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Structure-preserving Observers for port-Hamiltonian
systems via contraction analysis

Mario Spirito, Yann Le Gorrec, and Bernhard Maschke

Abstract—We address the design of structure-preserving non-
linear observers for port-Hamiltonian systems. Despite what is
done in the literature on nonlinear observers for this class of sys-
tems, we consider a Luenberger-like identity observer dynamics
with an affine output injection term. We provide some conditions
on the observer gain that guarantee the passivity properties of
the observer dynamics and of the system-observer cascade. We
then consider the convergence properties of the observer scheme
by exploiting the contraction theory (or convergent dynamics)
approach, and we show the exponential convergence rate of
the state reconstruction. We conclude the work by applying the
proposed technique to a velocity observation of a PMSM system
with only current measurements.

Index Terms—Structure-preserving, nonlinear functional ob-
server, port-Hamiltonian systems, contraction theory, convergent
dynamics, observer design.

I. INTRODUCTION

The port-Hamiltonian (pH) approach to modeling and
controlling complex physical systems constitutes a well-
established framework that originated with the seminal work
by van der Schaft and Maschke [1], [2]. For a comprehensive
overview on this field, including control techniques, one can
refer to [3], [4], [5]. Port-Hamiltonian systems have the
particular feature of describing the main physical properties
of the system under consideration, such as energy dissipa-
tion, passivity, and power conservation laws. Because of this
feature, they have been identified as a powerful framework
for the modeling, simulation, and control of complex physical
systems.

On the other hand, classical techniques to design nonlinear
observer are high-gain observers [6], extended Kalman filter
[7], KKL-observers [8], contractive observer [9], see the recent
work [10] for an overview of the topic. Despite all the available
approaches, the contraction theory approach is the only one
that preserves the system structure. Thus this approach is
the most suited for this paper. By exploiting the structure
and properties of the port-Hamiltonian systems (such as the
definition of a Hamiltonian function and its gradient) we
provide a constructive way to design the observer dynamics.

The literature on pH systems contains numerous contribu-
tions to the design of controllers, see, e.g., [11] and [4]. In
contrast, the design of observers for port-Hamiltonian systems
has received rather limited attention.
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In particular, for linear pH systems, state reconstruction can
be naturally addressed with a standard Luenberger observer
[12], thus making the error dynamics Hurwitz, see [13] for
an application in the port-Hamiltonian formalism. However,
for non-linear pH systems, one can exploit the Hamiltonian’s
gradient that is involved in the system structure. This changes
the point of view of the design and gives additional insights
into the observer’s convergence and passivity properties, also
for the case of linear pH system. For this latter class of
systems, a compensator based on a dual observer has been
proposed in [14], while in [15], the authors address the
combined input-state reconstruction problem for linear port-
Hamiltonian systems. The work [16] addresses the design of
passive observers for linear port-Hamiltonian systems based
on the LMI approach proposed in [17] and developed for
stabilization purposes.

For nonlinear pH systems, there exist also several observer
design methods. When referring to nonlinear pH systems, we
can generally differentiate between two kinds of nonlinearities,
viz. (a) nonlinearities in the interconnection structure and
(b) nonlinearities in the gradient of the Hamiltonian/storage
function. The former are characterized by state-dependent
matrices of the pH systems; the latter are characterized by
non-quadratic Hamiltonians. The combination of both non-
linearities can take place concurrently in the same dynamics,
thus making the analysis more complicated.

The first work addressing the design of observers for
nonlinear port-Hamiltonian systems was [18]. However, the
proposed observer is shown to be asymptotically convergent
only if the system reaches a steady state equilibrium. Later
on, the authors in [19] present a passivity-based, globally
exponentially convergent observer for pH systems with both
nonlinear interconnection structure and Hamiltonian gradient.
The proposed observer dynamics exploit additional measure-
ments that are not conjugate to the system input and are
available for feedback. Its design requires the solution of a
set of algebraic equations and partial differential equations
(PDEs).

The authors in [20] propose an observer design for pH
systems with constant structure matrices and nonquadratic
storages with an approach similar to the well-known inter-
connection and damping assignment passivity-based control
(IDA-PBC), developed in [11]. Similarly, a passivity-based
observer design was addressed in [21] and extended in [22].
It is worth noticing that the structure-preserving description in
[20] is different from the one we consider in this work since we
provide an analysis of the observer dynamics with an explicit
port-Hamiltonian structure (involving an explicit Hamiltonian
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function, an interconnection, and a resistance matrices), from
which we deduce the passivity properties between the observer
input signals and their conjugate outputs.

The observer structure for nonlinear pH system (with lin-
ear Hamiltonian gradient) has also been augmented with an
integral action to improve the robustness to constant system
perturbations of the proportional passivity-based observer in
[23]. Recently, in [24] a Lyapunov-based observer design is
described for a particular class of bilinear pH systems. In [25],
instead, the authors proposed the design of a particular class
of nonlinear port-Hamiltonian systems where the Hamiltonian
function has a particular shape (a quadratic form with some
nonlinearity depending on part of the system state). Along
with this particular Hamiltonian shape, the authors consider
exploiting, for the output injection term in the observer dynam-
ics, some measurements that are not conjugated to the original
system input. Among these measurements a part of the system
state is directly available, that is the critical state part involved
in the Hamiltonian nonquadratic form part, which simplifies a
lot the scenario.

In [26], the authors propose an observer-based controller
describing the passivity property of the system-observer cas-
cade. They then couple the observer dynamics with a Model
Predictive Control-like technique to obtain a controller design
for port-Hamiltonian systems.

Despite all the proposed techniques, it can be seen that the
observers in [18] and [19] are the only two approaches that
apply to port-Hamiltonian systems with both nonlinearities in
the interconnection structure and in the Hamiltonian gradient.
However, the observer approach in [18] has not been proved
to be asymptotically convergent in general, and the observer
design in [19] is delicate (or weak) as it relies on the solution
of a set of algebraic equations and PDEs.

In this paper, we propose a complete analysis regarding the
passivity of the observer dynamics along with its subtleties in
reconstructing the system state. In particular, it is not generally
guaranteed that the observer states are a passive output for the
overall observer dynamics. On the contrary, the gradient of the
observer Hamiltonian is always a passive output with respect
to the output injection term. This article is motivated by and
concurrently paves the way for the design of an observer-based
controller, which is currently under development and will be
the topic of future work. In this work, we consider an ob-
server design based on the convergence properties of nonlinear
systems as introduced in [27], [28] and re-proposed in [29].
By properly exploiting this contraction/convergent1 properties
of nonlinear systems, we are able to find conditions on the
observer gain that guarantees the exponential convergence of
the observer and directly tune its convergence rate for some
classes of port-Hamiltonian systems that are not restrictive in
practical applications. This convergence property is achieved,
for the class of systems under consideration, without involving
any algebraic and/or partial differential equations.

The paper is structured as follows. In Section II, we intro-
duce some preliminary concepts that are useful for the suc-
cessive development. We then discuss the structure-preserving

1From the stability point of view these notions are synonymous.

functional observer dynamics in Section III and study the
passivity of the corresponding error dynamics in Section IV.
The theoretical part of the paper concludes with Section V,
in which we describe the design techniques for two classes
of port-Hamiltonian systems whose nonlinearities are first in
the system dynamics matrices and then in the gradient of
the associated Hamiltonian function. We then merge the two
results into a summarizing theorem that applies to general
nonlinear port-Hamiltonian systems, whose input matrix is
constant. We then provide a numerical example to show the
effectiveness of the proposed methods in Section VI, and we
give some conclusions in Section VII.

Nomenclature

To apply a chain rule to a matrix J(x) times a vector Qx
multiplication, we consider the following notation

∂ (J(x)Qx)

∂x
= ∇J(x,Qx) + J(x)Q

where ∇J(x, ·) represents the tensor (3D- matrix) obtained by
involving the Jacobian of all the columns of J(x), i.e., the i-th
column of ∇J(x,Qx) is given by ∇Ji(x)Qx, where Ji(x) is
the i-th column in J(x).

II. PRELIMINARIES

In this section, we introduce the concepts of port-
Hamiltonian systems and contractive dynamics, useful to the
successive sections.

A. Port-Hamiltonian systems

Port-Hamiltonian systems can be formalized as nonlinear
systems generated by an energy function H with related
dynamics

ẋ = (J(x)−R(x))∇H(x) + g(x)u

y = g(x)⊤∇H(x)
(1)

where x ∈ X ⊂ Rn, u ∈ Rm, y ∈ Rm and J,R ∈ Rn×n

are matrix valued functions, J(x) being skew-symmetric and
R(x) symmetric positive semidefinite, while g(x) ∈ Rn×m

plays the role of the input matrix. Moreover, having R(x)
positive semidefinite on X , guarantees the passivity property
with storage function H(x), whenever the Hamiltonian is
lower bounded. Indeed, the energy balance equation reads:

Ḣ(x) = y⊤u−∇H(x)⊤R(x)∇H(x) ≤ y⊤u

thus, providing passivity with storage function H .
For the present developments, we consider the following

Assumption.

Assumption 1. The Hessian of the Hamiltonian is every
bounded and positive definite, i.e., there exist positive real h1
and h2 such that for all x ∈ X ⊂ Rn

h1I ≤ ∇2H(x) ≤ h2I.

The above assumption implies also that H is lower bounded
and convex, and it can moreover play the role of a Lyapunov
function.
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In the following, we consider the design of an observer
dynamics that preserves the port-Hamiltonian structure (1)
and we analyze the conditions to preserve the passivity of
such an observer dynamics. In particular, when applying the
identity observer approach to port-Hamiltonian systems, one
has to consider an additional desired property along with guar-
anteeing the observer convergence/stability and its passivity
characteristics, i.e., structure preservation. That is, in the port-
Hamiltonian formalism, it is crucial to have explicit Hamilto-
nian/energy terms involved in the system dynamics (describing
the effort of the system), then a symplectic structure for the
energy conservation, a positive semidefinite matrix describing
possible dissipative elements in the system, and a particular
relationship between the input and the output matrices so
to guarantee the passivity property of the system. Hence,
the resulting structure-preserving observer must have all the
features listed above in order to fit into the port-Hamiltonian
formalism.

Remark 1. Contrary to what has been addressed in [20], we
highlight the difficulties of preserving the port-Hamiltonian
structure for the observer dynamics, along with its passivity
property, in Section III. The structure preservation addressed
in [20] is then different to the one addressed here. Since they
consider, as structure-preserving observer, a system whose
dynamics is just stable, and no passivity property is taken
into account. Their only focus is on the observer error origin
stability. In the next section, we discuss the passivity properties
of a functional observer in the port-Hamiltonian formalism
and the related subtleties.

B. Contraction theory
In Section V, we use the fundamental concept of contrac-

tive/convergent dynamics to prove the convergence of the ob-
server. Contraction theory in the context of nonlinear control is
nowadays a counterpart for the Lyapunov approach, allowing
to guarantee the stability of the origin and convergence of the
system trajectories.

This approach has been introduced in works such as [27],
[28], for the case of constant metric, and re-proposed recently
in [29], [30], [31], while their extension to the more general
case of nonlinear Riemannian metrics can be found in [32]
and [9]. See also [33] for the case of non-Euclidean L1 and
L∞ metrics.

In the following, we will use the standard convergence result
in [29] that exploits the standard metric P ∈ Rn×n to describe
a convegence dynamics property. In order to do so, we first
introduce the definition of contractive systems.
Consider the system

ẋ = f(x, t) (2)

where x ∈ X ⊆ Rn and f : X × R → Rn is continuously
differentiable in x and Lypscitz continous in t. Let ϕ(x0, t)
denote the trajectory of (2) at time t originated at x0 at time
t = 0. We then have the following definition.

Definition II.1. We say that system (2) defines a contraction
if there exist real positive constants α, κ > 0 such that

∥ϕ(x1, t)− ϕ(x2, t)∥ ≤ κ exp(−αt)∥x1 − x2∥

for all initial conditions x1, x2 ∈ X ⊆ Rn and for all t ≥ 0.

A sufficient condition to determine whether system (2)
defines a contraction is the existence of a constant metric P for
which the distance with this metric between any two system
trajectories is monotonically decreasing in time. We thus have
the following well-known result, also known as Demidovic
condition in [29].

Lemma 1. System (2) is a contraction on X if there exists a
constant P ∈ Rn×n symmetric and positive definite, such that

P
df

dx
(x, t) +

df

dx

⊤
(x, t)P < 0 (3)

for all x ∈ X ⊂ Rn.

III. STRUCTURE-PRESERVING OBSERVER FOR
PORT-HAMILTONIAN SYSTEMS

We present in this section the passivity (structure-
preserving) properties related to a general functional observer
dynamics for a port-Hamiltonian system dynamics. We first
introduce the following (passivity-related) assumption.

Assumption 2. For any given functional of interest q(x),
q : Rn → Rp, there exists a locally invertible matrix valued
function ψ : Rn → Rn×p such thats q(x) = ψ⊤(x)∇H(x).

Then a structure-preserving, and thus passive, port-
Hamiltonian functional observer for the functional q(x) re-
construction reads as

uq = ψ(x̂)†L(x̂)⊤y
˙̂x = [(J(x̂)−R(x̂))− L(x̂)⊤g(x̂)⊤]∇H(x̂)+

g(x̂)u+ ψ(x̂)uq

ŷ = g(x̂)⊤∇H(x̂)

q(x̂) = ψ(x̂)⊤∇H(x̂)

(4)

where ψ(x̂)† is the local inverse of ψ(x), existing by assump-
tion, and the signals (ŷ, q(x̂)) are the collocated outputs of
the inputs (u, uq), that is, if R(x̂)) + sym(g(x̂)L(x̂)) ≥ 0
for all x ∈ X , then the observer is passive with respect to
the inputs (u, uq) and their conjugated outputs (ŷ, q(x̂)). It is
also easy to notice that, if x̂→ x also q(x̂) → q(x), thus the
full order passive observer (4) can reconstruct the functional
of interest if x̂ − x → 0 for any trajectory x(t) originated at
x0 ∈ X0 ⊆ X at time t = 0 of system (1).

However, from an implementation point of view, there
is no need to consider the existence of the matrix values
function ψ, because we can obtain an estimate of q(x) by
simply replacing x̂ into its argument, i.e., directly getting q(x̂)
from the available state evolution. Moreover, substituting the
definition of uq into the observer dynamics hides the presence
of the local inverse of ψ.

The presence of such matrix ψ has been introduced only
to preserve the structure of an explicit passive system,
thus making the observer dynamics structure-preserving port-
Hamiltonian with inputs (u, uq) and outputs (ŷ, q(x̂)). As
a consequence, if such a matrix-valued function ψ exists,
although possibly unknown and unemployed, the observer
dynamics is intrinsically passive from the inputs (u, uq).
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We now consider two particular cases, i.e., passive state and
passive gradient reconstruction/observation.

A. Passive state observation

In this particular case, to obtain a passive state recon-
struction, we need to assume a strong injectivity property of
the Hamiltonian gradient ∇H(x), i.e., there exists a locally
invertible ψ such that x = ψ(x)∇H(x). Thus the observer
dynamics reads as

uq = ψ(x̂)†L(x̂)⊤y
˙̂x = [(J(x̂)−R(x̂))− L(x̂)⊤g(x̂)⊤]∇H(x̂)+

g(x̂)u+ ψ(x̂)uq

ŷ = g(x̂)⊤∇H(x̂)

x̂ = ψ(x̂)⊤∇H(x̂).

(5)

Again the knowledge of the matrix ψ and its locally invertibil-
ity property, are not necessary from the implementation point
of view, but rather it plays an important role in the passivity
analysis of the observer interconnections2 when we use pure
state-feedback techniques such as the IDA-PBC approach or
any other control law of the form α(x̂). Obtaining ψ(x̂) for
the linear case, whenever Q = Q⊤ > 0 in ∇H(x) = Qx,
is easy since ψ(x̂)⊤ = Q−1. In the nonlinear context, i.e.,
∇H(x) ̸= Qx, we cannot provide any general solution for ψ,
and the problem should be addressed on a case-by-case basis.

B. Passive gradient observation

In this particular case, we are interested in the reconstruction
of the system Hamiltonian’s gradient, and thus the matrix-
valued function ψ is the identity matrix, thus the functional
observer trivially reads as

uq = L(x̂)⊤y
˙̂x = [(J(x̂)−R(x̂))− L(x̂)⊤g(x̂)⊤]∇H(x̂)+

g(x̂)u+ Iuq

ŷ = g(x̂)⊤∇H(x̂)

q(x̂) = I∇H(x̂).

(6)

Reconstructing/observing the Hamiltonian gradient is by far
the simplest case of passive functional observation because the
functional q(x̂) = ∇H(x̂) is intrisically passive with respect
to the injection term uq = L(x̂)⊤y, without the need to involve
any matrix-valued function ψ(x̂).

Remark 2. In standard port-Hamiltonian nomenclature,
∇H(x̂) is usually referred to as the effort variable.

Remark 3. It is clear from the above analysis that getting a
passive observer might be a hard task, although it might not
be needed to construct a passivity-preserving controller. See
also Fig. 1 to have a schematic point of view of the passivity
part of the observer dynamics.

As already touched before, any functional q can be recon-
structed by the full order observer, whenever the states of the

2For example the design can be interested in some passivity properties of
the system-observer cascade or closed loop.

observer x̂ converge to the system state evolution x. Hence,
from a convergence point of view, it is enough to study the
deviation evolution between the observer’s and the system’s
state, as proposed in the following section.

For the sake of exposition, from the following subsection
on, we use the notation M = M(x), M̂ = M(x̂), and M̃ =
M̂ −M , for M ∈ {J,R, g,H}, while ∇̃H = ∇Ĥ −∇H =
∇H(x̂)−∇H(x).

C. System-observer cascade passivity

We consider now the augmented system given by the
cascade of the system and the observer dynamics. For this
augmented system, due to the dynamics interconnection, the
passivity conditions has to be considered only between the
input signals (u, u) and the conjugated outputs (y, ŷ). In
particular, we have that the augmented system has again a port-
Hamiltonian structure , i.e., defining Ha(x, x̂) = H(x)+H(x̂)
we have(

ẋ
˙̂x

)
= [Ja(x, x̂)−Ra(x, x̂)]∇Ha(x, x̂) + ga(x, x̂)ua

=

[
J −R 0

L̂⊤ĝ⊤ Ĵ − R̂− L̂⊤ĝ⊤

](
∇xHa(x, x̂)
∇x̂Ha(x, x̂)

)
+

[
g 0
0 ĝ

](
u
u

)
(
y
ŷ

)
= ga(x, x̂)

⊤∇Ha(x, x̂)

=

[
g 0
0 ĝ

]⊤(∇xHa(x, x̂)
∇x̂Ha(x, x̂)

)
.

(7)

And thus, for storage function Ha, the passivity condition is
satisfied if the cascade resistive matrix Ra(x, x̂) is positive
semidefinite, i.e.,

Ra(x, x̂) =

[
R − 1

2 ĝL̂

− 1
2 L̂

⊤ĝ⊤ R̂+ sym(L̂⊤ĝ⊤)

]
≥ 0 (8)

and this condition can be satisfied, in general, under strong
assumptions3 on L, despite what is reported in the analysis by
[26, eq. (6)]. Thus in general, the cascade system-observer
dynamics is not passive from the inputs (u, u) to outputs
(y, ŷ). A reason to conclude this non-passivity property of the
system-observer cascade can be found in the high-gain-like
approach to obtain a robust observer convergence. In other
words, the usual choice of the output injection gain L(x̂)
employs ‘high-gain’ terms to provide a fast convergence of
the observer dynamics, especially when L(x̂) is taken as a
constant matrix. Thus, the design of a fast convergent observer
goes, in principle, against some possibly desired passivity
property of the system-observer cascade.

However, it should be noted that the passivity property
can be useful when exploiting the observer dynamics into a
dynamical controller for the system. Thus, closing the loop

3Take for example a scalar system case with R positive real. In order to
satisfy the passivity condition, one should take a sufficiently small L, and
thus a robust high-gain approach will go against the passivity requirements.
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Fig. 1. System-Observer cascade configuration highlighting the passive part of the observer dynamics.

with an appropriate choice of the controller gain matrix, such
as the symplectic feedback

u = −L⊤(x̂)∇H(x̂) + v,

provides the desired passivity property, this time with respect
to the input (v, v) and the output (y, ŷ) of the closed-loop
dynamics.
For the sake of exposition, in the remaining part of the paper,
we consider the observer state dynamics as

˙̂x = (Ĵ − R̂− L̂⊤ĝ⊤)∇Ĥ + ĝu(t) + L̂⊤y(t). (9)

IV. OBSERVER ERROR PASSIVITY ANALYSIS

In order to analyze the convergence of the observer state
x̂ to the system state trajectory x, the standard approach is
to introduce the error coordinate x̃ = x̂ − x. By considering
the evolution in the observer dynamics (9) and in the system
dynamics (1), we can obtain again a port-Hamiltonian x̃
dynamics, as reported in the following Lemma

Lemma 2. Given the observer dynamics (9) with state x̂ and
in the system dynamics (1) with state x, the error dynamics
reads as

˙̃x = (Ĵ − R̂− L̂⊤ĝ⊤)∇̃H + g̃u+ (J̃ − R̃− L̂⊤g̃⊤)∇H
ỹ = g̃⊤∇̃H

(10)
where ỹ are the conjugate outputs to the inputs u.

Proof. The proof comes from substituting the observer’s and
system’s dynamics into the time derivative of x̃, i.e., ˙̃x = ˙̂x−ẋ.
Using the notation introduced in the Lemma, we have

˙̃x = (Ĵ − R̂)∇Ĥ + L̂⊤(g⊤∇H − ĝ⊤∇H + ĝ⊤∇H − ĝ∇Ĥ)

+ (ĝ − g)u− (J −R)∇H
= (Ĵ − R̂)∇̃H − (J −R− (Ĵ − R̂))∇H + g̃

− L̂⊤(ĝ⊤∇̃H + g̃⊤∇H)

= (Ĵ − R̂− L̂⊤ĝ⊤)∇̃H + g̃u+ (J̃ − R̃− L̂⊤g̃⊤)∇H
and thus we obtained an error dynamics that has a port-
Hamiltonian structure, although the error Hamiltonian function
H̃ is not explicitly defined.

In general, ∇̃H is not only a function of x̃ and thus the cor-
responding Hamiltonian function H̃ , obtained by integration

in the x̃ usually depends also on the system state variable x. In
particular, by involving the multivariable mean value theorem,
as usually done in contraction analysis [29], we can write ∇̃H
explicitly in form of a symmetric matrix-valued function and
the error state x̃, i.e.,

∇̃H = ∇H(x̃+ x)−∇H(x)

=

∫ 1

0

∇2H
(
x(t) + s(x̂(t)− x(t))

)
ds · (x̂− x)

=

∫ 1

0

∇2H
(
x(t) + sx̃(t)

)
ds x̃ = Q(x, x̃)x̃

where

Q(x, x̃) :=

∫ 1

0

∇2H
(
x(t) + sx̃(t)

)
ds.

However, integrating Q(x, x̃)x̃ to get a time dependent4

Hamiltonian functional H̃ for the observer error dynamics is
in general not an easy task but, by introducing the so-called
Availability function

A(x, x̃) = H(x+ x̃)−H(x)− x̃⊤∇H(x) (11)

one can easily see that the partial derivative of A(x, x̃) with
respect to x̃ gives

∇x̃A(x, x̃) = ∇H(x+ x̃)−∇H(x) = ∇̃H

Unfortunately, the partial derivative of A with respect to x
does not provide the gradient of the original system Hamil-
tonian ∇H(x). Thus the system-observer error cascade has
a port-Hamiltonian structure, but in general, it is not port-
Hamiltonian because there is no natural expression of passiv-
ity, i.e., the cascade dynamics reads as(
ẋ
˙̃x

)
=

[
J −R 0

J̃ − R̃− L̂⊤g̃⊤ Ĵ − R̂− L̂⊤ĝ⊤

](
∇xH(x)
∇x̃A(x, x̃)

)
+

[
g 0
0 g̃

](
u
u

)
(
y
ỹ

)
=

[
g 0
0 g̃

]⊤( ∇xH(x)
∇x̃A(x, x̃)

)
,

(12)
with no explicit Hamiltonian/storage function through which
we can describe the passivity property of the cascade.

4Due to the state dependence x(t).



IEEE TRANSACTIONS ON AUTOMATIC CONTROL VOL. , NO. , JULY-2023 6

If we additionally assume that there exists a function
H(x̃, x) such that

∂H(x̃, x)

∂x̃
=
∂H

∂x
(x̃+ x)− ∂H

∂x
(x),

∂H(x̃, x)

∂x
=
∂H

∂x
(x),

(13)
then passivity conditions simplifies for the system cascade, as
detailed in the following corollary.

Lemma 3. Assume there exists a Hamiltonian function
H(x, x̃) with property (13). Then the cascade (1)-(10), is pas-
sive with respect to the inputs (u, u) and outputs (y, ỹ), with
storage function H(x, x̃), if the following passivity condition
holds[

−2R (J̃ − R̃− L̂⊤g̃⊤)⊤

(J̃ − R̃− L̂⊤g̃⊤) −2(R̂+ sym(L̂⊤ĝ⊤))

]
≤ 0. (14)

Proof. The proof of the Lemma simply comes by noticing the
structure of the System-Observer error cascade (12) is indeed
port-Hamiltonian with a well-defined Hamiltonian function
H(x, x̃), i.e.,(
ẋ
˙̃x

)
=

[
J −R 0

J̃ − R̃− L̂⊤g̃⊤ Ĵ − R̂− L̂⊤ĝ⊤

](
∇xH(x, x̃)
∇x̃H(x, x̃)

)
+

[
g 0
0 g̃

](
u
u

)
(
y
ỹ

)
=

[
g 0
0 g̃

]⊤(∇xH(x, x̃)
∇x̃H(x, x̃)

)
where the matrix in the LMI (14) is two times the symmetric
part of the cascade structure matrices. Thus computing the
time derivative of H(x, x̃) proves the Lemma, i.e., Ḣ(x, x̃) ≤
y⊤u+ ỹ⊤u.

A particular case happens, when the Hamiltonian function of
the system H(x) is a quadratic form, i.e., H(x) = x⊤Qx, with
associate positive definite matrix, Q = Q⊤ > 0. In particular,
in this situation the Availability function A(x, x̃) = H(x̃),
the cascade Hamiltonian function H(x, x̃) can be taken can
the sum of the two dynamics Hamiltonian, i.e., H(x, x̃) =
H(x) +H(x̃).

This case is also particularly relevant for the convergence
analysis of the observer dynamics, as considered in the fol-
lowing section.

V. OBSERVER DESIGN VIA CONTRACTION ANALYSIS

In this section, we present some results on the design
of a convergent5 observer dynamics (9), reported here for
completeness,

˙̂x = (Ĵ − R̂− L̂⊤ĝ⊤)∇Ĥ + ĝu(t) + L̂⊤y(t),

for two classes of port-Hamiltonian systems with constant
input matrix g(x) = g, i.e., for systems with quadratic
form Hamiltonian function H and for systems with constant
parameters J and R, but with non quadratic form Hamiltonian.

The key idea behind the following results is that the observer
dynamics is the system dynamics initialized on a different
initial condition. In order to proceed with the analysis, we first

5By convergent observer dynamics we mean that x̂ → x as t → ∞.

introduce a modification of the system dynamics (1), which
however does not change its state trajectory. In particular, we
consider adding the terms L⊤(y−y) = 0 into the x dynamics,
so that the state dynamics of (1) now reads as

ẋ = (J −R− L⊤g⊤)∇H + gu(t) + L⊤y(t) (15)

where we consider the system output y as an additional ‘fake
input’. With this reformulation, we see that both the observer
and system dynamics have the same structure with augmented
input signals (u, y). Moreover, it is clear in this context that
the observer dynamics is the system dynamics initialized at
a different initial condition. This reformulation allows us to
exploit the contraction property, i.e., Lemma 1, on the original
system (15), in order to obtain the observer convergence on a
certain domain of interest.

In the following cases, we focus our attention on the output
injection matrix L by considering it constant, along with the
input matrix g. Because the observer dynamics can suffer
from the peaking problem, the state of the observer could in
principle ‘exit’ the original system state space X . In order to
guarantee the uniform convergence property of the observer
we need to study the contractivity of the observer on a larger
state space X̂ encompassing the one of the original system X ,
i.e., X ⊆ X̂ .

A. Observer design with constant Hessian

In this subsection, we consider the case in which the system
(15) has a quadratic form Hamiltonian, i.e., H(x) = 1

2x
⊤Qx,

with Q = Q⊤ positive definite, so that ∇H(x) = Qx, and we
have the following

Theorem V.1. Given system (15), with x ∈ X , with g(x) = g
constant, and ∇H(x) = Qx, with Q positive definite. The
observer dynamics (9), with x̂ ∈ X̂ , converges to the system
state, i.e., x̂ →

t→∞
x, if there exists a constant L such that for

any x ∈ X̂
R′(x) + sym(gL) ≥ βI > 0, (16)

where

R′(x) = R− sym(∇J(x,Qx)Q−1−∇R(x,Qx)Q−1). (17)

Moreover, for α satisfying βI ≥ αQ−1, the convergence rate
of the observer error is of the form

|x̃(t)| ≤ µ(Q) exp(−αt)|x̃(0)|. (18)

with α being a positive constant.

Proof. To have a convergent observer, due to X ⊆ X̂ , we
need to guarantee the convergence property of (15) for any
x ∈ X̂ . That is, according to Lemma 1 and considering the
dynamics in (15) as ẋ = F (x, t), we analyze its gradient

∂F

∂x
(x, t) =

(
∂J(x)

∂x
− ∂R(x)

∂x

)
Qx

+ (J(x)−R(x)− L⊤g⊤)Q

= [∇J(x,Qx)Q−1 −∇R(x,Qx)Q−1

+ (J(x)−R(x)− L⊤g⊤)]Q

= (J ′(x)−R′(x)− L⊤g⊤)Q.
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Then the convergence property can be studied with respect to
the metric Q, i.e., defining V = x̃⊤Qx̃ = 2H̃ and taking its
time derivative, we have by the mean value theorem

V̇ = 2x̃⊤Q(F (x̂, t)− F (x, t)) =

= 2x̃⊤Q
∫ 1

0

∂F

∂x
(x̄(t, s), t)ds x̃

= 2x̃⊤Q
∫ 1

0

(J ′(x̄(t, s))−R′(x̄(t, s))− L⊤g⊤)dsQx̃

where x̄(t, s) = x + s(x̂ − x) for s ∈ [0, 1]. We can hence
write

V̇ = −x̃⊤Q
∫ 1

0

(R′(x̄(t, s)) + sym(gL))dsQx̃ < 0

Then, by standard arguments, since R′+sym(gL) is uniformly
positive, there exists a positive α such that for every x ∈ X̂

−R′(x)− sym(gL) ≤ −αQ−1,

so that we have (18) by applying the comparison lemma [34,
Lemma 3.4] to the Lyapunov function.

Remark 4. This result resembles the approach proposed in
[21] and it is the dual of the one proposed in [20] in which
the authors assume that the system matrices are constant and
the only nonlinearity is due to the gradient of the Hamiltonian
∇H(x̂).

B. Observer design with constant structural matrices

In this subsection, we consider a system dynamics (15)
whose matrices J,R, g are constant and that the only nonlin-
earity comes from the gradient of the Hamiltonian function
∇H(x). We additionally assume that the Hessian of H is
diagonalizable by means of a constant orthogonal matrix TH ,
i.e., ∇2H(x) = T⊤

HΛ(∇2H(x))TH , where Λ(∇2H) is the
matrix with the eigenvalues of ∇2H(x) on the main diagonal.
For this class of systems, we have the following result

Theorem V.2. Consider (15) with constant matrices J,R, g,
and consider Q = ∇2H(xmin) where xmin is such that, for
all x ∈ X̂ , ∇2H(x) − ∇2H(xmin) ≥ 0. Moreover, assume
that there exists a constant orthogonal matrix TH such that
∇2H(x) = T⊤

HΛ(∇2H)(x)TH for all x ∈ X̂ . Then the
observer dynamics (9) is convergent on X̂ with metric Q if
there exists a constant L such that

R(x) + sym(gL) ≥ βI > 0, (19)

for all x ∈ X̂ . Moreover, for α satisfying βI ≥ αQ−1 we
can explicitly determine the exponential convergence of the
observation error as

|x̃(t)| ≤ µ(Q) exp(−αt)|x̃(0)|. (20)

Proof. The proof of this theorem leverages on the orthogonal
transformation TH . In particular, by definition of Q, we first
introduce ∆Q(x) := ∇2H(x) − Q ≥ 0 ∀x ∈ X̂ , that is
the deviation matrix between ∇2H(x) and Q and is always
positive semidefinite on the domain of interest X̂ . Then, since

TH is a constant transformation, it diagonalizes the matrix
Q(:= ∇2H(xmin)) and, hence, also the matrix ∆Q(x).

We now show by contradiction that the matrix

Q(J −R− L⊤g⊤)∆Q(x)

is negative semidefinite for all x ∈ X̂ . Thus, assume it is
positive semidefinite, then we have

Q(J −R− L⊤g⊤)∆Q(x) =

= T⊤
HΛ(Q)TH(J −R− L⊤g⊤)T⊤

HΛ(∆Q(x))TH

≤ λmax(Q)(J −R− L⊤g⊤)λmax(∆Q(x)) ≤ 0

by the property (19) of L. Hence, we have a contradiction. In
particular, we have

T⊤
HΛ(Q)TH(J −R− L⊤g⊤)T⊤

HΛ(∆Q(x))TH

≤ λmin(Q)(J −R− L⊤g⊤)λmin(∆Q(x)) = 0

because ∆Q(x) is positive semidefinite for all x ∈ X̂ .
We can now proceed with the convergence proof consid-

ering as Lyapunov function V = x̃⊤Qx̃. Taking the time
derivative of V we have

V̇ = 2x̃⊤Q(F (x̂, t)−F (x, t)) = 2x̃⊤Q
∫ 1

0

∂F

∂x
(x̄(t, s), t)ds x̃

= 2x̃⊤
∫ 1

0

Q
[
(J −R− L⊤g⊤)∇2H(x̄(t, s))

]
ds x̃

= 2x̃⊤
∫ 1

0

Q
[
(J −R− L⊤g⊤)(Q+∆Q(x̄(t, s))

]
ds x̃

≤ 2x̃⊤Q
[
(J −R− L⊤g⊤)Q

]
x̃ < 0, ∀x̃ ̸= 0.

Then, by standard arguments, since R+sym(gL) is uniformly
positive, there exists a positive α such that

−R− sym(gL) ≤ −αQ−1,

so that we have (20) by applying the comparison lemma [34,
Lemma 3.4] to the Lyapunov function.

Remark 5. A particular case in which Theorem V.2 can be
applied is when H is separable, so that its Hessian has a
natural diagonal structure and thus TH is the identity matrix.

Note that our result, compared to [20], is more powerful
since it does not involve finding the solution of a Algebraic
Riccati Inequality (or ARE with a arbitrary small ϵ, as pre-
sented in their paper). But on the other hand, it assumes
the existence of a constant transformation matrix TH to
diagonalize the Hessian of H .

C. Observer design: a general case

This result can be easily extended and merged with the
results presented in the previous subsection (Sec.V-A), under
the existence assumption of such a transformation matrix TH ,
if (16) can be satisfied for all x ∈ X̂ by a constant L.

Theorem V.3. Consider (15) with constant matrix g, and
consider Q and TH defined as in Theorem V.2. Then the
observer dynamics (9) is convergent on X̂ with metric Q if
there exists a constant L such that (16) is satisfied for all
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x ∈ X̂ . Moreover, for some positive α, we can explicitly
determine the exponential convergence of the observation
error as in (20)

The proof is simply an application of the previous Theo-
rems’ proofs and thus it is omitted.

Remark 6. The results shown in this section hold for any
value of u and y, and allow us to determine an exponential
convergence of the observed dynamics with convergence rate
α. Such a value only depends on the choice of L and, because
Q is a fixed metric independent of L, we can possibly make α
arbitrarily large by properly defining L. This property paves
the way for the design of an observer-based controller that
leverages the Separation Principle.

D. Discussion on the choice of L
The existence of the matrix L satisfying (16) and/or (19),

introduced for the observer design, can be determined through
the sufficient condition introduced in [25, Lemma 4]. In
particular, the authors show that there exists a matrix L, such
that for all x ∈ X̂ , (16) holds with R′(x) ≥ 0, if and
only if (16) can be ‘already’ satisfied by L = g⊤. Thus, for
R′(x) ≥ 0, this ‘observability’ condition can be easily checked
by first setting L = g⊤. We can then set L = γg⊤, with
positive scalar γ chosen sufficiently high, to possibly obtain a
desired convergence rate α.

For R′(x) which is not sign defined, but bounded from
below we can still get a similar property as detailed in the
following generalization of Lemma 4 in [25].

Lemma 4. Define R′ as the minimum value for R′ in (17), i.e.,
for all x ∈ X̂ , R′(x) ≥ R′, and assume it to take finite values
on X̂ . If there exists a Γ = Γ⊤ such that R′+gΓg⊤ ≥ 0, then
there exists an L such that (16) if and only if (16) is satisfied
by L = (Γ + I)g⊤.

The proof reads as in [25] when considering
R(x) = R′ + gΓg⊤ ≥ 0, and thus it is omitted.

In this case, to obtain the observer convergence rate and
satisfy (16), we can define L = (Γ + γI)g⊤, with Γ as
defined above, and set γ > 0 according to the desired
observer convergence rate.

Note that however, condition (16) is only sufficient and
can be restrictive for proving the convergence of the observer
dynamics. In particular, it is still possible to obtain the
attractiveness of the origin for x̃ with R′(x)+sym(gL) ≥ 0 for
all x ∈ X̂ , if some additional condition on the error dynamics
is fulfilled. For linear systems, this condition is easy to find, as
shown in [17, Proposition 6] and exploited in the linear case
below, and it is related to kernel space of R + sym(gL), see
Proposition 1 below. The extension to the nonlinear case is
left for future work and it is currently under development.
Moreover, we believe that this type of approach can also
lead to a separation principle in the nonlinear context for the
class of port-Hamiltonian systems with a constant input matrix
because the input signal does not affect the exponential rate
of convergence of the observer dynamics.

E. The linear case

A particular case of the scenarios considered above is the
linear case, for which we can give a larger characterization
of the observer convergence. In particular, it is well-known
that for linear systems, the observation error dynamics is
autonomous, i.e., (10) is independent from the u(t) and ∇H
terms. Thus in this scenario, a sufficient condition for the
observer convergence is that (19) is satisfied. However, we can
think of the matrix L to be parameterized into a symplectic
JL, positive definite6 RL and the g matrices, i.e., we write

L = (JL +RL)g
⊤.

With this parameterization of L, the observer error dynamics
(10) reads as

˙̃x = (J + gJLg
⊤ − (R+ gRLg

⊤))Qx̃ = (Jo −Ro)Qx̃ (21)

and if Ro ≥ 0 we can still have asymptotic stability of the
origin for x̃, as described in the following corollary.

Proposition 1. Denote by k the dimension of the kernel of
Ro ≥ 0, and assume it is spanned by {r1, . . . , rk}. Then (21)
is asymptotically stable if and only if the matrix

(sI −QJo)
[
r1|r2| . . . |rk

]
has rank k, for every s = jω, ω ∈ R.

The proof of this proposition follows the same steps as that
for [17, Proposition 6], and it is thus omitted.

We can then characterize the stability of an autonomous
linear system, rather than placing its eigenvalues on the open
left hand side, by exploiting the positive semidefiniteness
of its equivalent resistive part along with some geometrical
conditions related to its kernel space.

It is worth noticing that the proposed approach is more
general than the one described in [13], since in that work
the authors assume to have a Hurwitz (Jo − Ro) matrix, and
this might not always be true even in the case of full system
observability.

VI. EXAMPLE

Linear gradient: sensorless velocity measurement of PMSM
system [26]

We consider here the case of a 3-phase Permanent Magnetic
Synchronous Motor (PMSM) in the d − q coordinates, with
unmeasured shaft velocity. Its dynamics reads as(

φ̇d

φ̇q

ṗ

)
=

[ 0 0 φq

0 0 −φd − Φ
−φq φd +Φ 0

]
−

r 0 0
0 r 0
0 0 β

 φd

Lφq

L
p
Jm


+

1 0
0 1
0 0

u = [J(x)−R]∇H(x) + gu

y =

[
1 0 0
0 1 0

] φd

Lφq

L
p
Jm

 = g⊤∇H(x)

6Previously, we considered RL = Γ + γI .
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where φd, φq are the stator magnetic fluxes along the d and q
axes, respectively, while Φ is the constant rotor magnetic flux,
L is the phase inductance, r the phase resistance, p is the
shaft momentum, Jm its inertia, and β is the viscous friction
coefficient. The control signals u are the two stator phase
voltages vd, vq , and the available outputs the corresponding
phase currents id, iq . The associated Hamiltonian function is
then

H =
φ2
d

2L
+
φ2
q

2L
+

p2

2Jm

This model has constant input matrix and linear Hamiltonian
gradient, with a diagonal Q matrix, thus it fits precisely into
the framework described in Section V-A. In order to design
the observer dynamics (9), according to the case analysed in
Section V-A , we have to investigate the partial derivative of
J(x)Qx with respect to x, i.e.,

∂ (J(x)Qx)

∂x
=

∂

∂x

(
φq

p
Jm

−(φd + Φ)
p

Jm
Φ

φq
L

)
=

[
0

p
Jm

φq
Jm

− p
Jm

0 −φd+Φ
Jm

0 Φ
L

0

]
We are then interested in the symmetric part of
∂ (J(x)Qx)

∂x
Q−1, that is

sym

(
∂J(x)Qx

∂x
Q−1

)
=

 0 0 1
2φq

0 0 − 1
2φd

1
2φq − 1

2φd 0


so that the resulting equivalent resistive matrix R′(x) in (17)
is then given by

R− sym

(
∂J(x)Qx

∂x
Q−1

)
=

 r 0 1
2φq

0 r − 1
2φd

1
2φq − 1

2φd β

 .
In general, this R′(x) is not sign definite, since its principal
minors have no positive sign, i.e.,

r > 0; r2 > 0; r2β − r
1

4
(φ2

d + φ2
q)

?
> 0.

The last inequality can be analyzed by considering the fact that
the supplied current norm

√
i2d + i2q saturates in any practical

application7. Then, we can write an upper bound for φ2
d+φ

2
q ,

that is valid for any working configuration of the motor, i.e.,

φ2
d + φ2

q = (i2d + i2q)L
2 = i2maxL

2. (22)

Although a lower bound for the determinant of R′(x) can be
found, there is no guarantee that the resistance r is sufficiently
large to overcome the norm of the magnetic flux, φ2

d +φ2
q , in

any configuration and for any friction coefficient β. We thus
consider as output injection matrix L⊤ = γg, where γ is a
positive parameter to be tuned. With this choice the equivalent
resistance matrix is

R′(x) + γGG⊤ =

r + γ 0 1
2φq

0 r + γ − 1
2φd

1
2φq − 1

2φd β

 , (23)

7Moreover, the magnetic fluxes usually saturate even at lower current
values.

TABLE I
PMSM SYSTEM PARAMETERS

Jm 0.012
[
Kgm2

]
L 3.8 · 10−3 [H]

β 0.0026 [Nms/rad] r 0.225 [Ω]
Φ 0.17 [Wb] imax 15 [A]

whose principal minors are given by

r+ γ > 0; (r+ γ)2 > 0; (r+ γ)2β− (r+ γ)
1

4
(φ2

d+φ
2
q).

To guarantee that (23) is positive definite, it is easy to see that

γ ≥ max

{
i2max

4β
L2 − r, 0

}
.

This allows to guarantee an exponential convergence of the
observation error, independently of the applied input voltages.
For the numerical results we set γ = 10, and we initialize

0 5 · 10−2 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

−1

−0.8

−0.6

−0.4

−0.2

0

t

x̃
(t
)

Error evolution

ϕ̃d(t)

ϕ̃q(t)

ω̃(t)

Fig. 2. Error evolution with u = (vd, vq) constant (−4V, 3V ).

system dynamics at (φd(0), φq(0), ω(0)) = (0, 0.001, 1), and
the observer at the origin, x̂(0) = 0. We then test the observer
dynamics in two different scenarios. We first set the input
voltage to a constant value (vd, vq) = (−4V, 3V ) and the
corresponding states evolution is depicted in Fig. 3, while
the observer error evolution in Fig. 2. Then we consider the
case in which the input voltage has a cosinusoidal evolution,
i.e., (vd(t), vq(t)) = (−4 cos(10t)V, 3 cos(3t)V ) as depicted
in Fig. 4, and the corresponding states evolution is depicted
in Fig. 5, while the observer error evolution in Fig. 6. It is
worth noticing, that the observer convergence is independent
from the input signal as a consequence of the constant input
matrix g.

VII. CONCLUSIONS

In this work, we presented a general overview of the
structure-preserving observer for port-Hamiltonian systems.

In particular, we analyzed the observer structure that pre-
serves the passivity for this class of systems and we then
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Fig. 3. System and observer states evolution with u = (vd, vq) constant
(−4V, 3V ).
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4

t

u
(t
)

vd(t)

vq(t)

Fig. 4. Cosinusoidal inputs (vd, vq) = (−4 cos(10t)V, 3 cos(3t)V ).

analyzed the conditions for passivity of the system-error dy-
namics cascade. We then exploit the convergence/contractive
systems approach to determine the convergence of the observer
dynamics onto the system dynamics for a class of port-
Hamiltonian systems whose input matrix is constant in time.

We conclude the work with an example of industrial interest
in which we apply the proposed design paradigm to a PMSM
system in order to reconstruct the system state under two dif-
ferent classes of input signals, thus showing the effectiveness
of the presented results.
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Fig. 5. System and observer states evolution with cosinusoidal inputs
(vd, vq) = (−4 cos(10t)V, 3 cos(3t)V ), depicted in Fig. 4.
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Fig. 6. Error evolution with cosinusoidal inputs (vd, vq) =
(−4 cos(10t)V, 3 cos(3t)V ), depicted in Fig. 4.
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for state-feedback control design,” in 2023 European Control Conference
(ECC). IEEE, 2023, pp. 1–6.

[27] B. P. Demidovich, Lectures on stability theory. Nauka, Moscow, 1967,
(in Russian).

[28] J. L. Willems, Stability theory of dynamical systems, 1970.
[29] A. Pavlov, A. Pogromsky, N. van de Wouw, and H. Nijmeijer, “Con-

vergent dynamics, a tribute to boris pavlovich demidovich,” Systems &
Control Letters, vol. 52, no. 3, pp. 257–261, 2004.

[30] A. Pavlov, N. Van De Wouw, and H. Nijmeijer, “Convergent systems:
analysis and synthesis,” Control and observer design for nonlinear finite
and infinite dimensional systems, pp. 131–146, 2005.

[31] ——, Uniform output regulation of nonlinear systems: a convergent
dynamics approach. Springer, 2006, vol. 205.

[32] W. Lohmiller and J.-J. E. Slotine, “On contraction analysis for non-linear
systems,” Automatica, vol. 34, no. 6, pp. 683–696, 1998.

[33] A. Davydov, S. Jafarpour, and F. Bullo, “Non-euclidean contraction
theory via semi-inner products,” arXiv preprint arXiv:2103.12263, 2021.

[34] H. K. Khalil, “Nonlinear systems,” Patience Hall, vol. 115, 2002.


