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Structure-preserving Observers for port-Hamiltonian
systems via contraction analysis

Mario Spirito

Abstract—We address the design of structure preserving ob-
servers for port-Hamiltonian systems. Despite what is done in
the literature on nonlinear observers for this class of systems, we
consider a Luenberger-like identity observer dynamics with an
output injection term. We provide an analysis on the passivity
properties of the observer dynamics and of the system-observer
cascade. We then consider the convergence properties of the ob-
server scheme by exploiting the contraction theory (or convergent
dynamics) approach, and we show the exponential convergence
rate of the state reconstruction. We conclude the work by
applying the proposed technique to a velocity observation of a
PMSM system with only current measurements.

Index Terms—Structure-preserving Observer, port-
Hamiltonian systems, gradient-based observability/detectabilty

I. INTRODUCTION

The port-Hamiltonian (pH) approach to modeling and
controlling complex physical systems constitutes a well-
established framework that originated with the seminal work
by van der Schaft and Maschke [1], [2]. For a comprehensive
overview of this field, including control techniques, one can
refer to [3], [4], [5]. Port-Hamiltonian systems have the
particular feature of describing all the main physical properties
of the system under consideration, such as energy dissipation,
passivity, and power conservation laws. Because of this fea-
ture, they have been identified as a powerful framework for
the treatment of complex physical systems.

The literature on pH systems contains numerous contribu-
tions for the design of controllers, see, e.g., [6] and [4]. In
contrast, the design of observers for port-Hamiltonian systems
has received rather limited attention.

In particular, for linear pH systems, state reconstruction can
be naturally addressed with a standard Luenberger observer
[7], thus making the error dynamics Hurwitz. However, ex-
ploiting the predefined structure of pH systems gives additional
insights into observer dynamics and its convergence properties
(as it will be clear at the end of Section VI) also for linear
pH systems. For this class of systems, a compensator based
on a dual observer has been proposed in [8]. While in [9],
the authors address the combined input-state reconstruction
problem for linear port-Hamiltonian systems. The work [10]
addresses the design of passive observers for linear port-
Hamiltonian systems based on the LMI approach proposed
in [11] and developed for stabilization purposes.
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lyon1.fr).
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For nonlinear pH systems, there exist also several observer
design methods. When referring to nonlinear pH systems, we
can generally differentiate between two kinds of nonlinearities,
viz. (a) nonlinearities in the interconnection structure and
(b) nonlinearities in the gradient of the storage/Hamiltonian
function. The former are characterized by state-dependent
matrices of the pH systems; the latter are characterized by
possibly non-quadratic Hamiltonians. It is obvious that the
combination of both the nonlinearities can take place into
account in the same dynamics and makes it simply more
complicated to analyze.

The first work addressing the design of observers for nonlin-
ear port-Hamiltonian systems was [12]. However, the proposed
observer is shown to be only asymptotically convergent if
the system reaches a steady state. Later, in [13], the authors
present a passivity-based, globally exponentially convergent
observer for pH systems with both nonlinear interconnection
structure and Hamiltonian gradient. The proposed observer dy-
namics exploit additional measurements that are not conjugate
to the system input and are available for feedback. Its design
requires the solution of a set of algebraic equations and partial
differential equations (PDEs).

Yaghmaei and Yazdanpanah in [14] propose an observer de-
sign for PHSs with constant system matrices and nonquadratic
storages with an approach similar to the well-known inter-
connection and damping assignment passivity-based control
(IDA-PBC), developed in [6]. It is worth noticing that the
structure-preserving description in [14] is different from the
one we consider in this work, since we provide an analysis
on the observer dynamics with an explicit port-Hamiltonian
structure (involving an explicit Hamiltonian function, an inter-
connection and a resistance matrices), from which we deduce
the passivity properties between the observer input signals and
their conjugate outputs.

The observer structure for nonlinear pH system (with lin-
ear Hamiltonian gradient) has also been augmented with an
integral action to improve the robustness of the proportional
passivity-based observer in [15]. Recently, in [16], the authors
propose the design of a particular class of nonlinear port-
Hamiltonian systems where the Hamiltonian function has
a particular shape (quadratic form with some nonlinearity
depending on part of the system state). Along with this
particular Hamiltonian shape, the authors consider exploiting,
for the output injection term in the observer dynamics, some
measurements that are not conjugated to the original system
input. Among these measurements a part of the system state
is directly available, that is the critical state part involved in
the Hamiltonian nonquadratic form part, which simplifies a lot
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the scenario.

In [17], the authors propose an observer-based controller
describing the passivity property of the system-observer cas-
cade. They then couple the observer dynamics with a Model
Predictive Control-like technique to obtain a controller design
for port-Hamiltonian systems.

Despite all the proposed techniques, it can be seen that the
observers from [12] and [13] are the only two approaches that
are applicable to port-Hamiltonian systems with both nonlin-
earities in the interconnection structure and in the Hamiltonian
gradient. However, the observer approach in [12] has not been
proved to be asymptotically convergent in general, and the
observer design in [13] is delicate (or weak) as it relies on the
solution of a set of algebraic equations and PDEs.

In this paper, we propose a complete analysis regarding the
passivity of the observer dynamics along with its subtleties
in reconstructing the system state. In particular, it is not
generally guaranteed that the observer states are a passive
output for the overall observer dynamics. On the contrary,
the gradient of the observer Hamiltonian is always a passive
output with respect to the output injection term. This article
is motivated by and concurrently paves the way for the
design of an observer-based controller, which is currently
under development and will be the topic of future work.
In this work, we consider an observer design based on the
convergence properties of nonlinear systems as introduced in
[18], [19] and re-proposed in [20]. By properly exploiting
this contraction/convergent1 properties of nonlinear systems,
we are able to show exponential convergence of the observer
and directly tune its convergence rate for some classes of
port-Hamiltonian systems that are not restrictive in practical
applications. This convergence property is achieved, for the
class of systems under consideration, without involving any
algebraic and/or partial differential equations.

The paper is structured as follows. In Section II, we
introduce some preliminary concepts that are useful for the
successive development. We then provide some motivations
for the work towards observer-based controller, providing
new, gradient-based, notions of controllability and stabiliz-
ability in Section III. We then discuss the structure-preserving
functional observer dynamics in Section IV and study the
passivity of the corresponding error dynamics in Section V.
The theoretical part of the paper concludes with Section VI,
in which we describe the design techniques for two classes
of port-Hamiltonian systems whose nonlinearities are first in
the system dynamics matrices and then in the gradient of
the associated Hamiltonian function. We then merge the two
results into a summarizing theorem that applies to general
nonlinear port-Hamiltonian systems, whose input matrix is
constant. We then provide some numerical examples to show
the effectiveness of the proposed methods in Section VII, and
we give some conclusions in Section VIII.

1From the stability point of view these notions are synonymous.

Nomenclature

To apply a chain rule to a matrix J(x) times a vector Qx
multiplication, we consider the following notation

∂J(x)Qx

∂x
= ∇J(x,Qx) + J(x)Q

where ∇J(x, ·) represents the tensor (3D- matrix) obtained by
involving the gradient of all the elements of J(x).

II. PRELIMINARIES

In this section, we introduce some basic concepts that are
useful to the successive sections.

A. Linear Luenberger Observers

We recall the Luenberger observer approach for an observ-
able linear systems, with dynamics

ẋ = Ax+Bu, x(0) = x0

y = Cx
(1)

where x ∈ Rn is defined for all t ≥ 0, from some unknown
initial condition x0 ∈ Rn, u and y are respectively the input
and output signals that are available from feedback, while A ∈
Rn×n, B ∈ Rn×m and C ∈ Rp×n.

Thus, for system (1), we define a Luemberger observer with
dynamics

˙̂x = Ax̂+Bu+ L(y − Cx̂), x̂(0) = x̂0 (2)

where x̂ ∈ Rn is the estimation of x, initialized at some known
initial condition x̂0 and the matrix L is designed such that
the observation error x̃ = x̂ − x has a asymptotically stable
dynamics

˙̃x = (A− LC)x̃, x̃(0) = x̂0 − x0 (3)

or equivalently, L is designed such that A− LC is Hurwitz.

B. Port-Hamiltonian Systems

Port-Hamiltonian systems can be formalized as systems
generated by an energy function H with related dynamics

ẋ = (J(x)−R(x))∇H(x) + g(x)u

y = g(x)>∇H(x)
(4)

where x ∈ X ⊂ Rn, u ∈ Rm, y ∈ Rm and the matrices
of opportune dimensions, where J is skew-symmetric, while
R ≥ 0 is symmetric matrices, while g(x) ∈ Rn×m plays
the role of the input matrix. Moreover, having R(x) positive
semidefinite on X , guarantees the passivity property with
storage function H(x), whenever it is lower bounded. Indeed,
the energy balance equation gives us

Ḣ(x) = y>u−∇H(x)>R(x)∇H(x) ≤ y>u

thus, providing passivity with storage function H .
For the present developments, we consider the following

Assumption.
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Assumption 1. The Hessian of the Hamiltonian is every
bounded and positive definite, i.e., there exist positive real h1

and h2 such that for all x ∈ Rn

h1I ≤ ∇2H(x) ≤ h2I.

The above assumption implies also that H is lower bounded
and convex, and it can moreover play the role of a Lyapunov
function.

In the following, we consider the design of an observer
dynamics that preserve the port-Hamiltonian structure (4) and
preserve passivity. In particular, when applying the Luenberger
observer approach to Port-Hamiltonian systems, one has to
consider an additional desired property, along with guaran-
teeing the observer stability and the passivity characteristics
of the original system, i.e., structure preservation. That is, in
the Port-Hamiltonian formalism, it is crucial to have explicit
Hamiltonian/energy terms involved in the system dynamics
(describing the effort of the system), then a symplectic struc-
ture for the energy conservation, a positive semidefinite matrix
describing possible dissipative elements in the system, and
a particular relationship between the input and the output
matrices so to guarantee the passivity property of the system.
Hence, the resulting structure-preserving observer must have
all the features listed above in order to fit into the Port-
Hamiltonian formalism.

Remark 1. Contrary to what has been addressed in [14], we
highlight the difficulties of preserving the port-Hamiltonian
structure for the observer dynamics, and along with its
passivity property, in Section IV. The structure preservation
addressed in [14] is then different to the one addressed here.
Since they consider, as structure-preserving observer, a system
whose dynamics has the characteristics of stability, and no
passivity property is taken into account. Their only focus is
on the observer error origin stability. In the next section, we
discuss about the passivity properties of a functional observer
in the port-Hamiltonian formalism and the related subtleties.

C. Contraction theory

Another fundamental concept we need to introduce is that
of convergent/contracting dynamics.
Contraction theory in the context of nonlinear control is
nowadays a counterpart for the Lyapunov approach, allowing
to guarantee stability of the origin and convergence of the
system trajectories.

Stopped the reading here.
The approach involves a positive definite matrix, that plays

the role of a metric for what is called the variational system.
This approach has been introduced in works such as [18],

[19], for the case of constant metric, and re-proposed recently
in [20], [21], [22], while their extension to the more general
case of nonlinear Riemannian metrics can be found in [23]
and [24]. See also [25] for the case of non-Euclidean L1 and
L∞ metrics.

In the following, we will use the standard convergence
result in [20] that exploits the standard metric P to describe
a convegence dynamics property. In order to do so, we first

introduce the definition of contractive systems.
Consider the system

ẋ = f(x, t) (5)

where x ∈ X ⊆ Rn and f : X × R → Rn is continuously
differentiable in x and Lypscitz continous in t. Let φ(x0, t)
denote the trajectory of (5) at time t originated at x0 at time
t = 0. We then have the following definition.

Definition II.1. We say that system (5) defines a contraction
if there exist real positive α, κ > 0 such that

‖φ(x1, t)− φ(x2, t)‖ ≤ κ exp(−αt)‖x1 − x2‖
for all initial conditions x1, x2 ∈ X ⊆ Rn and for all t ≥ 0.

A sufficient condition to determine whether system (5)
defines a contraction is the existence of a constant metric P for
which the distance with this metric between any two system
trajectories is monotonically decreasing in time. We thus have
the following well-known result, also known as Demidovic
condition in [20].

Lemma 1. System (5) is a contraction on X if there exists a
constant P ∈ Rn×n symmetric and positive definite, such that

P
df

dx
(x, t) +

df

dx

>
(x, t)P < 0 (6)

for all x ∈ X ⊂ Rn.

III. SOME MOTIVATIONS

In general observer can be used for the purpose of recon-
structing some unmeasurable state variables x or some desired
state functional f(x), whenever an output signal, y, is available
from the system under consideration ẋ = F (x, u), y = h(x).
For this reason, they are very often used, in control applica-
tions, in dynamic output controller design to reconstruct the
ideal state feedback control law

u = α(x) (7)

where α : X → Rm, and it is such that the closed loop ẋ =
F (x, α(x)) has some desired properties, such as stability of
the origin or asymptotic tracking of a certain trajectory. Thus,
because the system state is often unavailable for feedback, the
control designer has to rely on a state estimation by exploiting
an observer dynamics, e.g., (2) for linear systems. Hence, in
this framework the designed controller is augmented by a copy
of the system dynamics that is properly modified in order to
achieve, possibly fast, the system state trajectory and exploit
it for reconstructing the ideal state feedback control law (7),
via the following controller dynamics

˙̂x = f(x̂, u) + L(x̂) (y − h(x̂))

u = α(x̂)
(8)

A. The port-Hamiltonian point of view

In the port-Hamiltonian formalism, the control law (7)
should preserve the port-Hamiltonian structure in closed loop,
i.e., the closed loop should always explicitly have a Jd and
an Rd matrices and they have to multiply the gradient of a
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Hamiltonian function ∇Hd. Control laws with this closed loop
property can be thought as being state-based, like the IDA-
PBC technique [6] or the LMI approaches developed in [11],
in which the state feedback control law reads as (7) with a
particular pre-defined shape of the function α. In particular,
for the IDA-PBC approach we have

α(x) = g†(x)((Jd(x)−Rd(x))∇Hd(x, t)

− (J(x)−R(x))∇H(x))

that allows us to obtain the desired closed loop dynamics

ẋ = (Jd(x)−Rd(x))∇Hd(x, t)

if the following matching equation hold

g⊥(x) ((Jd(x)−Rd(x))∇Hd(x, t)) =

g⊥(x) ((J(x)−R(x))∇H(x))

where g† is the right inverse of g(x) and g† is a the full rank
left annihilator of g.
We refer to this kind of controller design as state-based con-
troller. A particular case of the above controllers 2 is the case
of what we call gradient-based controllers, that is, the control
law explicitly exploits the gradient of the Hamiltonian function
(or effort/co-state variable). For this kind of framework the
control laws α(x) in (7) reads as α(x) = K(x)∇H(x), for
some mapping K : Rn → Rn×n.
According to the gradient-based control laws just introduced,
we define for port-Hamiltonian systems the related controlla-
bility and stabilizability properties.

Definition III.1 (G-B controllability). A system (4) is to be
Gradient-Based controllable if for any desired Jd(x) and
Rd(x) there exists a K(x) defined for all x ∈ Rn, such that

Jd(x)−Rd(x) = J(x)−R(x)− g(x)K(x).

A weaker notion of Gradient-Based Controllability is given
by the following definition.

Definition III.2 (G-B controllable dissipativity). A system (4)
is to have a controllable dissipation if for any desired Rd(x)
there exists a K(x), defined for all x ∈ Rn, such that

Rd(x) = R(x) + sym(g(x)K(x)).

We then have the notion of Gradient-Based stabilizability.

Definition III.3 (G-B stabilizability). A system (4) is to be
Gradient-Based stabilizable if there exists a K(x), defined for
all x ∈ Rn, such that the closed loop

ẋ = (J(x)−R(x)− g(x)K(x))∇H(x)

is globally asymptotically stable, i.e., x→ 0 as t→∞.

Sufficient conditions for G-B controllability for Port-
Hamiltonian systems is a particular case of the IDA-PBC
matching equations, i.e.,

g⊥(x)(Jd(x)−Rd(x)) = g⊥(x)(J(x)−R(x))

2That for us seems to be more relevant then the IDA-PBC approach because
the the energy function plays the role of natural/explicit Lyapunov function
and viceversa.

Sufficient conditions for G-B controllable dissipativity for
Port-Hamiltonian systems, is now a particular case of the last
matching equations, i.e.,

g⊥(x)Rd(x) = g⊥(x)R(x)

If one is only interested in obtaining a closed loop Rd that
is positive definite, Rd > 0, we recall the following Lemma
from [16, Lemma 4] that provides necessary and sufficient
conditions to obtain a positive definite closed loop resistive
matrix if the original system is stable

Lemma 2. Consider two matrices R(s) ∈ Rn×n and g(s) ∈
Rn×m depending on some parameters s ∈ S ⊆ Rn, where
R is positive semidefinite for all s ∈ S. Then there exists a
matrix K(s) ∈ Rm×n such that

R(s) + sym(g(s)K(s)) > 0, ∀s ∈ S (9)

if and only if (9) is satisfied for K(s) = g>(s).

Note that however, this is only a particular case of G-B con-
trollable dissipativity, and it is not directly G-B stabilizability,
because we can have asymptotic stability of the origin even if
Rd is only positive semidefinite, as recalled in the following
Proposition from [11, Proposition 6].

Lemma 3. Suppose that in the linear closed loop dynamics
ẋ = (Jd − Rd)Qdx, Rd ≥ 0 and its kernel is spanned by
{r1, . . . , rk}. Then the closed loop system is asymptotically
stable if and only if

[sI −QdJd] [r1| . . . |rk]

has rank k for every s = jω, ω ∈ R.

Thus the above lemma provides sufficient and necessary
conditions for gradient-based stabilizability for linear Port-
Hamiltonian systems.

The observability properties are the dual definitions, in
which we simply substitute g(x)K(x) in the above definitions
with L>(x)g>(x), as it will be clearer why from Section VI.

IV. STRUCTURE-PRESERVING OBSERVER FOR
PORT-HAMILTONIAN SYSTEMS

We present in this section the structure-preserving functional
observer dynamics of port-Hamiltonian system. We first intro-
duce the following passivity assumption

Assumption 2. For any given functional of interest f(x) :
Rn → Rp, there exists a locally invertible matrix valued
function ψ : Rn → Rn×p such thats f(x) = ψ>(x)∇H(x).

Then a structure-preserving, and thus passive, port-
Hamiltonian Functional Observer for the functional f(x) re-
construction reads as

uf = ψ(x̂)†L(x̂)>y
˙̂x = [(J(x̂)−R(x̂))− L(x̂)>g(x̂)>]∇H(x̂)+

g(x̂)u+ ψ(x̂)uf

ŷ = g(x̂)>∇H(x̂)

f(x̂) = ψ(x̂)>∇H(x̂)

(10)
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where ψ(x̂)† is the local inverse of ψ(x), existing by assump-
tion, and the signals (ŷ, f(x̂)) are the collocated outputs of
the inputs (u, uf ), that is, if R(x̂)) + sym(g(x̂)L(x̂)) ≥ 0 for
all x, that the observer is passive with respect to the inputs
(u, uf ) and their conjugated outputs (ŷ, f(x̂)). It is also easy
to notice that, if x̂→ x also f(x̂)→ f(x), thus the full order
passive observer (10) can reconstruct the functional of interest
if x̂ − x → 0 for any trajectory x(t) originated at x0 at time
t = 0 of system (4).

Remark 2. However, from an implementation point of view,
there is no need to consider the existence of the matrix values
function ψ, because we can obtain an estimate of f(x) by
simply replacing x̂ into its argument, i.e., directly getting f(x̂)
from the available state evolution. Moreover, substituting the
definition of uf into the observer dynamics hides the presence
of the local inverse of ψ.

Remark 3. The presence of such matrix ψ has been introduced
only to preserve the structure of an explicit passive system,
thus making the observer dynamics structure preserving port-
Hamiltonian with inputs (u, uf ) and outputs (ŷ, f(x̂)). As
a consequence, if such a matrix valued function ψ exists,
although possibly unknown and unemployed, the observer
dynamics is intrinsically passive from the inputs (u, uf ).

We now consider two particular cases, i.e., passive state and
passive gradient reconstruction/observation.

A. Passive state observation

In this particular case, to obtain a passive state reconstruc-
tion, we need to assume the injectivity of the Hamiltonian
gradient ∇H(x), i.e., there exists a locally invertible ψ such
that x = ψ(x)∇H(x). Thus the Observer dynamics reads as

uf = ψ(x̂)†L(x̂)>y
˙̂x = [(J(x̂)−R(x̂))− L(x̂)>g(x̂)>]∇H(x̂)+

g(x̂)u+ ψ(x̂)uf

ŷ = g(x̂)>∇H(x̂)

x̂ = ψ(x̂)>∇H(x̂).

(11)

Again the knowledge of the matrix ψ, neither its locally
invertibility property, is not necessary from the implementation
point of view, but rather it plays an important role for a
passivity analysis of the observer interconnections 3 when
we use pure state-feedback techniques such as the IDA-PBC
approach or any other control law of the α(x̂). Obtaining ψ(x̂)
for the linear case, whenever Q = Q> > 0 in ∇H(x) = Qx,
is easy since ψ(x̂)> = Q−1. In the nonlinear context,i.e.,
∇H(x) 6= Qx, we cannot provide with any general solution
for ψ, and the problem should be addressed case by case.

B. Passive gradient observation

In this particular case, when we are interested in reconstruc-
tion the gradient of the system Hamiltonian, the matrix valued

3For example the design can be interested in some passivity properties of
the system-observer cascade or closed loop.

function ψ always exists and it is trivially the identity matrix,
thus the observer trivially reads as

uf = L(x̂)>y
˙̂x = [(J(x̂)−R(x̂))− L(x̂)>g(x̂)>]∇H(x̂)+

g(x̂)u+ Iuf

ŷ = g(x̂)>∇H(x̂)

∇H(x̂) = I∇H(x̂).

(12)

Reconstructing/Observing the Hamiltonian gradient is by
far the simplest case of passive functional observation, this
provides an additional motivation to explore more the gradient-
based controller approach.

Remark 4. It is clear from the above analysis that getting a
passive observer might be a hard task, although it might not
be needed to construct a passivity-preserving controller.

As already touched before, any functional f can be recon-
structed by the full order observer, whenever the states of the
observer x̂ converge to the system state evolution x. Hence,
from a convergence point of view, it is enough to study the
deviation evolution between the observer’s and the system’s
state, as proposed in the following section.

For the sake of exposition, from the following subsection
on, we use the notation M = M(x), M̂ = M(x̂),
and M̃ = M̂ − M , for M ∈ {J,R, g,H}, while
∇H̃ = ∇Ĥ −∇H = ∇H(x̂)−∇H(x).

C. System-Observer Cascade Passivity

We consider now the augmented system given by the
cascade of the system and the observer dynamics. For this
augmented system, due to the dynamics interconnection, the
passivity conditions has to be considered only between the
input signals (u, u) and the conjugated outputs (y, ŷ). In
particular, we have that the augmented system has again a port-
Hamiltonian structure, i.e., defining Ha(x, x̂) = H(x)+H(x̂)
we have(

ẋ
˙̂x

)
=

[
J −R 0

L̂>ĝ> Ĵ − R̂− L̂>ĝ>
](
∇xHa(x, x̂)
∇x̂Ha(x, x̂)

)
+

[
g 0
0 ĝ

](
u
u

)
(
y
ŷ

)
=

[
g 0
0 ĝ

]>(∇xHa(x, x̂)
∇x̂Ha(x, x̂)

)
.

(13)

And thus, for storage function Ha, the passivity condition is
satisfied is the cascade resistive matrix is positive semidefinite,
i.e. [

R − 1
2 ĝL̂

− 1
2 L̂
>ĝ> R̂+ sym(L̂>ĝ>)

]
≥ 0 (14)

and this condition can be satisfied, in general, under strong
assumptions on L, despite what is reported in the analysis by
[17, eq. (6)]. Thus in general, the cascade System-Observer
dynamics is not passive from the inputs (u, u) to outputs
(y, ŷ). This lack of passivity of the system-observer cascade is
due to the fact the y(t) plays the role of an additional input to
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the observer dynamics which does not have a corresponding
passive output, we consider in the cascade dynamics. This
conjugate output should look like yy = L(x̂)∇H(x̂), where
if L = K, with K being a gradient-based controller gain
matrix, then the conjugate passive output already provides the
passivity-preserving control law. This argument is part of a
current work under development on observer-based controller
for port-Hamitlonian systems, and discussing it will be out of
the scope of this paper.

For the sake of exposition, in the remaining part of the
paper, we consider the observer state dynamics as

˙̂x = (Ĵ − R̂− L̂>ĝ>)∇Ĥ + ĝu(t) + L̂>y(t). (15)

V. OBSERVER ERROR PASSIVITY ANALYSIS

In order to analyze the convergence of the observer state
x̂ on the system state trajectory x, we introduce the error
coordinate x̃ = x̂ − x. By considering the evolution in the
observer dynamics (15) and in the system dynamics (4), we
can obtain again a port Hamiltonian x̃ dynamics, as reported
in the following Proposition/Lemma

Lemma 4. Given the observer dynamics (15) with state x̂ and
in the system dynamics (4) with state x, the error dynamics
reads as

˙̃x = (Ĵ − R̂− L̂>ĝ>)∇H̃ + g̃u+ (J̃ − R̃− L̂>g̃>)∇H
ỹ = g̃>∇H̃

(16)
where ỹ are the conjugate outputs to the inputs u.

Proof. The proof comes from substituting the observer’s and
system’s dynamics into the time derivative of x̃, i.e., ˙̃x = ˙̂x−ẋ.
Using the notation introduced in the lemma and substituting
the definition of uf in the observer dynamics, we have

˙̃x = (Ĵ − R̂)∇Ĥ + L̂>(g>∇H − ĝ>∇H + ĝ>∇H − ĝ∇Ĥ)

+ (ĝ − g)u− (J −R)∇H
= (Ĵ − R̂)∇H̃ − (J −R− (Ĵ − R̂))∇H + g̃

− L̂>(ĝ>∇H̃ + g̃>∇H)

= (Ĵ − R̂− L̂>ĝ>)∇H̃ + g̃u+ (J̃ − R̃− L̂>g̃>)∇H
and thus we obtained an error dynamics that has a port-
Hamiltonian structure, although the error Hamiltonian function
H̃ is not explicitly defined.

In general ∇H̃ is not only a function of x̃ and thus the cor-
responding Hamiltonian function H̃ , obtained by integration
in the x̃ usually depends also on the system state variable x.
However, by the involving the mean value theorem, as usually
done in contraction analysis [20], we can obtain an explicit
Hamiltonian function, this time time-varying, i.e.,

∇H̃ = ∇H(x̃+ x)−∇H(x)

= ∇2H ((1− c)x+ c(x̃+ x)) · (x̃+ x− x)

= ∇2H(x̄(t))x̃ = ∇2H̄(t)x̃

where x̄ = x+ cx̃, with a possibly time varying c ∈ [0, 1]. We
can then conclude the following passivity result.

Theorem V.1. The cascade (4)-(16), is passive with respect
to the inputs (u, u) and outputs (y, ỹ), with storage function

H̃(x, x̃, t) =
1

2
x̃>∇2H̄(t)x̃+H(x) (17)

if the following passivity condition holds[
d(∇2H̄(t))−1

dt − 2(R̂+ sym(L̂>ĝ>)) ?

(J̃ − R̃− L̂>g̃>)> −2R

]
≤ 0. (18)

Proof. With the definition of H̃(x, x̃, t) in (17), the system-
Observer cascade dynamics, (4)-(16), reads as(
ẋ
˙̃x

)
=

[
J −R 0

J̃ − R̃− L̂>g̃> Ĵ − R̂− L̂>ĝ>
](
∇xH̃(x, x̃, t)

∇x̃H̃(x, x̃, t)

)
+

[
g 0
0 g̃

](
u
u

)
(
y
ỹ

)
=

[
g 0
0 g̃

]>(∇xH̃(x, x̃, t)

∇x̃H̃(x, x̃, t)

)
.

(19)
Hence, along the dynamics (19), the time derivative of
H̃(x, x̃, t), reads as

˙̃H =
1

2
x̃>

d

dt
∇2H̄(t)x̃+ x̃>∇2Hg̃u

− x̃>∇2H̄(t)(R̂+ sym(L̂>ĝ>))∇2H̄(t)x̃

+ x̃>∇2H̄(t)[J̃ − R̃− L̂>g̃>]∇H
−∇H>R∇H +∇H>gu

=
1

2
x̃>∇2H̄[∇2H̄−1 d

dt
(∇2H̄(t))∇2H̄−1]∇2H̄x̃

+ ỹ>u− x̃>∇2H̄(t)(R̂+ sym(L̂>ĝ>))∇2H̄(t)x̃

+ x̃>∇2H̄(t)[J̃ − R̃− L̂>g̃>]∇H
−∇H>R∇H + y>u.

By noticing that

∇2H̄−1 d

dt
(∇2H̄(t))∇2H̄−1 =

d( d
dt∇2H̄(t))−1

dt

under condition (18) we obtain passivity, i.e.,

˙̃H(x, x̃, t) ≤ ỹ>u+ y>u.

Thus proof the theorem.

However, if we additionally assume that there exists a
function H̃(x̃, x) (time independent) such that

∂H̃(x̃, x)

∂x̃
=
∂H

∂x
(x̃+ x)− ∂H

∂x
(x),

∂H̃(x̃, x)

∂x
=
∂H

∂x
(x),

(20)
then passivity conditions simplifies for the system cascade, as
detailed in the following corollary.

Corollary V.1. Assume there exists a Hamiltonian function
H̃(x, x̃) with property (20). Then the cascade (4)-(16), is pas-
sive with respect to the inputs (u, u) and outputs (y, ỹ), with
storage function H̃(x, x̃), if the following passivity condition
holds[

−2(R̂+ sym(L̂>ĝ>)) (J̃ − R̃− L̂>g̃>)

(J̃ − R̃− L̂>g̃>)> −2R

]
≤ 0. (21)
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The proof of the Corollary simply comes as an application
of the previous theorem, for which the passivity condition (18)
simplifies thank to the time invariant Hamiltonian assumption
H̃ = H̃(x, x̃). Thus it is omitted.

A particular case happens, when the Hamiltonian function of
the system H(x) is a quadratic form, i.e., H(x) = x>Qx, with
associate positive definite matrix, Q = Q> > 0. In particular,
in this situation the Hamiltonian functions H̃(x, x̃, t) and
H̃(x, x̃) coincide having H̃(x, x̃) = x̃>Qx̃+H(x).

This case is also particularly relevant for the convergence
analysis of the observer dynamics, as considered in the fol-
lowing section.

VI. OBSERVER DESIGN VIA CONTRACTION ANALYSIS

In this section, we present some results on the design
of a convergent4 observer dynamics (15), reported here for
completeness,

˙̂x = (Ĵ − R̂− L̂>ĝ>)∇Ĥ + ĝu(t) + L̂>y(t) (22)

for two classes of port-Hamiltonian systems with constant
input matrix g(x) = g, i.e., for systems with quadratic
form Hamiltonian function H and for systems with constant
parameters J and R, but with non quadratic form Hamiltonian.

The key idea behind the following results is that the observer
dynamics is the system dynamics initialized on a different
initial condition as shown below.

In order to proceed we the analysis, we first introduce a
modification of the system dynamics (4), that however does
not change its state trajectory. In particular, we consider adding
the terms L>(y − y) into the x dynamics, so that the state
dynamics of (4) now reads as

ẋ = (J −R− L>g>)∇H + gu(t) + L>y(t) (23)

where we consider the system output y as an additional ’fake
input’. With this reformulation, we see that both the observer
and system dynamics have the same structure with augmented
input signals (u, y). Moreover it is clear in this context that
the observer dynamics is the system dynamics initialized on
a different initial conditions. This reformulation allows us to
exploit the contraction property, i.e., Lemma 1, on the original
system (23), in order to obtain the observer convergence on a
certain domain of interest.

In the following cases, we focus our attention on the output
injection matrix L by considering it constant, along with the
input matrix g.

Because the observer dynamics can suffer from the peaking
problem, we consider the observer state space X̂ to be at least
as large as the system state space X , i.e., X ⊆ X̂ .

A. Observer design with constant Hessian

In this subsection, we consider the case in which the system
(23) has a quadratic form Hamiltonian, i.e., H(x) = 1

2x
>Qx,

with Q = Q> positive definite, so that ∇H(x) = Qx, and we
have the following

4By convergent observer dynamics we mean that x̂→ x as t→∞.

Theorem VI.1. Given system (23), with x ∈ X , with g(x) = g
constant, and ∇H(x) = Qx, with Q positive definite. The
observer dynamics (15), with x̂ ∈ X̂ , is convergent on X̂ , i.e.,
x̂ →

t→∞
x, if there exist a constant L such that for any x ∈ X̂

R′(x) + sym(gL) > 0, (24)

where

R′(x) = R− sym(∇J(x,Qx)Q−1−∇R(x,Qx)Q−1). (25)

Moreover, for some positive α, we can explicit determine the
exponential convergence of the observation error as

|x̃(t)| ≤ µ(Q) exp(−αt)|x̃(0)|. (26)

Proof. To have a convergent observer, due to X ⊂ X̂ , we
need to guarantee the convergence property of (23) for any
x ∈ X̂ . That is, according to Lemma1 and considering in
(23), ẋ = F (x, t), we analyze its gradient

∂F

∂x
(x, t) =

(
∂J(x)

∂x
− ∂R(x)

∂x

)
Qx

+ (J(x)−R(x)− L>g>)Q

= [∇J(x,Qx)Q−1 −∇R(x,Qx)Q−1

+ (J(x)−R(x)− L>g>)]Q

= (J ′(x)−R′(x)− L>g>)Q

Then the convergence property can be studied with respect to
the metric Q, i.e., defining V = x̃>Qx̃ and taking its time
derivative, we have by mean value theorem

V̇ = 2x̃>Q(F (x̂, t)− F (x, t)) = 2x̃>Q
∂F

∂x
(x̄(t), t)x̃

where x̄ = x + c(x̂ − x) for some possibly time varying c ∈
[0, 1]. We can hence write

V̇ = −x̃>Q(R′(x̄(t)) + sym(gL))Qx̃ < 0

Then, by standard arguments, since R′+sym(gL) is uniformly
positive, there exists a positive α such that for every x ∈ X̂

−R′(x)− sym(gL) ≤ −αQ,

so that we have (26) by applying the comparison lemma [26,
Lemma 3.4] to the Lyapunov function.

Remark 5. This result is the dual of the one shown in
[14] in which the authors assume that the system matrix are
constants and the only nonlinearity is due to the gradient of
the Hamiltonian ∇H(x̂).

The latter case has been considered in the following sub-
section in which we provide a counterpart result exploiting the
convergence/contractive analysis as stated in [20].



IEEE TRANSACTIONS ON AUTOMATIC CONTROL VOL. , NO. , JULY-2023 8

B. Observer design with constant system parameters

In this subsection, we consider a system dynamics (23)
whose matrices J.R, g are constant and that the only nonlin-
earity comes from the gradient of the Hamiltonian function
∇H(x). We additionally assume that the Hessian of H is
diagonalizable by means of a constant orthogonal matrix TH ,
i.e., ∇2H(x) = T>H Λ(∇2H(x))TH , where Λ(∇2H) is the
matrix with the eigenvalues of ∇2H(x) on the main diagonal.
For this class of the systems we have the following result

Theorem VI.2. Consider (23) with constant matrices J.R, g,
and consider Q = ∇2H(xmin) where xmin is that, for all
x ∈ X̂ , ∇2H(x) ≥ ∇2H(xmin). Moreover, assume that there
exists a constant orthogonal matrix TH such that ∇2H(x) =
T>H Λ(∇2H)(x)TH for all x ∈ X̂ . Then the observer dynamics
(15) is convergent on X̂ with metric Q if there exists a constant
L such that

R(x) + sym(gL) > 0, (27)

for all x ∈ X̂ . Moreover, for some positive α, we can explicit
determine the exponential convergence of the observation
error as

|x̃(t)| ≤ µ(Q) exp(−αt)|x̃(0)|. (28)

Proof. The proof of this theorem leverages on the orthogonal
transformation TH . In particular, by definition of Q, we first
introduce ∆Q(x) := ∇2H(x) − Q ≥ 0 for all x ∈ X̂ , that
is the deviation matrix between ∇2H(x) and Q is always
positive semidefinite on the domain of interest X̂ . Then, due
to TH is a constant transformation, it diagonalizes the matrix
Q and hence, as consequence, also the matrix ∆Q(x).

We now show by contradiction that the matrix

Q(J −R− L>g>)∆Q(x)

is negative semidefinite for all x ∈ X̂ . Thus, assume it is
positive semidefinite, then we have

Q(J −R− L>g>)∆Q(x) =

= T>H Λ(Q)TH(J −R− L>g>)T>H Λ(∆Q(x))TH

≤ λmax(Q)(J −R− L>g>)λmax(∆Q(x)) ≤ 0

by the property (27) of L. Hence, we have a contradiction.
And in particular, we have

T>H Λ(Q)TH(J −R− L>g>)T>H Λ(∆Q(x))TH

≤ λmin(Q)(J −R− L>g>)λmin(∆Q(x)) = 0

because ∆Q(x) is positive semidefinite for all x ∈ X̂ .
We can now proceed with the convergence proof consid-

ering as Lyapunov function V = x̃>Qx̃. Taking the time
derivative of V we have

V̇ = 2x̃>Q(F (x̂, t)− F (x, t))

= 2x̃>Q
∂F

∂x
(x̄, t)x̃

= 2x̃>Q
[
(J −R− L>g>)∇2H(x̄)

]
x̃

= 2x̃>Q
[
(J −R− L>g>)(Q+ ∆Q(x))

]
x̃

≤ 2x̃>Q
[
(J −R− L>g>)Q

]
x̃ < 0

Then, by standard arguments, since R+sym(gL) is uniformly
positive, there exists a positive α such that

−R− sym(gL) ≤ −αQ,

so that we have (28) by applying the comparison lemma [26,
Lemma 3.4] to the Lyapunov function.

Note that our result, compared to [14], is more powerful
since it does not involve finding the solution of a Algebraic
Riccati Inequality (or ARE with a arbitrary small ε, as pre-
sented in their paper). But on the other hand, it assumes
the existence of a constant transformation matrix TH to
diagonalize the Hessian of H .

C. Observer design: a general case

This result can be easily extended and merged with the
results presented in the previous subsection (Sec.VI-A), under
the existence assumption of such a transformation matrix TH ,
if (24) can be satisfied for all x ∈ X̂ by a constant L.

Theorem VI.3. Consider (23) with constant matrix g, and
consider Q and TH defined as in Theorem VI.2. Then the
observer dynamics (15) is convergent on X̂ with metric Q

if there exists a constant L such that (24) for all x ∈ X̂ .
Moreover, for some positive α, we can explicit determine the
exponential convergence of the observation error as in (28)

The proof is simply an application of the previous Theorems
proofs and thus it is omitted.

Remark 6. The results shown in this section hold for any
value of u and y, and allows us to determine an exponential
convergence of the observe dynamics with convergence rate α.
Such a value only depends on the choice of L and, because
Q is a fixed metric independent of L, we can possibly make α
arbitrary large by properly defining L. This property paves
the way to the design of a Observer-based controller that
leverages on the Separation Principle.

D. Discussion on the choice of L

The existence of such a matrix L can be determine through
the sufficient condition introduced in [16, Lemma 4]. In
particular, the authors show that there exists a matrix L, such
that for all x ∈ X̂ , (24) holds with R′(x) ≥ 0, if and only
if (24) is satisfied by L = g>. Thus, for R′(x) ≥ 0, this
’observability’ condition can be easily check by first setting
L = g>. We can then set L = γg>, with positive scalar γ
chosen sufficient high, to determine the desired convergence
rate α.

For R′(x) which is not sign defined, but bounded from
below we can still get a similar property as detailed in the
following generalization of Lemma 4 in [16]

Lemma 5. Define R′ as the minimum value for R′ in (25), i.e.,
for all x ∈ X̂ , R′(x) ≥ R′, and assume it to take finite values
on X̂ . If there exists a Γ = Γ> such that R′+gΓg> ≥ 0, then
there exists an L such that (24) if and only if (24) is satisfied
by L = (Γ + I)g>.
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The proof reads as in [16] when considering
R(x) = R′ + gΓg> ≥ 0, and thus it is omitted.

In this case, to obtain the observer convergence rate and
satisfy (24), we can define L = (Γ + γI)g>, with Γ as
defined above, and set γ > 0 according with the desired
observer convergence rate.

Note that however, condition (24) is only sufficient and
can be restrictive for proving the convergence of the observer
dynamics. In particular, it is still possible to obtain the
attractiveness of the origin for x̃ with R′(x) + sym(gL) ≥ 0
for all x ∈ X̂ , if an additional condition on the error dynamics
is fulfilled. For linear system, this condition is easy to find, as
show in [11, Proposition 6] and exploited in the linear case
below, and it is related to kernel space of R+ sym(gL).

The extension to the nonlinear case is left for a future work
and it is currently under development. Moreover, we believe
that this type of approach can lead to a separation principle
also in the nonlinear context for the class of port-Hamiltonian
systems with constant input matrix, because the exponential
rate of convergence of the observer dynamics is not affected
by the input signal.

E. The linear case

A particular case of the scenarios considered above is the
linear case, for which we can give a larger characterizations
of the observer convergence. In particular, it is well-known
that for linear systems, the observation error dynamics is
autonomous, i.e., (16) is independent from the u(t) and ∇H
terms. Thus in this scenario, a sufficient condition for the
observer convergence is that (27) is satisfied. However, we can
think of the matrix L to be parameterized into a symplectic
JL, positive definite 5 RL and the g matrices, i.e., we write

L = (JL +RL)g>.

With this parameterization of L, the observer error dynamics
(16) reads as

˙̃x = (J + gJLg
> − (R+ gRLg

>))Qx̃ = (Jo −Ro)Qx̃ (29)

and if Ro ≥ 0 we can still have asymptotic stability of the
origin for x̃, as described in the following corollary.

Proposition 1. Denote by k the dimension of the kernel of
Ro ≥ 0, and assume it is spanned by {r1, . . . , rk}. Then (29)
is asymptotically stable if and only if the matrix

(sI −QJo)
[
r1|r2| . . . |rk

]
has rank k, for every s = jω, ω ∈ R.

The proof of this proposition follows the same steps of that
for [11, Proposition 6], and it is thus omitted.

We can then characterize the stability of an autonomous
linear system, rather then placing its eigenvalues on the open
left hand side, by exploiting the positive semidefiniteness
of its equivalent resistive part along with some geometrical
conditions related to its kernel space.

5Previously, we considered RL = Γ + γI .

VII. EXAMPLE

Linear gradient: sensorless velocity measurement of PMSM
system [17]

We consider here the case of a 3-phase Permanent Magnetic
Synchronous Motor (PMSM) in the d − q coordinates, with
unmeasured shaft velocity. Its dynamics reads as(
ϕ̇d

ϕ̇q

ṗ

)
=

([
0 0 ϕq

0 0 −ϕd − Φ
−ϕq ϕd + Φ 0

]
−
[
r 0 0
0 r 0
0 0 β

])ϕd

Lϕq

L
p
m


+

1 0
0 1
0 0

u
y =

[
1 0 0
0 1 0

] ϕd

Lϕq

L
p
Jm


where ϕd, ϕq are the stator magnetic fluxes along the d and q
axes, respectively, while Φ is the constant rotor magnetic flux,
L is the phase inductance, r the phase resistance, p is the
shaft momentum, Jm its inertia, and β is the viscous friction
coefficient. The control signals u are the two stator phase
voltages vd, vq , and the available outputs the corresponding
phase currents id, iq . The associated Hamiltonian function is
then

H =
ϕ2
d

2L
+
ϕ2
q

2L
+

p2

2Jm

This model has constant input matrix and linear Hamiltonian
gradient, with a diagonal Q matrix, thus it fits precisely into
the framework described in Section VI-A. We thus first have
to investigate the partial derivative of J(x)Qx with respect to
x, i.e.,

∂J(x)Qx

∂x
=

∂

∂x

 ϕq
p
Jm

−(ϕd + Φ) p
Jm

Φ
ϕq

L

 =

 0 p
Jm

ϕq

Jm

− p
Jm

0 −ϕd+Φ
Jm

0 Φ
L 0


We are then interested in the symmetric part of

∂J(x)Qx

∂x
Q−1,

that is

sym

(
∂J(x)Qx

∂x
Q−1

)
=

 0 0 1
2ϕq

0 0 − 1
2ϕd

1
2ϕq − 1

2ϕd 0


so that the resulting equivalent resistive matrix R′(x) in (25)
is then given by

R− sym

(
∂J(x)Qx

∂x
Q−1

)
=

 r 0 1
2ϕq

0 r − 1
2ϕd

1
2ϕq − 1

2ϕd β

 .
In general, this R′(x) is not sign definite, since its principal
minors have no positive sign, i.e.,

r > 0; r2 > 0; r2β − r1

4
(ϕ2

d + ϕ2
q)

?
> 0.

Last inequality can be analyzed by considering the fact that
the supplied current norm

√
i2d + i2q saturates in any practical
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TABLE I
PMSM SYSTEM PARAMETERS

Jm 0.012
[
Kgm2

]
L 3.8 · 10−3 [H]

β 0.0026 [Nms/rad] r 0.225 [Ω]
Φ 0.17 [Wb] imax 15 [A]

application 6. Then, we can write an upper bound for ϕ2
d+ϕ2

q ,
that is valid for any working configuration of the motor, i.e.,

ϕ2
d + ϕ2

q = (i2d + i2q)L2 = i2maxL
2. (30)

Although a lower bound for the determinant of R′(x) can be
found, there is no guarantee that the resistance r is sufficiently
large to overcome the norm of the magnetic flux, ϕ2

d +ϕ2
q , in

any configuration and for any friction coefficient β. We thus
consider as output injection matrix L> = γG, where γ is a
positive parameter to be tuned. We this choice the equivalent
resistance matrix is

R′(x) + γGG> =

r + γ 0 1
2ϕq

0 r + γ − 1
2ϕd

1
2ϕq − 1

2ϕd β

 , (31)

whose principal minors are given by

r+ γ > 0; (r+ γ)2 > 0; (r+ γ)2β− (r+ γ)
1

4
(ϕ2

d +ϕ2
q).

To guarantee that (31) is positive definite, it is easy to see that

γ ≥ max

{
i2max

4β
L2 − r, 0

}
.

For the numerical results we set γ = 10, and we initialize

0 5 · 10−2 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

−1

−0.8

−0.6

−0.4

−0.2

0

t

x̃
(t
)

Error evolution

ϕ̃d(t)

ϕ̃q(t)

ω̃(t)

Fig. 1. Error evolution with u = (vd, vq) constant (−4V, 3V ).

system dynamics at (ϕd(0), ϕq(0), ω(0)) = (0, 0.001, 1), and
the observer at the origin, x̂(0) = 0. We then test the
observer dynamics in two different scenarios. We first set the
input voltage to a constant value (vd, vq) = (4V, 3V ) and

6Moreover, the magnetic fluxes usually saturates even at lower current
values.

0 5 · 10−2 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

t

x
(t
),
x̂
(t
)

Real and estimated states

ϕd(t)

ϕq(t)

ω(t)

ϕ̂d(t)

ϕ̂q(t)

ω̂(t)

Fig. 2. System and Observer states evolution with u = (vd, vq) constant
(−4V, 3V ).

the corresponding states evolution is depicted in Fig.2, while
the observer error evolution in Fig.1. Then we consider the
case in which the input voltage has a cosinusoidal evolution,
i.e., (vd(t), vq(t)) = (4 cos(10t)V, 3 cos(3t)V ) as depicted in
Fig.3, and the corresponding states evolution is depicted in
Fig.4, while the observer error evolution in Fig.5. In it worth
to notice, that the observer convergence is independent from
the input signal as a consequence of the constant input matrix
g.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−4

−3

−2

−1

0

1

2

3

4

t

u
(t
)

vd(t)

vq(t)

Fig. 3. Cosinusoidal inputs (vd, vq) = (−4 cos(10t)V, 3 cos(3t)V ).

VIII. CONCLUSIONS

In this work we presented an general overview of the
structure-preserving observer for port-Hamiltonian systems. In
particular, we analyzed the observer structure that preserves
the passivity for this class of systems and we then analyzed
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Fig. 4. System and Observer states evolution with cosinusoidal inputs
(vd, vq) = (−4 cos(10t)V, 3 cos(3t)V ), depicted in Fig.3.
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Fig. 5. Error evolution with cosinusoidal inputs (vd, vq) =
(−4 cos(10t)V, 3 cos(3t)V ), depicted in Fig.3.

the conditions for passivity of the system - error dynamics
cascade. We then exploit the convergence/contractive systems
approach to determine the convergence of the observer dynam-
ics onto the system dynamics for a class a port-Hamiltonian
systems whose input matrix is constant in time. We conclude
the work with an example of industrial interest in which we
apply the design paradigm to a PMSM system in order to
reconstruct the system state under two different classes on
input signals, thus showing the effectiveness of the proposed
approach.
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tional journal of electronics and communications, vol. 49, no. 5/6, pp.
362–371, 1995.

[3] V. Duindam, A. Macchelli, S. Stramigioli, and H. Bruyninckx, Mod-
eling and control of complex physical systems: the port-Hamiltonian
approach. Springer Science & Business Media, 2009.

[4] A. Van der Schaft, L2-gain and passivity techniques in nonlinear
control. Springer, 2000.

[5] A. Van Der Schaft, D. Jeltsema et al., “Port-Hamiltonian systems theory:
An introductory overview,” Foundations and Trends® in Systems and
Control, vol. 1, no. 2-3, pp. 173–378, 2014.

[6] R. Ortega, A. Van Der Schaft, B. Maschke, and G. Escobar, “Inter-
connection and damping assignment passivity-based control of port-
controlled Hamiltonian systems,” Automatica, vol. 38, no. 4, pp. 585–
596, 2002.

[7] D. Luenberger, “Observers for multivariable systems,” IEEE transactions
on automatic control, vol. 11, no. 2, pp. 190–197, 1966.

[8] P. Kotyczka and M. Wang, “Dual observer-based compensator design for
linear port-hamiltonian systems,” in 2015 European Control Conference
(ECC). IEEE, 2015, pp. 2908–2913.

[9] M. Atitallah, R. El Harabi, and M. N. Abdelkrim, “Fault detection and
estimation based on full order unknown input hamiltonian observers,”
in 2015 IEEE 12th International Multi-Conference on Systems, Signals
& Devices (SSD15). IEEE, 2015, pp. 1–7.

[10] J. Toledo, H. R. Estay, Y. Wu, and Y. Le Gorrec, “Linear matrix
inequality design of observer-based controllers for port-hamiltonian
systems,” IEEE Transactions on Automatic Control, vol. 68, no. 10,
pp. 6184–6191, 2023.

[11] S. Prajna, A. van der Schaft, and G. Meinsma, “An lmi approach to
stabilization of linear port-controlled hamiltonian systems,” Systems &
control letters, vol. 45, no. 5, pp. 371–385, 2002.

[12] Y. Wang, S. S. Ge, and D. Cheng, “Observer and observer-based
h∞ control of generalized hamiltonian systemscontrol of generalized
hamiltonian systems,” Science in China Series F: Information Sciences,
vol. 48, pp. 211–224, 2005.

[13] A. Venkatraman and A. Van der Schaft, “Full-order observer design for
a class of port-Hamiltonian systems,” Automatica, vol. 46, no. 3, pp.
555–561, 2010.

[14] A. Yaghmaei and M. J. Yazdanpanah, “Structure preserving observer
design for port-Hamiltonian systems,” IEEE Transactions on Automatic
Control, vol. 64, no. 3, pp. 1214–1220, 2018.
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