We must then replace the function B desolve(...)
with the solution returned by the call to SAGEMATH
from RODIN. This solution is obtained by replacing
the generic variable plantV by V in the script of Figure
11 as depicted by Figure 18.

Let us remark that for the non-linear ODE, the proof
of the safety property is achieved by assuming the
monotonicity of the function returned by desolve rk4
on the interval [lastT ime, t]. For that purpose, we
have to prove the following property on the returned
function to state that it is increasing or decreasing:

∀ tt · tt ∈ [lastT ime, t] ⇒
(plant1(tt) ≥ plant1(lastT ime) ∧ plant1(tt) ≤

plant1(t))
∨(plant1(tt) ≤ plant1(lastT ime) ∧ plant1(tt) ≥

plant1(t))

B desolve(1 7→ ctrlV 7→ V 7→ t 7→
(lastT ime 7→ V (lastT ime)))(x) ≤ V high∧

B desolve(1 7→ ctrlV 7→ V 7→ t 7→
(lastT ime 7→ V (lastT ime)))(x) ≥ V low

Fig. 17. The PO related to the safety property

Fig. 18. Solving V ′ = ctrlV in SAGEMATH

Having this property as verified, the proof of a
safety property comes down to prove it for the lower
and/or the upper bounds.

C. Discussion on the proof activity

From both case studies that we have modeled and
verified to prove the feasibility of our approach, the
following conclusion can be drawn. The complexity
of the application-dependent proofs is proportionate
to the number of the terms of the ordinary differential
equation solution. In other words, the higher the
degree of the ordinary differential equation, the higher
the complexity of the proofs: the proofs of the Stop
Sign case study took more than one week while 2
days were enough for the Water Tank case study. We
think that the development of an inference engine for
the theory that implements the reals would help speed
up the proof activity. Such an inference rule would
automate the application of some inference rules like
reflexivity, transitivity, etc.

VII. CONCLUSION AND FUTURE WORKS

This paper has presented a proof-based approach
that uses the EVENT-B refinement technique to model
and verify the correctness of CPSs whose behavior is
described using ODEs. This approach combines the
EVENT-B formal method with the differential equa-
tion solver SAGEMATH by modeling and implement-
ing the call to the solver. The approach is supported
by a tool, built as a RODIN plug-in, that establishes
the bridge between EVENT-B and SAGEMATH.

Our approach can be compared to the approach
described in [18] that also proposes a generic mod-
eling of Event- and Time-Triggered systems using
dRL. The differential refinement logic dRL requires
mastering the syntax of other tools to validate the
proof phase. For example, it requires mastering the
syntax of KeYmaera and KeYmaera X to prove safety
properties of the EventTriggered model. Unlike dRL,
our approach uses the end-to-end formal method
EVENT-B to take advantage of its supported tools and
its refinement strategy, along with the coupling RODIN
and SAGEMATH.

To cope with the complexity of the system, the
built EVENT-B specification consists of four generic
models: System model that represents the continuous
aspects of CPSs EventTriggered model that specifies
the interactions between the discrete and the continu-
ous parts of CPSs, TimeTriggered model that specifies
the discrete time of the discrete part of CPSs and
TimeTriggeredDesolve that introduces a function to
model the call to a DE solver, called either B desolve
when treating linear ODEs and B desolve rk4 when
treating nonlinear ODEs.

The proposed approach was successfully applied
on several case studies like the water tank system
presented in this paper but also those with multi-
ple continuous variables such as the Stop Sign case
study https://github.com/CPSsWithEventB/Main/blob/
main/README.md. We admit that the chosen case
study is a simple hybrid system with a linear ODE
but it served us to describe the different steps for
applying our generic approach. Using SAGEMATH,
we can deal with more complex ODEs as we showed
by modeling the function desolve rk4 which solves
nonlinear ODEs. Moreover, the work described in
this paper presents a first step that will facilitate the
treatment of complex hybrid systems using EVENT-B.
Without solving ODEs, our models were abstract
and did not allow proving the safety properties of
hybrid systems. As future work, we plan to apply our
approach on more complex case studies.

REFERENCES

[1] DISCONT ANR Project, https://discont.loria.fr.
[2] L. Perko, Differential Equations and Dynamical Systems,

Vol. 7, Springer Science & Business Media, 2013.
[3] J.-R. Abrial, Modeling in Event-B: System and Software

Engineering, Cambridge University Press, 2010.
[4] H. Kopetz, Event-Triggered Versus Time-Triggered Real-Time

Systems, in: Operating Systems of the 90s and Beyond,
Springer, 1991, pp. 86–101.

[5] P. Zimmermann, A. Casamayou, N. Cohen, G. Connan, T. Du-
mont, L. Fousse, F. Maltey, M. Meulien, M. Mezzarobba,
C. Pernet, et al., Computational Mathematics with SageMath,
SIAM, 2018.

[6] M. Afendi, R. Laleau, A. Mammar, Modelling hybrid pro-
grams with event-b, in: Rigorous State-Based Methods: 7th
International Conference, ABZ 2020, Ulm, Germany, May
27–29, 2020, Proceedings, Springer, 2020, pp. 139–154.

[7] M. Butler, I. Maamria, Mathematical Extension in Event-B
through the Rodin Theory Component (2010).

[8] S. Wolfram, The Mathematica Book, 5th edn. Wolfram Media,
Champaign (2003).

[9] T. A. Henzinger, P. Ho, H. Wong-Toi, HYTECH: A model
checker for hybrid systems, Int. J. Softw. Tools Tech-
nol. Transf. 1 (1-2) (1997) 110–122. doi:10.1007/
s100090050008.
URL https://doi.org/10.1007/s100090050008

https://github.com/CPSsWithEventB/Main/blob/main/README.md
https://github.com/CPSsWithEventB/Main/blob/main/README.md
https://discont.loria.fr
https://doi.org/10.1007/s100090050008
https://doi.org/10.1007/s100090050008
https://doi.org/10.1007/s100090050008
https://doi.org/10.1007/s100090050008
https://doi.org/10.1007/s100090050008

[10] G. Frehse, C. L. Guernic, A. Donzé, S. Cotton, R. Ray,
O. Lebeltel, R. Ripado, A. Girard, T. Dang, O. Maler, Spaceex:
Scalable verification of hybrid systems, in: G. Gopalakrish-
nan, S. Qadeer (Eds.), Computer Aided Verification - 23rd
International Conference, CAV 2011, Snowbird, UT, USA,
July 14-20, 2011. Proceedings, Vol. 6806 of Lecture Notes
in Computer Science, Springer, 2011, pp. 379–395. doi:
10.1007/978-3-642-22110-1_30.
URL https://doi.org/10.1007/978-3-642-22110-1 30

[11] R. Banach, M. Butler, S. Qin, N. Verma, H. Zhu, Core
Hybrid Event-B I: Single Hybrid Event-B Machines, Science
of Computer Programming 105 (2015) 92–123.

[12] W. Su, J.-R. Abrial, H. Zhu, Formalizing Hybrid Systems
with Event-B and the Rodin Platform, Science of Computer
Programming 94 (2014) 164–202.

[13] M. Butler, J.-R. Abrial, R. Banach, Modelling and Refining
Hybrid Systems in Event-B and Rodin (2016).

[14] G. Dupont, Y. Aı̈t-Ameur, M. Pantel, N. K. Singh, Proof-
Based Approach to Hybrid Systems Development: Dynamic
Logic and Event-B, in: M. Butler, A. Raschke, T. S. Hoang,
K. Reichl (Eds.), Abstract State Machines, Alloy, B, TLA,
VDM, and Z, Springer International Publishing, Cham, 2018,
pp. 155–170.

[15] A. Platzer, Differential Dynamic Logic for Hybrid Systems,
Journal of Automated Reasoning 41 (2) (2008) 143–189.

[16] A. Platzer, J.-D. Quesel, KeYmaera: A Hybrid Theorem
Prover for Hybrid Systems (System Description), in: Interna-
tional Joint Conference on Automated Reasoning, Springer,
2008, pp. 171–178.

[17] N. Fulton, S. Mitsch, J.-D. Quesel, M. Völp, A. Platzer,
KeYmaera X: An Axiomatic Tactical Theorem Prover for
Hybrid Systems, in: International Conference on Automated
Deduction, Springer, 2015, pp. 527–538.

[18] S. M. Loos, A. Platzer, Differential Refinement Logic, in:
2016 31st Annual ACM/IEEE Symposium on Logic in Com-
puter Science, IEEE, 2016, pp. 1–10.

[19] G. Dupont, Y. A. Ameur, M. Pantel, N. K. Singh, Event-
B Refinement for Continuous Behaviours Approximation,
in: Z. Hou, V. Ganesh (Eds.), Automated Technology for
Verification and Analysis - 19th International Symposium,
ATVA 2021, Gold Coast, QLD, Australia, October 18-22,
2021, Proceedings, Vol. 12971 of Lecture Notes in Computer
Science, Springer, 2021, pp. 320–336.

https://doi.org/10.1007/978-3-642-22110-1_30
https://doi.org/10.1007/978-3-642-22110-1_30
https://doi.org/10.1007/978-3-642-22110-1_30
https://doi.org/10.1007/978-3-642-22110-1_30
https://doi.org/10.1007/978-3-642-22110-1_30

	Introduction
	Background
	Event-B
	Differential Equation Solvers

	State of the Art
	Event-B Modeling of Hybrid Systems
	Differential Logic (dL)

	A Generic Formal Approach for Solving Ordinary Differential Equations in Event-B
	Generic System Model
	Generic EventTriggered model
	Generic TimeTriggered Model
	Generic TimeTriggeredDesolve Model
	Modeling the Safety Properties
	Correctness of the Specification
	Instantiating the Generic Approach

	A tool for supporting the approach
	Calling SageMath from Rodin (Step1)
	SageTacticProvider Class
	SageTactic Class
	SageApplication Class

	Solving ODEs in SageMath (Step1' and Step2)
	Using SageMath Results in Rodin (Step3)

	Application
	The Modeling of the Water Tank System
	Correctness of the specification of the Water Tank
	Discussion on the proof activity

	Conclusion and Future Works
	References

