
HAL Id: hal-04344518
https://hal.science/hal-04344518v1

Preprint submitted on 14 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Telemetry of Legacy Web Applications: An Industrial
Case Study

Anas Shatnawi, Bachar Rima, Zakarea Alshara, Gabriel Darbord,
Abdelhak-Djamel Seriai, Christophe Bortolaso

To cite this version:
Anas Shatnawi, Bachar Rima, Zakarea Alshara, Gabriel Darbord, Abdelhak-Djamel Seriai, et al..
Telemetry of Legacy Web Applications: An Industrial Case Study. 2023. �hal-04344518�

https://hal.science/hal-04344518v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

IEEE TRANSACTION ON SOFTWARE ENGINEERING, VOL. X, NO. Y, MONTH YEAR 1

Telemetry of Legacy Web Applications: An
Industrial Case Study

Anas Shatnawi, Bachar Rima, Zakarea Alshara, Gabriel Darbord, Abdelhak-Djamel Seriai
and Christophe Bortolaso

Abstract—Berger-Levrault, like many companies,
has legacy web applications that still bring great val-
ues, and cannot be easily replaced. To maintain these
applications, it needs data about user navigation, back-
end actions and client-server data exchange. Berger-
Levrault has relied on a traditional logging approach
that partially collects these data, requires modifying
the application code and heavily impacts its perfor-
mance. To address the limitations of this logging ap-
proach, we propose to replace it by a modern software
telemetry approach. Existing telemetry approaches do
not meet our needs, they should be extended based on
our objectives, technological constraints and industrial
regulations. In this paper, we report our experience in
instrumenting real, large-scale, industrial legacy web
applications based on a telemetry approach. Our goal
is to automatically instrument legacy web applica-
tions to collect data fulfilling our industrial needs. We
extend the automatic instrumentation capabilities of
OpenTelemetry agents to instrument our applications
without modifying their code. We define a telemetry
architecture to integrate telemetry components with
legacy web applications. Also, we empirically evaluate
the performance overhead produced by our agents. The
results show that there is no significant overhead when
using OpenTelemetry agents. However, this overhead
is sensitive to the size of data being serialized when in-
strumenting client-server data exchange. Moreover, we
discuss lessons learned about the technical challenges
we faced during the industrialization of our approach.

Index Terms—Software telemetry, instrumentation,
legacy software, industrial experience, GWT, Spring

I. Introduction

LEGACY applications refer to applications that were
built using outdated technologies, but still bring great

value to their clients [1], [2]. Many companies possess
critical legacy web applications that cannot be easily
modernized or replaced with new ones [3]–[5]. As they rely
on old technologies that are not supported anymore, we do

Anas Shatnawi, Bachar Rima and Christophe Bortolaso are
with the Direction of Research and Innovation at Berger-
Levrault, France. Their email: anas.shatnawi@bergerlevrault.com,
bachar.rima@berger-levrault.com, and christophe.bortolaso@berger-
levrault.com.

Zakarea Alshara is with the Department of Software Engineering
at Jordan University of Science and Technology, Jordan. Email:
zmalshara@just.edu.jo

Gabriel Darbord is with Univ. Lille, Inria, CNRS, Cen-
trale Lille, UMR 9189 CRIStAL, F-59000 Lille, France. Email:
gabriel.darbord@inria.fr

Abdelhak-Djamel Seriai is with the Department of Software Engi-
neering at University of Montpellier, France. Email: seriai@lirmm.fr

Manuscript submitted October 20, 2023.

not have advanced tools to help maintain them. Berger-
Levrault [6], an international software publisher, is one
of these companies that still has legacy web applications
developed based on millions of lines of code using old
or deprecated technologies such as Google Web Toolkit
(GWT) [7] and the old Spring framework.

To help maintain these applications, our internal stake-
holders (e.g., product managers, product owners, archi-
tects) need data about the frontend user navigation, the
backend actions, the client-server data exchange, and the
identity of the end-user initiating them. The frontend
user navigation is needed to measure the user experience
[8]. The backend actions are required to trace the flow
of requests (e.g., REST, RPC, RMI) and their corre-
sponding method invocations within these applications.
This allows us to build a dependency call graph of how
different components interact with each other, which can
be used for various engineering tasks such as program
understanding, change impact analysis, and debugging [9].
The client-server data exchange supports the creation of
a corpus of input/output data of backend services, which
is invaluable for test case generation [10]. Assuming that
the current application behavior is correct and stable, this
data serves as a reference point, capturing the expected
behavior under the existing codebase. As our applications
evolve, this data is a valuable resource for non-regression
testing, ensuring that changes do not inadvertently dis-
rupt existing functionality. End-user identities are crucial
for identifying users who initiate specific actions within
our applications. In the event of a problem, this helps
maintenance teams to quickly pinpoint the affected user,
facilitating support and issue resolution. It also makes it
possible to attribute responsibility for those actions, which
helps with auditing, compliance, and security purposes.

Berger-Levrault has relied on a traditional software
logging approach (e.g., Log4J [11]) to partially collect
some of this data at runtime. This traditional approach
requires instrumentation code snippets to be injected
into the application source code. When executed, these
snippets generate execution logs that are stored in local
files and then collected for later offline analysis. However,
this logging approach suffers from four main limitations
compared to the requirements of our stakeholders. First,
it requires modifying the application source code. Second,
it heavily impacts application performance due to the
overhead of executing a large number of instrumentation
code snippets. Third, it does not allow us to perform real-

IEEE TRANSACTION ON SOFTWARE ENGINEERING, VOL. X, NO. Y, MONTH YEAR 2

time instrumentation because the logs are stored in local
files on different servers. Fourth, it does not provide us
with all data needed by our stakeholders (e.g., client-server
data exchange).

To address these limitations, we propose to replace
this traditional logging approach by a modern software
telemetry approach. Telemetry provides a real-time instru-
mentation that allows practitioners to know how an appli-
cation is currently behaving [12]. It allows us to collect
and analyze all the data we need at runtime. Telemetry
data is structured and includes various traces, metrics and
logs related to system performance, resource utilization,
user interactions, and other operational aspects. Telemetry
allows us to aggregate data from multiple services and
applications into a telemetry and observability backend
(e.g., Elastic Observability [13]), where it can be processed,
stored, indexed and visualized in dashboards, while also
being subject to real-time alerts. This is important to
provide holistic views and high-level overviews of the
performance and behavior of multiple services and ap-
plications simultaneously. As such, telemetry is primarily
used for proactive monitoring, enabling teams to detect
and respond to real-time anomalous behavior as it occurs.

Together with our stakeholders, we define a set of
telemetry objectives based on their needs. Our Functional
Objectives (FOs) include collecting data about (FO1)
the frontend user navigation, (FO2) the backend actions,
(FO3) the client-server data exchange and (FO4) the iden-
tity of the end-user initiating them. Our Non-Functional
Objectives (NFOs) include (NFO1) avoiding source code
modifications and (NFO2) minimizing the performance
overhead of the telemetry system.

However, when defining a telemetry approach for our
legacy web applications based on these telemetry objec-
tives, the following questions arise: What tools should be
used to implement a telemetry platform properly? How
do we extend them appropriately to serve our industrial
needs? How to avoid modifying the application source
code? How do we instrument a legacy frontend GWT
code (i.e., Java source code compiled into executable
JavaScript)? How do we store and manage the generated
telemetry data? What is the incurred performance over-
head of the telemetry system during the instrumented
application’s execution? What are the main challenges we
might face when using telemetry in the industry?

Existing approaches do not meet our needs [14]–[16].
They do not collect the needed data of our objectives.
They collect user navigation partially (only click events
[14]), or only RPC calls [15] [16] (does not contribute
to test automation). None of them trace the client-server
data exchange based on the input/output of RPC services
or user identity. Existing technologies should be extended
based on our objectives, technological constraints and in-
dustrial regulations. There are no sufficient and systematic
recommendations on how to extend telemetry approaches
for industrial GWT-Spring legacy applications. We only
identify technical documentations, tutorials and blogs that
partially and indirectly explain artifacts related to our

needs, e.g., a technical tutorial on how to extend the
OpenTelemetry agent in general, but not specifically for
our objectives and our application technologies.

In this paper, we report our experience in instrumenting
real, large-scale, industrial legacy web applications based
on a telemetry approach. Our goal is to automatically
instrument our GWT-Spring applications (as instances
of our legacy applications) to generate data allowing us
to fulfill our industrial telemetry objectives. Automatic
instrumentation refers to the process of automatically
generating telemetry data from our applications without
injecting manual and explicit instrumentation code in the
application source code. It is therefore an efficient alterna-
tive to manual instrumentation, which proves to be time-
consuming and error-prone. Among existing telemetry
instrumentation agents, we select OpenTelemetry agents
because they are open-source and can be extended to serve
our telemetry objectives. Hence, we extend and adapt their
automatic instrumentation capabilities to instrument our
GWT-Spring applications without modifying the applica-
tion source code (NFO1). On one hand, the JavaScript
agent is adapted to trace the frontend user navigation
(FO1) and the corresponding end-user identity (FO4). On
the other hand, the Java agent is extended to trace the
backend actions (FO2) and the client-server data exchange
(FO3), including their corresponding end-user identities
(FO4). Additionally, we define a telemetry architecture to
show how to integrate these agents with our GWT-Spring
applications and other telemetry components.

Furthermore, we empirically evaluate the performance
overhead of our telemetry agents by comparing the re-
sponse time of the GWT-Spring application with and
without running these agents. The results show that there
is no significant performance overhead when using Open-
Telemetry agents (NFO2). However, we find that this
overhead is sensitive to the size of the serialized data when
instrumenting client-server data exchanges. Therefore, we
should be careful when using it with large objects.

During the industrialization of our telemetry approach,
we tackle technical challenges related to data serializa-
tion (large objects, lazy loading of properties and nested
Data Transfer Objects), Cross-Origin Resource Sharing
and manual instrumentation of GWT frontend code using
JavaScript Native Interface.

The main contributions of this paper include:
• We extend the automatic instrumentation capabilities

of OpenTelemetry agents to serve our functional and
non-functional industrial objectives for instrumenting
legacy GWT-Spring applications.

• We conduct an empirical evaluation to measure the
performance overhead produced by these agents.

• We test some existing telemetry technologies to
demonstrate their usability for our context.

• We report telemetry experiences based on real, large-
scale, industrial applications. Moreover, we report
some guidelines for practitioners on the implementa-
tion of a telemetry solution in industrial settings.

IEEE TRANSACTION ON SOFTWARE ENGINEERING, VOL. X, NO. Y, MONTH YEAR 3

This paper is organized as follows. In Section II, we
discuss telemetry concepts and our proposed telemetry
architecture. Next, Section III presents details about the
experimental setup of our telemetry system for our indus-
trial applications. Then, we measure the application per-
formance overhead resulting from the use of our telemetry
agents in Section IV. Next, we discuss the lessons learned
in Section V. Related works are analyzed in Section VI.
Finally, we conclude the paper and draw our future direc-
tions in Section VII.

II. Telemetry: Concepts & Architecture
Telemetry is the on-site collection of measurements (or

other data) at remote points, using agents and collectors,
and their automatic transmission to receiving equipment
for monitoring and analysis [17]. In the remainder of this
section, we discuss telemetry data and the architecture of
our proposed telemetry system.

A. Telemetry Data
Telemetry data can be harnessed to make an application

observable by increasing the visibility of its internal behav-
ior to the outside world. Due to its crucial value, many
well-known companies such as Microsoft, Google, Face-
book, Twitter, Cisco, etc. are keen on capturing telemetry
data, which can be continuously tracked in real-time, often
via dashboards and alerts, to provide insights about the
instrumented applications.

Telemetry data covers a wide range of data types that
can be used to capture information about the system at
different levels of abstraction and in different formats,
depending on the desired telemetry objectives. In the
context of our telemetry objectives, we are interested in
three foundational telemetry data types: traces, metrics
and logs. These telemetry data types cover the primary
categories of data typically used in monitoring and observ-
ability. However, in some specialized contexts or specific
industries. additional telemetry data types that are tai-
lored to unique requirements may be encountered such as
snapshots, profiles, flow data and others.

1) Traces: A trace captures everything that happens
between an initial request (e.g., an HTTP request) and
its returned response. Figure 1 shows an example of
a trace generated for an HTTP request. Essentially, it
records time and metadata about operations that take
place throughout the lifecycle of a request. Traces establish
causal chains of events to determine relationships between
different entities in the system.

To get a micro view of what happens within traces,
each trace is composed of a set of spans. In our example
in Figure 1, the trace consists of six spans that describe
what happens as a result of an HTTP request. A span
represents a discrete unit of work that is tracked within
a trace, such as a remote procedure call or a database
query. A trace is therefore a series of causally related
and potentially nested spans that cover an end-to-end
request within a system. For example, if a system receives

Fig. 1. An example of a trace composed of six spans

a request to retrieve a user account from a database, the
trace might include a span for the initial request, a span
for the database query to retrieve the account, and a span
for the response to the original request. Each span would
have a unique identifier and could include data such as
the duration of the operation, any associated metadata
thereof, and any errors or issues that may have occurred.
Nested spans provide a hierarchical view of the work being
performed, allowing us to see the relationships between
different operations performed to fulfill the traced request.

2) Metrics: Metrics are measurements collected at reg-
ular intervals. Typically, a metric has a timestamp, a
name, one or more numeric values, and a count of how
many events it represents. In this context, an event is
a discrete action that happens at any given time. Fur-
thermore, adding metadata to events makes them much
more powerful. Examples of metrics include error rate,
response time, CPU mean usage, etc. Metrics can harness
the power of mathematical modeling and prediction to
derive knowledge about the behavior of a system over time
intervals in the present and future.

3) Logs: A log entry consists of a textual timestamped
description of an event. It also comprises the dynamic
execution context and the criticality (e.g., trace, debug,
info, warn, error, fatal) of the recorded event. Its content
can be structured (recommended) or unstructured. Log
entries are collectively referred to as logs. To generate
such logs, we can resort to one or more logging libraries
with distinct features and that can be used with different
programming languages. Although logs are a standalone
data source, they can also be associated with spans. For
example, OpenTelemetry considers as logs all data that
does not fall under the category of traces or metrics.

B. Telemetry Architecture
To better understand its structure, the first step in

building a telemetry platform is to define its architecture.
Figure 2 shows the telemetry architecture in relation to the
target legacy web applications and how they interact with
each other. The architecture consists of nine components
that are deployed in four different locations. These are Web
Browser, Frontend App, Backend App, Database, Frontend
Agent, Backend Agent, Telemetry Collector, Telemetry
Storage and Analytics, and Visualization Tool.

Frontend Agent and Backend Agent are software com-
ponents that collect telemetry data consisting of traces,

IEEE TRANSACTION ON SOFTWARE ENGINEERING, VOL. X, NO. Y, MONTH YEAR 4

Fig. 2. The telemetry architecture

metrics and/or logs about the performance, usage, and
behavior of our frontend and backend applications.

End users use Web Browser to access Web pages via
their URLs. When a page is requested, Web Browser sends
an HTTP request to Web Server that’s hosting the web
application. Then, Web Server returns a corresponding
HTTP response to Web Browser. This response encap-
sulates the executable JavaScript code of the requested
page, which is sent along with Frontend Agent, both of
which are executed by Web Browser. This allows Frontend
Agent to send telemetry data about events that happened
at the frontend (e.g., user navigation) to Telemetry and
Observability Platform via its Telemetry Collector.

The frontend JavaScript code executed on Web Browser
relies on RPC or REST to communicate with Backend
Application to retrieve data, perform actions, or invoke
server-side functionalities. For example, RPC allows the
client-side code to remotely call server-side Java meth-
ods based on a set of Java interfaces and shared Data
Transfer Object (DTO) classes. When an RPC service is
requested, Backend Application executes the Java methods
associated with that RPC service. Meanwhile, Backend
Agent, running on the server-side, sends telemetry data
about events that happened on the backend (e.g., RPC
calls, SQL queries) to Telemetry Collector.

Telemetry Collector serves as an intermediary between
the agents of instrumented applications and Telemetry and
Observability Backend. Its primary function is to collect
telemetry data from various agents and store it in Teleme-
try Storage and Analytics of our Telemetry and Observ-
ability Backend. Within this Telemetry and Observability
Backend, Visualization Tool acts as the frontend, allowing
stakeholders such as Product Managers (PMs), Product
Owners (POs) and Developers to explore telemetry data
through features such as dashboards and alerts.

III. Telemetry at Berger-Levrault
In this section, we discuss the experimental environment

of our proposed telemetry approach for legacy web appli-
cations at Berger-Levrault. First, we present the target

Fig. 3. The architecture of our GWT-Spring applications

case study GWT-Spring applications. Then, we discuss
the selection and extension of telemetry agents for the
frontend and backend applications. Finally, we report on
our experience in selecting a telemetry collector as well as
a telemetry and observability backend.

A. Industrial Case Study of GWT-Spring Applications

Our experiment is based on three real, large-scale, in-
dustrial GWT-Spring applications that are currently used
by many clients for their human resources and financial
management systems. Due to internal company policy, we
cannot disclose their names or semantics.

It is important to understand the architecture of these
applications in order to instrument them. As shown in
Figure 3, the architecture of our applications is based on
five layers, as follows. GWT client refers to the frontend
application, which is responsible for presenting the graph-
ical user interface and handling user interactions. The
client-side components and graphical user interface wid-
gets are written in Java code, which is then compiled into
executable JavaScript to run in the client web browser.
GWT server connects the GWT client layer with the other
business logic layers. Communication with the GWT client
is realized through RPC calls, where data is serialized
and exchanged. UseCase (UC) manages and orchestrates
the business logic and workflow of user requests. This
layer is responsible for defining and executing appropriate
services or business logic components that correspond to
the user requests. Service houses the core business logic
of the application, where essential business operations are
performed. A service is responsible for performing specific
business tasks. Data Access Object (DAO) is the data
access layer that acts as a bridge between the service layer
and the database. It handles data persistence and retrieval
from the database using Data Access Objects (DAOs).
This layer communicates with Hibernate to store/retrieve
the data into/from the actual database.

Table I shows the size of our case study applications. For
each application, we provide the number of lines of code,
Java classes, Java methods and Java attributes that make
up its GWT frontend and Spring backend applications,

IEEE TRANSACTION ON SOFTWARE ENGINEERING, VOL. X, NO. Y, MONTH YEAR 5

TABLE I
Complexity metrics about our case study applications

Applications # LOC # Classes # Methods # Attributes

App 1 Frontend 31325 408 2737 1713
Backend 31511 418 3536 1208

App 2 Frontend 848330 6926 68833 43974
Backend 861814 8597 111514 44427

App 3 Frontend 793363 6175 69044 39794
Backend 894029 7909 88200 40594

respectively. These values provide a comprehensive view
of the size and complexity of the applications.

In terms of technology, the applications are based on
Open Java Development Kit (OpenJDK) version 1.8u212.
The frontend and the backend applications are developed
using the GWT and Spring frameworks, respectively. The
database is based on Oracle 12c. Hibernate is used for
server-side data persistence and management.

B. Telemetry Agents
As mentioned earlier, our case study applications rely

on the GWT and Spring frameworks for their frontend
and backend, respectively. The frontend source code is
written in Java, compiled into JavaScript, and executed
in the client browser. Therefore, instrumenting the GWT
frontend with a Java agent is not straightforward, as Java
agents are primarily focused on instrumenting applications
running natively in the Java Virtual Machine (JVM)
[18]. Thus, we rely on a JavaScript agent to instrument
the frontend applications. In contrast, since the backend
applications are based on Java source code compiled into
native bytecode, we use a Java agent to instrument them.

Among the existing telemetry instrumentation agents,
such as those provided by Elastic APM and Spring Cloud
Sleuth, we select agents provided by OpenTelemetry. Our
choice is motivated by the following criteria:

Serving our telemetry objectives: OpenTelemetry
supports the instrumentation of our legacy web applica-
tions, i.e., GWT and Spring, through its JavaScript and
Java agents, respectively. These agents provide extensible
automatic instrumentation capabilities to collect telemetry
data, i.e., traces, that serve our objectives. This allows
them to be integrated into our web applications without
modifying their source code. This is achieved, for example,
by adding end-user identity data, and by specifying which
data to retain and discard during collection. The latter
technique allows us to control the performance overhead.

Compatibility with other tools: OpenTelemetry
agents can be seamlessly integrated to export telemetry
data to any Telemetry and Observability Platform, re-
gardless of its implementation details, through an Open-
Telemetry Collector. This is crucial to grant the user
the flexibility of working with any existing telemetry and
observability platform, e.g. Elastic Observability, SigNoz,
Jaeger, Zipkin, Prometheus.

Support and accessibility: OpenTelemetry agents are
open-source, which allows us to understand their imple-
mentation and extend their capabilities. They are also

documented and supported by a large open-source com-
munity. For instance, the OpenTelemetry GitHub account
consists of 68 repositories covering about 18 main projects,
collectively supported by a team of 193 contributors.

Credibility: OpenTelemetry agents are widely used in
the industry [19] such as IBM [20], Ericsson [21], Splunk
[22], and DoorDash Engineering [23].

In the following, we discuss the selected OpenTelemetry
JavaScript and Java agents and how they are extended to
collect traces fulfilling our telemetry objectives.

1) Frontend Instrumentation Agent:
a) Objectives: The goal of the frontend instrumen-

tation is to automatically collect traces related to user
navigation (FO1) and end-user identity (FO4).

b) Methodology: The frontend instrumentation is re-
alized at the GWT Client layer of the architecture of
our GWT applications, illustrated in Figure 3. Hence,
we adapt the OpenTelemetry JavaScript agent to auto-
matically instrument the compiled JavaScript code of our
GWT frontend applications.

For FO1, the idea is to trace the user navigation be-
havior of our frontend GWT applications based on user
interactions with their graphical user interface elements
(e.g., clicking on a button, filling out a form, etc.).
Specifically, this is achieved by relying on the automatic
instrumentation APIs1 provided by the OpenTelemetry
community. Accordingly, based on a list of desired events
(e.g., click, submit, select, scroll, toggle, etc.) [24], we could
generate and collect traces related to user navigation. In
addition, to achieve FO2, we extend the instrumentation
capabilities of our agent to automatically add the end-user
identity to each generated trace.

All of our collected frontend traces conform to a schema
consisting of mandatory and optional properties [25].
These properties are either trace-level, describing the
global context of the request, or span-level, describing the
context of an operation captured by a span within a trace.
In addition, sometimes a trace can consist uniquely of a
single span. For example, clicking on a clickable <div>
element in our GWT application automatically generates
a corresponding trace consisting of a single span.

This span is described by span-level properties, includ-
ing the span ID, the trace ID of the encompassing trace,
the span name (which identifies the ”click” event), the
span timestamp, the URL where the event was triggered,
the target HTML element receiving the event (i.e., the
<div> element), and others.

c) Implementation of Automatic Instrumentation:
The automatic instrumentation of the JavaScript agent
is based on intercepting calls from target functions, to
capture relevant telemetry data, such as the start and end
times of an operation, any relevant attributes, and error
information if an error occurs. This relies on several mech-
anisms such as wrapping interfaces, subscribing to system-
specific callbacks, or translating system-specific telemetry
into the OpenTelemetry model under the hood [18].

1https://www.npmjs.com/package/@opentelemetry/
auto-instrumentations-web

https://www.npmjs.com/package/@opentelemetry/auto-instrumentations-web
https://www.npmjs.com/package/@opentelemetry/auto-instrumentations-web

IEEE TRANSACTION ON SOFTWARE ENGINEERING, VOL. X, NO. Y, MONTH YEAR 6

Fig. 4. The sequence diagram of the process of implementing
automatic instrumentation for our frontend GWT applications

The actual definition of the agent’s instrumentation
code is carried out according to the following three-step
process: (1) configuring a tracer provider, (2) adding a
data telemetry exporter, and (3) registering the tracer
provider for automatic instrumentation [25]. Figure 4
shows the sequence diagram of these three steps and
the involved instrumentation API elements. Configuring
a tracer provider starts with creating an instance of
TracerProvider and attaching a Resource object to it
with the name and the instance of the GWT application’s
service, as shown in Listing 1.
... name = "<service -name >";
id = "<service -instance -ID >";
... tracerProvider = new WebTracerProvider ({

resource : new Resource ({
[Resource . SERVICE_NAME]: name ,
[Resource . SERVICE_INSTANCE_ID]: id ,}) });

Listing 1. Configuring the OpenTelemetry tracer provider

Next, any built-in or custom processing of the traces’
spans is further specified. Built-in span processors include
a simple span processor and a batch span processor [26].
The simple span processor passes spans to the configured
span exporter as they are completed, while a batch span
processor passes them in batches after a specified delay.
To customize span processing, the API can be extended
such that any attribute(s) can be added/removed from
the generated spans, depending on the desired objectives.
For instance, in Listing 2 we extend the SpanProcessor
interface [26] to define a custom span processor that en-
capsulates the recording of user session data, in accordance
with our objectives.
export class SessionIdSpanProcessor implements

SpanProcessor {
onStart (span: Span , parentContext : Context): void {

span. setAttribute (’app. session .id ’,
SessionGateway (). getSession (). sessionId); this .
_nextProcessor . onStart (span , parentContext);
}...

Listing 2. Defining a custom span processor to add user session data
to the generated traces

Afterwards, telemetry data exporters are created and
added to the tracer provider’s configuration to indicate
where the generated data will be sent [26]. We create
an exporter to send the generated telemetry data to an
OpenTelemetry Collector, as shown in Listing 3.
... const collectorExporter = new OTLPTraceExporter ({

url: ’<collector_url >/ v1/ traces ’
});
tracerProvider . addSpanProcessor (new

SessionIdSpanProcessor (new SimpleSpanProcessor (
collectorExporter)));

tracerProvider . register () ;...

Listing 3. Defining and registering OpenTelemetry exporters with
the created tracer provider

Fig. 5. The workflow for building and running our frontend agent
with our GWT applications

Finally, as previously mentioned, automatic instrumen-
tation is configured and registered with the tracer provider
using the modules provided by the OpenTelemetry com-
munity’s contrib packages for automatic instrumentation.

d) Run the Agent with Our Applications: Building
and running the frontend agent with our GWT appli-
cations follows the process illustrated in Figure 5. The
process starts with the definition of the instrumentation
files, as described earlier in Figure 4. Then, since the Open-
Telemetry JavaScript agent’s API is defined in Node.js
[27], which is natively incompatible with the browser, the
next step consists of transpiling the defined instrumen-
tation Node.js code into browser-compatible JavaScript.
This is realized accordingly using Babel [28]. Afterwards,
we bundle all the transpiled JavaScript instrumentation
files and their dependencies into a single JavaScript bundle
produced by webpack [29].

Subsequently, the generated bundle is copied into the
GWT application’s war/ folder, from which it gets linked
into its main HTML template through a <script> tag,
then loaded and executed. As a result, the scope of the
agent spans the entire application and generates telemetry
data throughout its execution.

2) Backend Instrumentation Agent:
a) Objectives: The goal of the backend instrumenta-

tion is to collect traces related to actions performed at the
backend (FO2), the client-server data exchange (FO3), as
well as end-user identity (FO4).

b) Methodology: The backend instrumentation is con-
cerned with the GWT server, UseCase, Service and DAO
layers of our application architecture in Figure 3. For FO2,
the idea consists of understanding the inner workings of
the actions performed on the different layers. This is done
by tracing the HTTP requests received by the GWT server
(e.g., through RPC calls) and the corresponding use-cases,
services, and DAOs executed on their respective layers.
For FO3, we instrument the methods of the Java classes
at the UseCase layer, based on their originating RPC calls,
in order to obtain their arguments and return values. For
FO4, we rely on the Spring security API to recover the
end-user identity.

To achieve these objectives without modifying the ap-
plication source code, we extend the automatic instru-

IEEE TRANSACTION ON SOFTWARE ENGINEERING, VOL. X, NO. Y, MONTH YEAR 7

mentation capabilities of the OpenTelemetry Java agent.
In particular, we propose two extensions: the Program
Understanding and Data Exchange extensions. Program
Understanding generates traces about the inner workings
of the backend. It creates an initial span for each HTTP
request received by the GWT Server layer. To capture the
flow of this request and its method invocations throughout
the application, this span is nested with a set of children
spans corresponding to other sub-actions performed at
the UseCase, Service, and DAO layers as a result of the
initial HTTP request. In other words, each child span
contains information about the Java methods executed
at the corresponding layer. The Data Exchange extension
generates traces about the RPC calls mapped to the
UseCase layer. The data is captured by serializing the Java
objects used as method arguments and return objects and
attaching them to the traces as JSON.

In addition, traces generated by both extensions con-
form to a structured schema similar to that of the traces
generated by the frontend agent. This schema includes de-
fault mandatory properties introduced by OpenTelemetry
to capture span-level and trace-level names, IDs, statuses,
etc. Moreover, the schema provides trace-level properties
that record useful information about the execution envi-
ronment, such as the host name, the JVM version, and the
application process ID. Finally, both extensions make the
agent add span-level properties that capture the identifiers
of the executing method and its class, as well as the
identity of the user who sent the request.

c) Implementation of Automatic Instrumentation:
The idea is to extend the automatic instrumentation
capabilities of the agent by informing it to augment
the collected traces with additional properties that cap-
ture the data related to each functional objective. The
OpenTelemetry community defines a mechanism2 based
on the Service Provider Interface (SPI) design pattern
that enables the dynamic discovery and integration of
extensions into the agent. This allows us to specify the
instrumentation logic (e.g., capturing method arguments)
to be automatically injected by the agent into the desired
parts (e.g., the UseCase layer) of the application.

To inform the agent that we want to inject instru-
mentation logic into some parts of the application, we
extend the InstrumentationModule abstract class, which
corresponds to a service provider interface, and reg-
ister the subclass as a service provider. By overrid-
ing the methods of the SPI, we can define the name
of the extension and associate it with one or more
TypeInstrumentation implementations. Then, we imple-
ment the TypeInstrumentation interface. The implemen-
tation matches the methods that we want to instrument
using element matchers provided by the framework (e.g.,
match types in the UseCase layer using package naming
conventions: nameContains("usecases."), then match
all public methods). It also defines the instrumentation

2https://github.com/open-telemetry/
opentelemetry-java-instrumentation/blob/main/docs/contributing/
writing-instrumentation-module.md

logic, such as adding attributes to the current span
(e.g., span.setAttribute("uc.method", methodName)),
which is executed along with the instrumented methods.

d) Run the Agent with Our Applications: We
package the implementation of each extension as an
executable JAR file by using the Gradle script provided
by OpenTelemetry. To start automatically instrumenting
our applications, we integrate the OpenTelemetry
agent and our extensions with the Java Virtual
Machine (JVM). This is done by passing the paths
of their JAR files as arguments to the JVM options
-javaagent and -Dotel.javaagent.extensions
respectively. We can further configure the agent
by providing additional JVM options as needed.
These options include specifying the service name
(-Dotel.resource.attributes=serviceName),
specifying the target collector to which traces are
sent (-Dotel.exporter.otlp.endpoint), and other
relevant options to achieve our goals.

C. Telemetry Collector
As mentioned earlier, telemetry collectors are used to

collect telemetry data generated by the telemetry agents
in the instrumented applications, and to export this data
to one or more telemetry and observability backends.

In our context, we experimented with two popular
telemetry collectors, namely OpenTelemetry Collector
and Elastic APM Collector. We experiment with Open-
Telemetry Collector mainly because of OpenTelemetry’s
widespread adoption and reputation in the telemetry and
observability industry [30]. Moreover, we experiment with
Elastic APM Collector because we chose Elastic Observ-
ability as our telemetry and observability backend, which
includes it as part of its stack [13].

OpenTelemetry Collector [31] is an example of an in-
dependent telemetry collector. It provides flexible, cus-
tomizable, and vendor-agnostic telemetry data collection,
processing, and export capabilities. This allows one to
ingest different types of telemetry data, including traces,
metrics, and logs, from various data sources, in different
formats, and using different data exchange protocols (e.g.,
http/protobuf, grpc). In addition, OpenTelemetry Col-
lector provides compatibility with several telemetry and
observability backends, such as Elastic Observability [13],
SigNoz [32], Zipkin [33].

In contrast, Elastic APM Collector [34] is an example of
an integrated telemetry collector, as it is designed to work
seamlessly with the Elastic ecosystem, where it integrates
directly with its Elasticsearch [35] component to store
and analyze telemetry data. This data is captured and
transmitted by native Elastic APM agents embedded in
the code of the instrumented application.

Based on our experiments, we decided to adopt Open-
Telemetry Collector as it collects telemetry data regard-
less of its size and origin. Its policy matches the size
of our traces, which can contain data longer than 1024
characters. This is in contrast to Elastic APM Collector,

https://github.com/open-telemetry/opentelemetry-java-instrumentation/blob/main/docs/contributing/writing-instrumentation-module.md
https://github.com/open-telemetry/opentelemetry-java-instrumentation/blob/main/docs/contributing/writing-instrumentation-module.md
https://github.com/open-telemetry/opentelemetry-java-instrumentation/blob/main/docs/contributing/writing-instrumentation-module.md

IEEE TRANSACTION ON SOFTWARE ENGINEERING, VOL. X, NO. Y, MONTH YEAR 8

TABLE II
Comparison of telemetry and observability backends: Elastic Observability, SigNoz, and Zipkin

Feature Elastic Observability SigNoz Zipkin
Availability Open-source (main features) Open-source (main features) Open-source
OpenTelemetry compatibility Yes Yes Yes
Leveraged telemetry data Logs, metrics, traces Logs, metrics, traces Traces
Storage Elasticsearch ClickHouse Cassandra, Elasticsearch or MySQL
Processing

• Ingests, aggregates, indexes, and
processes telemetry data in real-
time, ensuring data freshness

• Supports parsing, transforming,
and enriching data for deeper
analysis

• Ingests, aggregates, indexes, and
processes telemetry data in real-
time, ensuring data freshness

• Supports parsing, transforming
and enriching data for deeper
analysis

• Ingests, aggregates, indexes, and
processes traces only in real-time,
ensuring data freshness

Analysis
• Utilizes machine learning and AI

models for advanced analysis, in-
cluding anomaly detection and
root cause analysis

• Provides deep insights through
application performance, infras-
tructure, real user, and synthetic
monitoring

• Allows performance optimization
through universal profiling and
in-depth analytics

• Monitors low-level metrics like re-
quest rates, error rates, and re-
quest duration for performance
analysis

• Provides deep insights through
application performance, infras-
tructure, real user, and synthetic
monitoring

• Offers detailed insights into ser-
vice request flows and latency
within distributed systems

Visualization
• Utilizes Kibana
• Provides a wide range of built-

in and customizable visualization
options, including charts, maps,
graphs, dashboards, and service
meshes

• Utilizes SigNoz’s frontend
• Provides a wide range of built-

in and customizable visualization
options, including charts, maps,
graphs, dashboards, and service
meshes

• Utilizes Zipkin UI
• Offers basic visualization features

for analyzing traces

which is limited to 1024 characters. Furthermore, because
of its support for multiple telemetry and observability
backends, OpenTelemetry Collector allows us to switch to
any telemetry and observability backend without affecting
the other telemetry components (i.e., we only need to
change the URL of the telemetry export target in the col-
lector configuration). Meanwhile, Elastic APM Collector is
designed to work exclusively with the Elastic ecosystem.

To facilitate the integration of many services/applica-
tions with our telemetry system, we have deployed an
OpenTelemetry Collector instance on Amazon Web Ser-
vices (AWS) [36] where each generated trace is exported.
The frontend and backend agents use the OpenTelemetry
Protocol (OTLP) [12], a data formatting protocol, to
structure and serialize the exported telemetry data, and
HTTP to transport it. Upon receipt, we configured the
collector to forward the collected telemetry data to our
Telemetry and Observability Backend, also hosted on AWS.

D. Telemetry and Observability Backend
Telemetry and observability backends are used to store,

analyze, and visualize the application execution traces
collected by our frontend and backend agents. We test
three main telemetry and observability backends, namely
Elastic Observability [13], SigNoz [32], and Zipkin [33].
Table II compares these tools based on their availability,
OpenTelemetry compatibility, leveraged telemetry data,
storage components, supported processing, analysis and
visualization capabilities.

We selected these tools because they share a foundation
of open-source availability and compatibility with Open-
Telemetry Collector for seamless integration with teleme-

try data sources. In addition, they have a large community
support [37] [38]. They also collect logs, metrics, and traces
while ensuring real-time processing for data freshness,
except Zipkin which is limited to traces only.

Nonetheless, the differences between them are notewor-
thy. Elastic Observability offers prominent analytic capa-
bilities that leverage machine learning and AI models to
provide advanced insights across various domains, includ-
ing application performance, infrastructure monitoring,
real user and synthetic monitoring, and universal profiling
for performance optimization. In contrast, SigNoz, while
supporting similar data types, focuses primarily on low-
level metric analysis, while also covering application per-
formance, infrastructure, real user and synthetic monitor-
ing. Meanwhile, Zipkin is mainly tailored for tracing, pro-
viding deep insight into service request flows and latency
in distributed systems.

In terms of storage, Elastic Observability relies on Elas-
ticsearch, SigNoz relies on ClickHouse, and Zipkin offers
flexibility with support for Cassandra, Elasticsearch, or
MySQL. In the realm of visualization, Elastic Observabil-
ity uses Kibana, which offers a wide range of advanced
options, including charts, graphs, maps, and service mesh
visualization. SigNoz’s frontend application similarly offers
robust visualization features, while Zipkin’s visualization
capabilities are rudimentary.

Ultimately, our decision to use Elastic Observability
was driven by the maturity of the Elastic ecosystem
and our developers’ familiarity with it. Consequently, we
established a free and open-source Elastic Observability
instance on AWS.

IEEE TRANSACTION ON SOFTWARE ENGINEERING, VOL. X, NO. Y, MONTH YEAR 9

IV. Performance Overhead Evaluation
A. Overview

Our objective is to measure the performance overhead
incurred by using our telemetry agents to instrument the
frontend and backend of our legacy application. We mea-
sure this performance overhead by answering four research
questions defined in Section IV-D. The methodology for
answering these research questions is based on running the
application based on three execution use case scenarios
defined in Section IV-C and evaluating the application
performance based on five metrics related to the response
time demonstrated in Section IV-B. The obtained results
are discussed in Section IV-E and the threats to their
validity in Section IV-F.

B. Evaluation Metrics
To measure the performance overhead of our telemetry

agents, we rely on the response time and the performance
overhead metrics as follows.

1) Response Time Metrics: The Response Time (RT)
metric is the time taken by the web server to respond to a
request from the web browser. We rely on the RT because
it has an inverse correlation with the user experience and
the overall performance of web applications. For example,
a faster RT results in a more seamless and satisfying user
experience. We measure the RT in milliseconds (ms). To
better understand the RT of multiple requests made at
different execution scenarios, we rely on:

1) The minimum RT, which refers to the fastest
HTTP request.

2) The 50th, 75th, 95th, and 99th PCTs that compare
the Xth RT in relation to others, e.g., if 50th per-
centile is 3 ms, it means that 50% of responses are
<= 3 ms.

3) The maximum RT, referring to the slowest HTTP
request.

4) The mean, referring to the average RT.
5) The standard deviation, referring to how much

the RTs differ from the mean.
2) Performance Overhead Metric: To measure the addi-

tional performance overhead introduced by our telemetry
agents, we rely on the Percentage Difference metric [39].
It measures the differences in the RTs of a given agent
compared to the ground-truth, as follows.

Overhead = (RTAgent − GroundtruthRT

GroundtruthRT
) ∗ 100 (1)

Where RTAgent and GroundtruthRT refer to the RT
values obtained when running the application with a given
agent and a ground-truth RT value respectively. Overhead
values are constrainted within the range [-1, 1], where 0
signifies the absence of any overhead caused by the agent,
positive values indicate the extent of performance over-
head caused by that agent, and negative values indicate
an improvement in application performance upon running
the agent with the application.

C. Execution Scenarios
To better generalize the results, we generate different

workloads based on three execution scenarios as follows.
a) Scenario 1 - Minimal Application Load:

This scenario consists of logging into the application and
loading its home page. We consider this scenario because
it refers to the minimal use of the application when the
user simply connects to it. This allows us to evaluate
the performance overhead of the telemetry agents under
minimal application load. This execution scenario creates
156 HTTP requests including 36 RPC calls, among other
things, such as resource loading.

b) Scenario 2 - Page Navigation: This scenario
consists of logging into the application, loading its home
page, and navigating to another web page from another
module. We chose this scenario to show the difference in
application performance of a page navigation compared
to the first scenario of minimal application load. Seeing
how it creates a total of 189 HTTP requests including
48 RPC calls, this scenario generates an extra 33 HTTP
requests, including 12 RPC calls, compared to Scenario 1.
These additional HTTP requests and RPC calls give us an
indication about application performance upon executing
a page-to-page navigation action.

c) Scenario 3 - Updating Client Address: This
scenario begins by logging into the application, loading
the home page and navigating to another page to update a
client address. We chose this scenario to represent a simple
real-world application use case as defined by our stakehold-
ers. It also includes several user navigation actions (such
as clicks and text inputs) and sending HTTP requests to
the backend application. In total, it generates 236 HTTP
requests and 70 RPC calls. The additional load generated
by the extra HTTP requests of this scenario, compared
to Scenarios 1 and 2, allows us to evaluate application
performance for the use case of updating a client address.

D. Research Questions and Evaluation Methodology
To better generalize the results and simulate a real

environment, we run each execution scenario based on
multiple loads by changing the number of virtual users. We
automate these runs based on Gatling [40], an automated
performance testing tool. We run the performance test
three times, with 1 user, 100 users, and 250 users at
once to simulate the minimum (1), average (100), and
maximum (250) load situations, respectively. This allows
us to determine the relationship between performance
overhead and application load size. Selecting 250 users as
the maximum load is recommended by our application’s
operations team because each deployment instance can
only handle a maximum of 250 users. A new instance will
be created before reaching this number of users, based
on the automatic elasticity feature of our deployment
platform.

To get more realistic results about RT metrics, we run
the performance test 10 times for each execution scenario
for each different load size and measure their averages.

IEEE TRANSACTION ON SOFTWARE ENGINEERING, VOL. X, NO. Y, MONTH YEAR 10

TABLE III
The response time ground-truth references for evaluating the performance overhead of telemetry agents

Execution Scenario Load Size Min 50th pct 75th pct 95th pct 99th pct Max Mean Std Dev

Execution Scenario 1
1 User 23.3 26 29.3 66.7 150.9 400.3 34.1 35.1
100 User 22.8 46.5 79.5 213.7 940 7708.8 110.9 465.4
250 Users 22.8 50.7 81.6 211.5 7902 22296.4 263.5 1792.4

Execution Scenario 2
1 User 23.9 26.3 30 61.2 151.9 386.2 33.5 31.3
100 User 22 40.3 66.4 164.2 1173.6 10237.2 108.6 548.5
250 Users 22 45.4 67.7 144.3 1666.7 35381.7 265.9 2210

Execution Scenario 3
1 User 23.7 26.8 31 70.1 147.5 373.5 34.6 29.4
100 User 22 35.6 59 183.7 1184.6 15350 123.4 706.2
250 Users 22 37.6 58.5 144.8 15153.9 47895.9 378.3 3152.3

Average of averages of all scenarios 22.72 37.24 55.88 140.02 3163.45 15558.88 150.31 996.73
Standard deviation of averages 0.77 9.35 20.86 60.77 5105.44 16824.82 123.84 1124.26

We evaluate the performance overhead by answering
four Research Questions (RQs) as follows.

1) RQ1: What is the ground-truth reference for
evaluating the performance of agents?: This RQ
aims to identify a ground-truth reference that allows us
to evaluate the performance overhead of our telemetry
agents. To obtain this ground-truth reference, we run the
application without any telemetry agent to collect RT met-
rics (c.f., Section IV-B1) about application performance in
a regular environment. We consider these collected metrics
as a ground-truth reference that allows us to measure the
additional performance overhead caused by our telemetry
agents.

2) RQ2: What is the performance overhead of the
frontend agent?: The goal of this RQ is to measure the
performance overhead caused by the frontend telemetry
agent. As such, we run the application with only the
frontend agent enabled to collect RT metrics about the
performance of the application and the frontend agent.
These metrics are compared to the ground-truth metrics
obtained in RQ1 to measure the additional overhead
caused by the frontend agent, based on Equation 1.

3) RQ3: What is the performance overhead of
the program understanding backend agent?: The
goal of this RQ is to evaluate the performance overhead
incurred by our program understanding backend agent.
As such, we run the application with only this backend
agent enabled to collect performance metrics related to
both the application and the backend agent. We compare
these collected RT metrics to the ground-truth metrics to
gauge the additional overhead introduced by the program
understanding backend agent. Similar to RQ2, we rely on
the Percentage Difference metric to measure the additional
overhead, based on Equation 1.

4) RQ4: What is the performance overhead of
the data exchange backend agent?: This RQ aims
to measure the performance overhead caused by the data
exchange backend agent. We run the application with only
this agent enabled to collect RT metrics. These metrics are
then compared to the ground-truth metrics to assess the
additional performance overhead resulting from this agent,
based on Equation 1.

E. Results

1) RQ1: What is the ground-truth reference for
evaluating the performance of agents?: Table III
shows the RT ground-truth references for evaluating the
performance overhead of telemetry agents. For each exe-
cution scenario, we present the average RT of its 10 runs
for the different load sizes in terms of the minimum, 50th,
75th, 95th, and 99th PCTs, maximum, mean and Standard
Deviation (SD).

The results show that fast HTTP requests are not
affected by changing the load size of the three execution
scenarios. The average of minimum RTs is 22.72ms with a
very small SD of 0.77 for 1, 100 and 250 users respectively.

We also notice that changing the execution scenario does
not affect the RTs of all HTTP requests when we have
only one user. This is highlighted by investigating the close
values of all RT metrics for the minimal single-user load
size (e.g., 34.1, 33.5, 34.6 ms for their means, 26, 26.3
and 26.8 ms for their 50th PCT, etc.). Despite involving
an additional 33 and 80 HTTP requests, respectively,
compared to the first execution scenario, the second and
third scenarios’ extra requests result in negligible overhead
when the system is subjected to a single-user load.

Nonetheless, the results show that RTs are generally
affected by changing scenarios and load sizes. When we
have larger load sizes, i.e. 100 and 250 users, the RT values
for the second and third execution scenarios increase
accordingly. It is demonstrated by the increase in their RT
mean values. For instance, the mean RT is increased from
108.6 ms to 378.3 ms as we move from the second to the
third execution scenario and from 100 to 250 users3. This
is consistent since we have a positive correlation between
the size/number of requests and the RTs.

The additional HTTP requests in the second and third
execution scenarios are distributed in the first three quar-
ters of the RT metric values. Meanwhile, the long HTTP
requests, in all three scenarios, have shifted to the last
fourth quarter. We analyze the maximum RT values, along
with their 50th, 75th, 95th, and 99th percentiles (PCTs)cs
and make the following observations: (1) the values of the
50th and 75th PCTs have decreased, (2) the values of the
95th PCT are very similar, and (3) both the maximum
RT values and the 99th PCT values have significantly

IEEE TRANSACTION ON SOFTWARE ENGINEERING, VOL. X, NO. Y, MONTH YEAR 11

increased for the second and third execution scenarios
when there are 100 and 250 users.

In summary, we find that RT is affected by changing
the number of HTTP requests. We change this number
in our experiment by increasing the number of users and
changing the execution scenarios. In our applications, RT
is more sensitive to the number of users than execution
scenarios. Thus, we rely on changing the number of users
as the main axis to compare the performance of telemetry
agents with our ground truth in RQ2, RQ3 and RQ4.

The RT is affected by changes in the number of
HTTP requests. It is more sensitive to the number
of users than execution scenarios.

2) RQ2: What is the performance overhead of the
frontend agent?: Figure 6 illustrates the outcomes of
our application’s performance evaluation when executed
with the frontend agent enabled, compared to our ground-
truth RT values. In particular, we report the minimum,
50th, 75th, 95th, and 99th PCTs, and maximum values,
along with their means and standard deviations (SD). The
results are organized into three distinct charts (a, b and
c), each corresponding to a different load size: 1, 100, and
250 users, respectively. To facilitate the comparison of RT
metrics with their corresponding ground-truth references
across the different execution scenarios, we employ pairs
of color-coded bar plots (orange, green and blue for the
execution scenarios) differentiated by fill patterns (dotted
and solid patterns for ground-truth and agent metrics,
respectively).

Based on our telemetry architecture, the frontend agent
is shipped with the frontend application code to the
client web browser (c.f., Figure 2). This means that client
machines bear the instrumentation overhead of the fron-
tend agent, while our server remains unaffected when
the application is executed with the agent enabled. This
observation is supported by the consistent performance be-
havior of the application, regardless of whether the agent
is enabled, for the same number of users and execution
scenarios. When we compare the results of each RT metric
with its corresponding ground-truth value, we find that the
application performance exhibits some variability. In some
cases, enabling the frontend agent leads to performance
improvements. This variability can be attributed to the
fact that the application performance may naturally vary
slightly for the same load size (i.e., exact HTTP requests)
across different runs, even without any agent. This is
clearly evident in the slight fluctuations of the same RT
metric across 10 runs in our ground-truth experiments.

The results of the Overhead metrics (c.f., Equation 1)
show that we have negligible overhead, averaging 0.13%,
0.51% and 0.24% for 1, 100 and 250 users, respectively.

Fig. 6. Performance of frontend agent compared to our ground truth

In summary, we can consider that, regardless of the
number of users, no overhead is produced by the
frontend agent on our server, because it runs on
the client browsers.

3) RQ3: What is the performance overhead of the
program understanding backend agent?: The perfor-
mance evaluation results of the program understanding
backend agent are presented in Figure 7 in three distinct
charts (a, b and c), each corresponding to a different load
size: 1, 100, and 250 users, respectively. We report the
minimum, 50th, 75th, 95th, and 99th PCTs, and maximum
values, along with their means and standard deviations
(SD). Similar to RQ1, we facilitate the comparison of the
RT metrics with their respective ground-truth references
by depicting them as pairs of bar plots for each execution
scenario. These bar plots are organized by color to distin-
guish between different execution scenarios and employ fill
patterns to differentiate the ground-truth reference values
from the obtained RT values.

In Figure 8, we present the performance overhead re-
sults, calculated based on the percentage difference. On
average, our agent incurs an overhead of 2.14% (with
means of mean RTs of 1.98%, 1.86% and 2.56% for 1, 100,

IEEE TRANSACTION ON SOFTWARE ENGINEERING, VOL. X, NO. Y, MONTH YEAR 12

Fig. 7. Performance of program understanding backend agent com-
pared to our groundtruth

Fig. 8. Overhead of program understanding backend agent

and 250 users, respectively).
In approximately 75% of HTTP requests, we observe

negligible overhead across various execution scenarios and
numbers of users. Specifically, this negligible overhead
amounts to 0.97% and 0.89% based on the average of
the 50th PCT and 75th PCT, respectively. Consequently,
the application performance is largely unchanged when
running the application with this agent compared to our
ground truth. This indicates that these HTTP requests
involve executing minor operations (e.g., small number of
method invocations, database operations) on the backend
server. As a result, the agent’s cost in transmitting its
traces has a relatively minimal impact on the performance
of our GWT application.

We also identify some outliers related to fast and slow

requests. For instance, the minimum RT box plots show
that the fastest HTTP requests had smaller RT values
when we ran the application with our agents. This is
because these requests are related to resource fetches that
are not tracked by our backend agent. Some of these fast
requests are RPC calls that involve minimal operations,
such as retrieving a single value (e.g., date) calculated by
a simple SQL statement.

Conversely, for the slowest requests, our agent produces
an average overhead of 3.8% (with means of 5.07%, 4.17%
and 2.15% for the maximum RTs with 1, 100, and 250
users, respectively). We observe a similar behavior for
HTTP requests located in the fourth quarter of our RT
values, as indicated by the 95th PCT and 99th PCT, where
the means show overheads of 2.95% and 3.44%, respec-
tively. We note that these slow requests involve executing
numerous operations (e.g., complex SQL statements on a
large dataset) on the server to compute their responses,
thus necessitating more resources for the agent to transmit
its traces.

In conclusion, we observe a small overhead pro-
duced by the program understanding backend
agent. This overhead has a positive correlation
with the number of operations that need to be
performed on the server.

4) RQ4: What is the performance overhead of
the data exchange backend agent?: The performance
evaluation results of our data exchange backend agent are
shown in Figure 9. The results are illustrated in three
separate charts (a, b and c), each corresponding to a
different load size: 1, 100 and 250 users. For each chart, we
report the minimum, 50th, 75th, 95th, and 99th PCTs, and
maximum values, along with their means and standard
deviations (SD). These obtained RT values are illustrated
through color-coded bar plots to distinguish between their
execution scenarios, with distinct fill patterns to differen-
tiate them from their ground-truth references.

Figure 10 shows the performance overhead produced
by the data exchange backend agent. The results reveal
the agent’s sensitivity to both the number of users of our
GWT application and the size of the data being serialized.
Notably, as the number of users and the size of the data
exchanged between the client and the server increase, the
agent’s overhead escalates significantly. This divergence
is evident in the considerable difference between the per-
formance overhead mean values for 1 user (7.14%) com-
pared to 100 users (29.13%) and 250 users (30.37%). The
proximity of the mean values for the two latter workloads
can be attributed to server capacity constraints. Indeed,
with larger data serialization demands, server capacity
diminishes. As such, we recommend performing stress tests
on the server to determine the new capacity, accounting
for the number of concurrent users when using this agent.
In contrast, we find that requests involving small data
experience minimal impact from changes in the number

IEEE TRANSACTION ON SOFTWARE ENGINEERING, VOL. X, NO. Y, MONTH YEAR 13

of users and execution scenarios, as reflected by the RT of
HTTP requests located in the first quarter of RT values.

The serialization cost exhibits a positive correlation
with data size and serialization frequency. We observe a
substantial overhead for slower HTTP requests situated
in the fourth quarter of RT values, even for 1 user. This
effect amplifies for the last 5% of these requests, mainly
due to the size of the data being serialized upon tracing the
arguments and return objects of the corresponding RPC
services. As the number of users increases, so does the
frequency of serialization.

Upon investigating the size of the serialized data, we
pinpoint bottlenecks related to the return objects of RPC
services. To understand their size, we show character
counts for these return objects across all RPC services
within the three execution traces in Figure 11. The results
highlight substantial variations in object sizes, with a note-
worthy standard deviation of 38770. This issue stems from
application design rather than the agent itself. Therefore,
we report this concern to our development team, as it not
only affects the agent’s performance but also impacts the
application performance overall.

For a more tangible understanding of data serialization
costs, we measure the time taken by the agent to serialize
the 10 largest return objects. Figure 12 shows the degrada-
tion of serialization costs for the same return objects over
time for a 250-user workload. The results reveal a notable
escalation in serialization costs, particularly after about
100 users, reaching extreme levels as the number of users
nears server capacity.

In summary, due to the data exchange agent’s height-
ened sensitivity to data size, prudent usage is advised, es-
pecially when dealing with large objects. Given our agent’s
intended use case: constructing an oracle for input/output
data in RPC service test automation, we recommend
running this agent selectively, targeting specific subsets
of application users at different intervals to prevent server
overload. Furthermore, we advise to avoid serializing slow
HTTP requests as much as possible. These recommen-
dations remain applicable until we find an alternative
serialization approach (e.g., one that works offline) that
allows greater flexibility for running our agent without
these restrictions.

This data exchange agent exhibits sensitivity to
the size of serialized data. While serialization costs
remain reasonable for small objects, practitioners
should be careful when using it with large objects.

F. Threats to Validity
1) Internal Threats to Validity: We identify three inter-

nal threats to validity as follows.
• The obtained performance evaluation results are

based on virtual workloads of our application. To
ensure they represent real-world application loads as
much as possible, we consider running the application

Fig. 9. Performance of the data exchange backend agent

Fig. 10. Overhead of the data exchange backend agent

Fig. 11. Size of return objects of RPC calls for Execution Scenario 3

Fig. 12. Serialization cost deterioration for the same return objects

IEEE TRANSACTION ON SOFTWARE ENGINEERING, VOL. X, NO. Y, MONTH YEAR 14

an average of 10 times for each execution scenario
(different HTTP requests) and each number of users
to calculate our performance metrics. This results in
a total of 360 runs.

• The performance metrics are calculated based on
Gatling. Thus, their accuracy is contingent upon
Gatling’s accuracy. However, Gatling is commonly
used by the industry community to conduct perfor-
mance load testing, such as Adobe, SNCFConnect,
Criteo, Sophos and thefork [40], indicating an accept-
able accuracy.

• Our performance overhead evaluation results are af-
fected by the deployment infrastructure underlying
Gatling and our application. To mitigate this impact,
we isolate our application’s deployment environment
within a Microsoft Sandbox virtual machine on a
dedicated server. This means that the resources of
this sandbox are only used by our application. This
arrangement ensures that the sandbox’s resources are
exclusively dedicated to our application, minimizing
any variation in the deployment environment’s impact
on our results.

2) External Threats to Validity: We identify three ex-
ternal threats to validity as follows.

• The results are based on our GWT applications at
Berger-Levrault. These applications are developed
using GWT version 2.8.2 and Spring for the frontend
and backend applications, respectively. This means
that these results may be limited by these frame-
works. However, the performance overhead evaluation
results can be generalized to other applications in
different domains that use the same frameworks. For
example, the backend agents work seamlessly when
automatically instrumenting another non-GWT ap-
plication at Berger-Levrault, as its backend is also
based on Spring.

• The performance overhead evaluation focuses on
OpenTelemetry agents. Other telemetry agents, such
as Elastic APM, may exhibit different performance
overheads. Therefore, in our future work, we intend
to assess other telemetry agents within the same
evaluation environment. This will allow us to compare
these agents based on their performance overhead.

• The obtained performance overhead percentages de-
pend on the initial speed of the application under
study. As such, faster or slower applications may
yield different ground-truth response times, poten-
tially leading to different percentage values.

V. Lessons Learned and Discussion

A. Manual Instrumentation of GWT Applications
Although automatic instrumentation serves our fron-

tend telemetry objectives, we provide manual instrumen-
tation capabilities to our development team. The idea is to
allow them to explicitly inject instrumentation code into
GWT applications, to collect specific telemetry data to

gain fine-grained insight into critical parts of the applica-
tion, specific workflows, or custom functionalities.

For the backend applications, the experiment shows
that manual instrumentation using the Java agent is
straightforward. Within the method body, we use the
OpenTelmetry APIs3 to create a span and add the desired
attributes to that span.

However, manually instrumenting the front-end appli-
cation is challenging because the GWT source code is in
Java, while the executable code that runs in the browser is
in JavaScript and is not human-readable. In fact, when we
try to implement manual instrumentation using the Java
OpenTelemetry agent’s API, the GWT compiler fails to
transpile it into executable JavaScript. This is because
the OpenTelemetry Java agent is primarily focused on
instrumenting applications that run natively in the Java
Virtual Machine (JVM) [41]. Thus, the main challenge is
to find a way to resolve the incompatibility between the
GWT application source code, written in Java, and our
agent’s JavaScript implementation. Consequently, we have
to resort to a bridging interface that allows us to import
our defined tracer provider from the agent’s JavaScript
instrumentation file into the application’s Java source
code, and use it to create a tracer from which manual
traces can be generated.

To solve this issue, we rely on JavaScript Native In-
terface (JSNI) [42]. This technology is provided by GWT
to embed JavaScript code into the Java source code of a
GWT application. In the context of our GWT application,
the idea is to define a native manual instrumentation
method that is parameterized based on the developers
needs. The role of this method is to act as an interface
between Java and JavaScript, where JSNI syntax will be
used. For example, create a span for such events. The
native method can subsequently be invoked like any other
Java method from the application’s source code where it’s
needed, while having access to the JavaScript agent.

Moreover, this manual instrumentation method requires
the import of our agent’s tracer provider object, through
which it can access a tracer to create the span.

Unfortunately, while JSNI provides a way to interact
with JavaScript code, it doesn’t natively support modern
JavaScript features such as module import/export syntax.
The only way to do this in JSNI is to reference the
object as a property of the global window object $wnd in
the browser’s JavaScript environment. Thus, JavaScript
objects are often referenced in JSNI through $wnd. As
such, we stored our tracer provider object as a property
of $wnd to enable its access through JSNI and its use in
the body of our native manual instrumentation method.
However, using global variables for JavaScript integration
has some limitations, primarily related to naming conflicts,
code isolation, and security leaks [43]. As a result, it is
possible but not recommended.

3https://opentelemetry.io/docs/instrumentation/java/manual/
#create-spans

https://opentelemetry.io/docs/instrumentation/java/manual/#create-spans
https://opentelemetry.io/docs/instrumentation/java/manual/#create-spans

IEEE TRANSACTION ON SOFTWARE ENGINEERING, VOL. X, NO. Y, MONTH YEAR 15

B. Data Serialization
We face three main issues with data serialization. These

are the serialization cost, lazy loading of properties and
nested Data Transfer Objects (DTOs).

1) Serialization Cost: GWT frontend applications rely
on the Remote Procedure Call (RPC)mechanism to invoke
server-side methods. The invocation of these methods
involves data exchange based on shared DTO Java ob-
jects. Thus, if we want to instrument the client-server
data exchange, we must serialize these Java objects into
JavaScript Object Notation (JSON) in order to include
them in the generated traces. The cost of this serialization
process can be significantly affected by the size of these
objects. Our evaluation of the performance overhead shows
that serializing small objects is acceptable, while serializ-
ing large objects has some impact. Therefore, we plan to
to investigate other serialization strategies and libraries in
our future work.

2) Lazy loading of proprieties: The GWT framework
uses lazy loading to delay loading certain DTO objects
until they are actually needed. This helps improve the per-
formance of GWT applications by minimizing initial load
time and loading resources only when they are needed.
This technique is widely used in our applications. However,
it poses a problem when serializing DTO objects that
are not fully loaded. Among the most commonly used
serialization libraries such as Gson and Jackson, we find
that Xstream supports resolving the serialization of lazy
loading objects internally, without the need to modify the
application source code. Jackson does not support resolv-
ing the serialization of lazy loading objects by default.
Instead, it requires modifying the implementation of the
DTO Java classes by adding some Java annotations that
tell Jackson to ignore these properties during serialization.
Since one of our objectives is to minimize changes to the
application source code, we use Xstream.

3) Nested DTO Java Objects:: We find that the im-
plementation of our applications contains nested DTO
objects. Nested DTO objects are DTOs that contain
other DTOs as properties, forming a nested structure.
For example, in a library management system, we have
two DTOs: BookDTO and AuthorDTO. Each BookDTO
contains information about a book, including its title,
ISBN, and author represented by the AuthorDTO. Each
AuthorDTO contains information about the author, such
as their name, biography, and the list of books represented
by a list of BookDTOs. In this example, we have a
circular structure, which is considered a challenge for data
serialization tools. For instance, Jackson will get stuck
in an infinite serialization process, unless we use some
annotations to tell it to stop after one round in the current
cycle. We find that Xstream automatically resolves the
serialization of nested DTO objects without any changes
to the application source code.

C. Cross-Origin Resource Sharing (CORS):
CORS is a security feature implemented by web

browsers that restricts web pages from making requests to

a domain other than the one that served the original page.
This is done to prevent malicious scripts from stealing data
or performing actions on behalf of a user without their
consent. Consequently, CORS-related errors can occur and
must be handled appropriately to allow data export when
the application and collector are in different domains.
This can be addressed by defining a CORS policy in
the OpenTelemetry Collector configuration to explicitly
include the application’s URLs in the list of origins from
which the collector is allowed to accept the exported data.
However, this can be difficult to achieve if the collector
configuration is inaccessible or unavailable. Furthermore,
this approach can become error-prone and difficult to
maintain if many applications are intended to send their
telemetry data to the collector.

VI. Related Work
In this section, we discuss prior studies on telemetry

approaches and the performance overhead evaluation of
telemetry agents.

A. Existing Telemetry Approaches
We classify existing telemetry approaches based on the

target application to be instrumented by a given telemetry
approach, the approach itself, and the potential use cases
of the collected telemetry data.

Our findings highlight different levels of similarities
and differences between the instrumented applications.
Regarding the studied platforms, we mainly identify web
[14]–[16], [21], [44]–[47], desktop [14], [48], and IoT [21],
[44], [48], [49] applications. These applications are de-
veloped based on different architectural styles such as
Monolithic [48], N-Tiers [14], Follower-Leader [50] and
Microservices [16], [21], [45], [46], [51]. In terms of their
implementation, they adopt different technologies, such
as Vaadin [14], Spigo [16], AngularJS [46], and Vue [52]
for the frontend and Spring Cloud [49], Spring Boot [46],
[53] and Node.js [46], [47] for the backend. Moreover, they
can be community-based [46], industrial [16], [21], [47],
[51], benchmark-oriented [44], [45], [48] or used for demon-
stration purposes [14]. However, none of these approaches
tackle industrial GWT-Spring applications.

Furthermore, the telemetry approaches used to instru-
ment these applications collect various telemetry data
types, including traces [16], [45], [47], metrics [14], [44],
[46], [54] and logs [46], [55]. Some approaches collect traces
[16], [21], [45], metrics [44], or logs [55] exclusively, while
others collect multiple telemetry data types [46], [51], [54].
This data is generated based on OpenTelemetry [16], [21],
[48], Elastic APM [51], [52], [55], Jaeger [45], [46], or
custom-built [44] instrumentation agents. Some of these
approaches resort to AspectJ [14] or Spring Boot Sleuth
[53] for the instrumentation of their target applications.
To collect the generated telemetry data and transmit it
to the telemetry backend, the examined approaches rely
on telemetry data collectors provided by OpenTelemetry
[21], [47], [56], Jaeger [16], [47] or Fluentd [14]. To store,

IEEE TRANSACTION ON SOFTWARE ENGINEERING, VOL. X, NO. Y, MONTH YEAR 16

index, analyze, and visualize their collected telemetry
data, many approaches relied on one or multiple telemetry
backends, including the Elastic Stack [14], [51], [54], [55],
Jaeger [16], [45]–[47], Zipkin [48], [53], and Prometheus
[47], [48], [54]. While we rely on Elastic Observability as
our telemetry backend, several approaches rely on its foun-
dational predecessor - the Elastic Stack, as constituents of
their telemetry backends. However, none of the existing
approaches used OpenTelemetry exclusively for an end-
to-end instrumentation of the target applications and for
the collection of the generated telemetry data.

The telemetry data collected by these approaches is used
for several purposes, such as constructing call graphs [15],
[45], anomaly detection [47], infrastructure monitoring
[44], [49], application performance monitoring [47], [54],
[55], performance analysis [44], security monitoring [45],
root cause analysis [46], [47], bottleneck detection [16], [53]
and user interaction [14].

Compared to our telemetry objectives, none of the
existing approaches collect telemetry data related to user
navigation of GWT applications, client-sever data ex-
change based on the arguments and return objects of
RPC services, and user identities. For example, Suonsyrja
et al. [14] address user navigation partially, by solely
handling click events, which makes up only a subset of
the user-generated events traced by our approach. This
approach also needs to modify the application source code
during instrumentation. Casse et al. [16] and Lui et al.
[15] address RPC calls between application components
by tracing their RPC invocation chains. However, this can
be only used to build call graphs between misconceives,
but not at the class and method level.

Despite the architecture similarities we share with exist-
ing approaches, they still diverge from our work in terms
of the applications they target for instrumentation, the
instrumentation approach, and the objectives and uses
cases for which the telemetry data should be generated. In
our case, we seek to generate telemetry data in alignment
with our defined objectives, including user identity, fron-
tend user navigation, backend actions, and client-server
data exchange, without source code modification and with
minimal performance overhead. Our approach relies on
OpenTelemetry for instrumentation and collection and
Elastic Observability as a telemetry backend. We evaluate
our approach using legacy GWT-Spring applications at
Berger-Levrault.

B. Performance Overhead Evaluation of Telemetry Agents
In the literature, to the best of our knowledge, we iden-

tify five studies that evaluate the performance overhead of
telemetry agents. We classify these studies based on their
goals, benchmark applications, evaluation methodology,
evaluation metrics, and their obtained results.

Based on their goals, these studies can be classified
into approaches that evaluate only the performance over-
head of OpenTelemetry Java agents [21], [23], compare
OpenTelemetry with InspectIT and Kieker Java agents

[48], and evaluate the performance overhead of other
agents like Dapper [57], ROS2 tracing [58]. None of these
approaches evaluate the overhead of frontend agents, like
the JavaScript ones.

Existing approaches rely on different types of bench-
mark applications, including cloud-based microservice
[21], [23], [57], J2SE [48], ROS 2 [58], and Raspberry Pi 4
[48] applications. None of these approaches rely on GWT-
Spring applications.

Similar to our evaluation methodology, these studies
measure the performance of the application with and
without the agents. They compare the evaluation metrics
following these two scenarios to determine the additional
overhead that might be caused by the agents.

Existing studies rely on a variety of evaluation metrics
such as latency [21], [57], [58], CPU utilization [23], [57],
method execution time [48], logging to disk [48], regular
text logging [48], throughput [57] and memory usage [59].
Each of these metrics provides indications about different
aspects of the application performance. Despite its impor-
tance, the response time metric is not considered in any
of these existing studies.

The results vary depending on the different benchmarks
and evaluation metrics used. Shuvo [21] and Reichelt et
al. [48] find between 9% and 16% additional performance
overhead in latency caused by OpenTelemetry Java agents.
As for the OpenTelemetry exporter overhead, DoorDash
Engineering [23] finds that peak CPU usage increases by
33% when the OpenTelemetry exporter is enabled.

Although we share a similar evaluation methodology
with these studies, they differ in terms of target telemetry
agents, benchmark applications and evaluation metrics.
In our case, we evaluate the performance overhead of
OpenTelemetry Java and JavaScript agents using a GWT-
Spring web application based on response time and per-
centage difference metrics. Consequently, it is reasonable
to expect different performance evaluation results that are
not comparable to theirs.

VII. Conclusion & Future Works
In this paper, we report our industrial experience in

instrumenting three real, large-scale, industrial legacy web
applications based on our telemetry approach at Berger-
Levrault. Our approach is motivated by the need of our
internal stakeholders (e.g., product managers, product
owners, architects) to support the maintenance of these
applications. This is based on collecting and analyzing
real-time data about the frontend user navigation, the
backend actions, the client-server data exchange, and the
identity of the end-user initiating them. This allows us
to measure the user experience, build a dependency call
graph of how different components interact, and create a
corpus of backend service input/output data for test case
generation.

To obtain the necessary data, we automatically instru-
ment our GWT-Spring applications to generate traces
of user navigation, backend actions, client-server data
exchange, and the identity of the end user initiating them.

IEEE TRANSACTION ON SOFTWARE ENGINEERING, VOL. X, NO. Y, MONTH YEAR 17

We are able to perform this telemetry with minimal perfor-
mance overhead and no changes to the application source
code by extending the automatic instrumentation capabil-
ities of OpenTelemetry agents. We use an OpenTelemetry
Collector to collect traces generated by different sources,
then we store and analyze them in Elastic Observability.

Furthermore, we empirically evaluate the performance
overhead of our agents by comparing the response time
of the GWT-Spring application with and without running
these agents. We simulate a real-world environment using
Gatling to generate virtual workloads for our application.
The results show that there is no significant performance
overhead when using our agents. However, the data ex-
change agent is sensitive to the size of the serialized data.
The serialization cost is reasonable for small objects, but
practitioners should be cautious when using it with large
objects.

To help other researchers and practitioners implement
their telemetry approaches for industrial contexts, we
discuss lessons learned about overcoming some technical
challenges we faced during the industrialization of our
telemetry approach. Such technical challenges pertain to
data serialization (large objects, lazy loading of properties,
and nested Data Transfer Objects), Cross-Origin Resource
Sharing, and manual instrumentation of GWT frontend
code using JavaScript Native Interface.

As future work, we plan to experiment our telemetry
agents with other types of web applications (e.g., Angular,
React, Sprint Boot) to generalize the results. We would
also like to empirically compare OpenTelemetry, Elastic
APM, and Spring Cloud Sleuth agents to help practition-
ers choose the best agent for their use cases based on their
performance overhead and the types of collected telemetry
data. Furthermore, we want to show some use cases of
the collected telemetry data by constructing a dependency
call graph of user navigation and developing an automated
testing approach for RPC/REST services based on their
traced input/output data.

References
[1] H. M. Sneed, “Integrating legacy software into a service ori-

ented architecture,” in Conference on Software Maintenance
and Reengineering (CSMR’06). IEEE, 2006, pp. 11–pp.

[2] S. Adjoyan, A.-D. Seriai, and A. Shatnawi, “Service identifi-
cation based on quality metrics object-oriented legacy system
migration towards soa,” in SEKE: Software Engineering and
Knowledge Engineering. Knowledge Systems Institute Gradu-
ate School, 2014, pp. 1–6.

[3] H. Mili, I. Benzarti, A. Elkharraz, G. Elboussaidi, Y.-G.
Guéhéneuc, and P. Valtchev, “Discovering reusable functional
features in legacy object-oriented systems,” IEEE Transactions
on Software Engineering, 2023.

[4] B. Verhaeghe, A. Shatnawi, A. Seriai, N. Anquetil, A. Etien,
S. Ducasse, and M. Derras, “Migrating gui behavior: from gwt
to angular,” in 2021 IEEE International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 2021, pp. 495–
504.

[5] B. Verhaeghe, A. Shatnawi, A. Seriai, A. Etien, N. Anquetil,
M. Derras, and S. Ducasse, “From gwt to angular: An exper-
iment report on migrating a legacy web application,” IEEE
Software, vol. 39, no. 4, pp. 76–83, 2021.

[6] “Berger-levrault,” 2023. [Online]. Available: https://www.
berger-levrault.com

[7] “Gwt.” [Online]. Available: https://www.gwtproject.org/
[8] I. Boukhraouba et al., “From user activity traces to navigation

graph for software enhancement: An application of graph neural
network (gnn) on a real-world non-attributed graph,” in ACM
International Conference on Information and Knowledge Man-
agement (CIKM2023), 2023.

[9] A. Shatnawi, H. Mili, G. El Boussaidi, A. Boubaker, Y.-G.
Guéhéneuc, N. Moha, J. Privat, and M. Abdellatif, “Analyz-
ing program dependencies in java ee applications,” in 2017
IEEE/ACM 14th International Conference on Mining Software
Repositories (MSR). IEEE, 2017, pp. 64–74.

[10] G. Darbord, A. Etien, N. Anquetil, B. Verhaeghe, and M. Der-
ras, “A unit test metamodel for test generation,” in Interna-
tional Workshop on Smalltalk Technologies, 2023.

[11] “Apache log4j,” 2023. [Online]. Available: https://logging.
apache.org/log4j/2.x/

[12] “OpenTelemetry: OTLP Specification 1.0.0,” 2019. [Online].
Available: https://opentelemetry.io/docs/specs/otlp/

[13] “Elastic Observability: Transform Your Data into AI-Powered
Insights,” 2023. [Online]. Available: https://www.elastic.co/
observability

[14] S. Suonsyrjä and T. Mikkonen, “Designing an Unobtrusive
Analytics Framework for Monitoring Java Applications,” in
Software Measurement, ser. Lecture Notes in Business Infor-
mation Processing, A. Kobyliński, B. Czarnacka-Chrobot, and
J. Świerczek, Eds. Cham: Springer International Publishing,
2015, pp. 160–175.

[15] H. Liu, J. Zhang, H. Shan, M. Li, Y. Chen, X. He, and
X. Li, “JCallGraph: Tracing Microservices in Very Large Scale
Container Cloud Platforms,” in Cloud Computing – CLOUD
2019, ser. Lecture Notes in Computer Science, D. Da Silva,
Q. Wang, and L.-J. Zhang, Eds. Cham: Springer International
Publishing, 2019, pp. 287–302.

[16] C. Cassé, P. Berthou, P. Owezarski, and S. Josset, “A
Tracing Based Model to Identify Bottlenecks in Physically
Distributed Applications,” in 2022 International Conference
on Information Networking (ICOIN), Jan. 2022, pp. 226–231,
iSSN: 1976-7684. [Online]. Available: https://ieeexplore.ieee.
org/abstract/document/9687217

[17] “Telemetry: Summary of concept and rationale,” p. 13455, Dec.
1987.

[18] “OpenTelemetry: Instrumentation for JavaScript Applications,”
2019. [Online]. Available: https://opentelemetry.io/docs/
instrumentation/js/

[19] G. Leffler, “OpenTelemetry and observability: What, why, and
why now?” Sydney: USENIX Association, Dec. 2022.

[20] “IBM: What is OpenTelemetry?” 2023. [Online]. Available:
https://www.ibm.com/topics/opentelemetry

[21] G. K. Shuvo, Tail Based Sampling Framework for Distributed
Tracing Using Stream Processing, 2021. [Online]. Available:
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-306699

[22] “Splunk,” 2023. [Online]. Available: https://www.splunk.com/
[23] “DoorDash Engineering: Optimizing OpenTelemetry’s Span

Processor for High Throughput and Low CPU Costs,” 2023.
[Online]. Available: https://doordash.engineering/2021/04/07/
optimizing-opentelemetrys-span-processor/

[24] “HTMLElementEventMap | typescript - v3.7.7,” 2020. [Online].
Available: https://microsoft.github.io/PowerBI-JavaScript/
interfaces/ node modules typedoc node modules
typescript lib lib dom d .htmlelementeventmap.html

[25] “OpenTelemetry: Tracing API,” 2019, section: docs. [Online].
Available: https://opentelemetry.io/docs/specs/otel/trace/api/

[26] “OpenTelemetry: Tracing SDK,” 2019, section: docs.
[Online]. Available: https://opentelemetry.io/docs/specs/otel/
trace/sdk/

[27] “Nodejs,” 2023. [Online]. Available: https://nodejs.org/en
[28] “Babeljs,” 2023. [Online]. Available: https://babeljs.io/
[29] “Webpack,” 2023. [Online]. Available: https://webpack.js.org/
[30] D. Gomez Blanco, Practical OpenTelemetry: Adopting Open

Observability Standards Across Your Organization. Berkeley,
CA: Apress, 2023. [Online]. Available: https://link.springer.
com/10.1007/978-1-4842-9075-0

[31] “OpenTelemetry: Collector,” 2019. [Online]. Available: https:
//opentelemetry.io/docs/collector/

[32] “SigNoz: an open-source observability tool,” 2023. [Online].
Available: https://signoz.io/

https://www.berger-levrault.com
https://www.berger-levrault.com
https://www.gwtproject.org/
https://logging.apache.org/log4j/2.x/
https://logging.apache.org/log4j/2.x/
https://opentelemetry.io/docs/specs/otlp/
https://www.elastic.co/observability
https://www.elastic.co/observability
https://ieeexplore.ieee.org/abstract/document/9687217
https://ieeexplore.ieee.org/abstract/document/9687217
https://opentelemetry.io/docs/instrumentation/js/
https://opentelemetry.io/docs/instrumentation/js/
https://www.ibm.com/topics/opentelemetry
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-306699
https://www.splunk.com/
https://doordash.engineering/2021/04/07/optimizing-opentelemetrys-span-processor/
https://doordash.engineering/2021/04/07/optimizing-opentelemetrys-span-processor/
https://microsoft.github.io/PowerBI-JavaScript/interfaces/_node_modules_typedoc_node_modules_typescript_lib_lib_dom_d_.htmlelementeventmap.html
https://microsoft.github.io/PowerBI-JavaScript/interfaces/_node_modules_typedoc_node_modules_typescript_lib_lib_dom_d_.htmlelementeventmap.html
https://microsoft.github.io/PowerBI-JavaScript/interfaces/_node_modules_typedoc_node_modules_typescript_lib_lib_dom_d_.htmlelementeventmap.html
https://opentelemetry.io/docs/specs/otel/trace/api/
https://opentelemetry.io/docs/specs/otel/trace/sdk/
https://opentelemetry.io/docs/specs/otel/trace/sdk/
https://nodejs.org/en
https://babeljs.io/
https://webpack.js.org/
https://link.springer.com/10.1007/978-1-4842-9075-0
https://link.springer.com/10.1007/978-1-4842-9075-0
https://opentelemetry.io/docs/collector/
https://opentelemetry.io/docs/collector/
https://signoz.io/

IEEE TRANSACTION ON SOFTWARE ENGINEERING, VOL. X, NO. Y, MONTH YEAR 18

[33] “Zipkin: a Distributed Tracing System,” 2023. [Online].
Available: https://zipkin.io/

[34] “Elastic Stack: An Overview,” 2010. [On-
line]. Available: https://www.elastic.co/guide/en/
starting-with-the-elasticsearch-platform-and-its-solutions/
current/stack-components.html

[35] “Elasticsearch,” 2010. [Online]. Available: https://www.elastic.
co/

[36] “Amazon Web Services (AWS),” 2006. [Online]. Available:
https://aws.amazon.com/

[37] “Grafana Labs: Observability Survey 2023: Key find-
ings and analysis on the state of observability,”
Apr. 2023. [Online]. Available: https://grafana.com/
observability-survey-2023/?pg=blog&plcmt=body-txt

[38] “SigNoz: Blog - Top 11 Observability Tools in 2023,” Sep. 2023.
[Online]. Available: https://signoz.io/blog/observability-tools/

[39] T. J. Cole and D. G. Altman, “Statistics notes: What is a
percentage difference?” Bmj, vol. 358, 2017.

[40] “Gatling: professional load testing tool.” [Online]. Available:
https://gatling.io/

[41] “OpenTelemetry: Instrumentation for Java,” 2019. [Online].
Available: https://opentelemetry.io/docs/instrumentation/
java/

[42] “JSNI,” 2023. [Online]. Available: https://www.gwtproject.org/
doc/latest/DevGuideCodingBasicsJSNI.html

[43] A. Taly, U. Erlingsson, J. C. Mitchell, M. S. Miller, and J. Nagra,
“Automated Analysis of Security-Critical JavaScript APIs,” in
2011 IEEE Symposium on Security and Privacy, May 2011, pp.
363–378, iSSN: 2375-1207.

[44] R. Brondolin and M. D. Santambrogio, “A Black-box
Monitoring Approach to Measure Microservices Runtime
Performance,” ACM Transactions on Architecture and Code
Optimization, vol. 17, no. 4, pp. 34:1–34:26, Nov. 2020. [Online].
Available: https://dl.acm.org/doi/10.1145/3418899

[45] S. Jacob, Y. Qiao, Y. Ye, and B. Lee, “Anomalous
Distributed Traffic: Detecting Cyber Security Attacks
Amongst Microservices Using Graph Convolutional Networks,”
Computers & Security, vol. 118, p. 102728, Jul. 2022. [Online].
Available: https://www.sciencedirect.com/science/article/pii/
S0167404822001237

[46] A. Bento, J. Correia, J. Duraes, J. Soares, L. Ribeiro,
A. Ferreira, R. Carreira, F. Araujo, and R. Barbosa, “A Layered
Framework for Root Cause Diagnosis of Microservices,” in 2021
IEEE 20th International Symposium on Network Computing
and Applications (NCA), Nov. 2021, pp. 1–8, iSSN: 2643-
7929. [Online]. Available: https://ieeexplore.ieee.org/abstract/
document/9685494

[47] G. Y. Kusuma and U. Y. Oktiawati, “Application Performance
Monitoring System Design Using Opentelemetry and Grafana
Stack,” Journal of Internet and Software Engineering, vol. 3,
no. 1, pp. 26–35, Nov. 2022, number: 1. [Online]. Available:
https://journal.ugm.ac.id/v3/JISE/article/view/5000

[48] D. Reichelt, S. Kühne, and W. Hasselbring, “Overhead compar-
ison of opentelemetry, inspectit and kieker.” in SSP, ser. CEUR
Workshop Proceedings. CEUR Workshop Proceedings, 2021.

[49] R. Kang, Z. Zhou, J. Liu, Z. Zhou, and S. Xu, “Distributed
Monitoring System for Microservices-Based IoT Middleware
System,” in Cloud Computing and Security, ser. Lecture Notes
in Computer Science, X. Sun, Z. Pan, and E. Bertino, Eds.
Cham: Springer International Publishing, 2018, pp. 467–477.

[50] J. Zhou, Z. Chen, H. Mi, and J. Wang, “MTracer: A Trace-
Oriented Monitoring Framework for Medium-Scale Distributed
Systems,” in 2014 IEEE 8th International Symposium on
Service Oriented System Engineering, Apr. 2014, pp. 266–
271. [Online]. Available: https://ieeexplore.ieee.org/abstract/
document/6830915

[51] S. de Vries, F. Blaauw, and V. Andrikopoulos, “Cost-
Profiling Microservice Applications Using an APM Stack,”
Future Internet, vol. 15, no. 1, p. 37, Jan. 2023, number:
1 Publisher: Multidisciplinary Digital Publishing Institute.
[Online]. Available: https://www.mdpi.com/1999-5903/15/1/
37

[52] O. Ritari, “Monitoring a Kubernetes Application,” Ph.D.
dissertation, Karelia University of Applied Sciences, 2019,
accepted: 2019-12-13T06:46:22Z. [Online]. Available: http:
//www.theseus.fi/handle/10024/266071

[53] S. D. Mallanna and M. Devika, “Distributed Request Tracing
using Zipkin and Spring Boot Sleuth,” International Journal of
Computer Applications, vol. 175, pp. 35–37, Aug. 2020.

[54] R. Boncea, A. Zamfirou, and I. Bacivarov, “A Scalable Architec-
ture for Automated Monitoring of Microservices,” vol. 18, Sep.
2018.

[55] A. Tiwari and D. Mane, “Application
Performance Monitoring Using Log File on ELK
Stack,” IRJET, Jan. 2020. [Online]. Available:
https://www.academia.edu/44341224/IRJET Application
Performance Monitoring Using Log File on ELK Stack

[56] A. Ellis, “Emplacing New Tracing: Adding OpenTelemetry to
Envoy,” Master’s thesis, 2022. [Online]. Available: https://www.
proquest.com/openview/31eb07ac06dd2110c49e0b51ca355ffc/
1?pq-origsite=gscholar&cbl=18750&diss=y

[57] B. H. Sigelman, L. A. Barroso, M. Burrows, P. Stephenson,
M. Plakal, D. Beaver, S. Jaspan, and C. K. Shanbhag, “Dapper,
a large-scale distributed systems tracing infrastructure,” 2010.
[Online]. Available: https://api.semanticscholar.org/CorpusID:
14271421

[58] C. Bedard, I. Lutkebohle, and M. Dagenais, “ros2 tracing:
Multipurpose low-overhead framework for real-time tracing
of ROS 2,” IEEE Robotics and Automation Letters, vol. 7,
no. 3, pp. 6511–6518, jul 2022. [Online]. Available: https:
//doi.org/10.1109%2Flra.2022.3174346

[59] R. J. Rodŕıguez, J. Artal, and J. Merseguer, “Performance eval-
uation of dynamic binary instrumentation frameworks,” Latin
America Transactions, IEEE (Revista IEEE America Latina),
vol. 12, pp. 1572–1580, 12 2014.

Anas Shatnawi received his Ph.D. degree
in computer science from University of Mont-
pellier, France, in 2015. He is now a senior
research engineer at Berger-Levrault. He was a
researcher at Sorbonne University, University
of Milano-Bicocca and University of Quebec at
Montréal. His research interests include soft-
ware reuse, reengineering, reverse engineer-
ing, and empirical software engineering. He
has published many papers in various interna-
tional journals and conferences on these topics.

Bachar Rima is a Ph.D. student at Univer-
sity of Montpellier and Laboratory of Com-
puter Science, Robotics, and Microelectron-
ics (LIRMM), France. His current research
focuses on software observability and log-
ging. His broader research interests include
design patterns, software architectures, soft-
ware maintenance & evolution, and prompt
engineering. He works closely with Berger-
Levrault in a mutually beneficial collaboration
that allows the research to involve real indus-

trial cases and Berger-Levrault to benefit from the applied research.

https://zipkin.io/
https://www.elastic.co/guide/en/starting-with-the-elasticsearch-platform-and-its-solutions/current/stack-components.html
https://www.elastic.co/guide/en/starting-with-the-elasticsearch-platform-and-its-solutions/current/stack-components.html
https://www.elastic.co/guide/en/starting-with-the-elasticsearch-platform-and-its-solutions/current/stack-components.html
https://www.elastic.co/
https://www.elastic.co/
https://aws.amazon.com/
https://grafana.com/observability-survey-2023/?pg=blog&plcmt=body-txt
https://grafana.com/observability-survey-2023/?pg=blog&plcmt=body-txt
https://signoz.io/blog/observability-tools/
https://gatling.io/
https://opentelemetry.io/docs/instrumentation/java/
https://opentelemetry.io/docs/instrumentation/java/
https://www.gwtproject.org/doc/latest/DevGuideCodingBasicsJSNI.html
https://www.gwtproject.org/doc/latest/DevGuideCodingBasicsJSNI.html
https://dl.acm.org/doi/10.1145/3418899
https://www.sciencedirect.com/science/article/pii/S0167404822001237
https://www.sciencedirect.com/science/article/pii/S0167404822001237
https://ieeexplore.ieee.org/abstract/document/9685494
https://ieeexplore.ieee.org/abstract/document/9685494
https://journal.ugm.ac.id/v3/JISE/article/view/5000
https://ieeexplore.ieee.org/abstract/document/6830915
https://ieeexplore.ieee.org/abstract/document/6830915
https://www.mdpi.com/1999-5903/15/1/37
https://www.mdpi.com/1999-5903/15/1/37
http://www.theseus.fi/handle/10024/266071
http://www.theseus.fi/handle/10024/266071
https://www.academia.edu/44341224/IRJET_Application_Performance_Monitoring_Using_Log_File_on_ELK_Stack
https://www.academia.edu/44341224/IRJET_Application_Performance_Monitoring_Using_Log_File_on_ELK_Stack
https://www.proquest.com/openview/31eb07ac06dd2110c49e0b51ca355ffc/1?pq-origsite=gscholar&cbl=18750&diss=y
https://www.proquest.com/openview/31eb07ac06dd2110c49e0b51ca355ffc/1?pq-origsite=gscholar&cbl=18750&diss=y
https://www.proquest.com/openview/31eb07ac06dd2110c49e0b51ca355ffc/1?pq-origsite=gscholar&cbl=18750&diss=y
https://api.semanticscholar.org/CorpusID:14271421
https://api.semanticscholar.org/CorpusID:14271421
https://doi.org/10.1109%2Flra.2022.3174346
https://doi.org/10.1109%2Flra.2022.3174346

IEEE TRANSACTION ON SOFTWARE ENGINEERING, VOL. X, NO. Y, MONTH YEAR 19

Zakarea AL SHARA received his Ph.D.
degree in software engineering University of
Montpellier, France, in 2016. He is now an
assistant professor in the Department of Soft-
ware Engineering at Jordan University of Sci-
ence and Technology. He is the team leader
of collaboration with the Compact Muon
Solenoid (CMS) and the European Organisa-
tion for Nuclear Research (CERN) in Geneva,
Switzerland. His current research interests in-
clude software maintenance, evaluation, archi-

tecture, and modeling. He has published many papers in various
international journals, conferences and workshops on these topics.

Gabriel Darbord is a Ph.D. student in
the Evref team at Inria Lille - Nord Europe,
France. His research focuses on automatic
test generation. His broader research interests
include software maintenance and evolution,
and software modeling. He works closely with
Berger-Levrault in a mutually beneficial col-
laboration that allows the research to involve
real industrial cases and Berger-Levrault to
benefit from applied research.

Djamel Seriai is an Associate Professor at
University of Montpellier and a member of the
Laboratory of Computer Science, Robotics,
and Microelectronics (LIRMM), France. He is
also the co-head of the software engineering
master and a senior software architect with
more than 25 years of experience as an en-
gineer, architect, and project manager in the
software development and maintenance field,
and more than 20 years of experience in inno-
vation related to applied research projects.

Christophe Bortolaso is the head of re-
search at Berger-Levrault, France. He ob-
tained his Ph.D. in computer science from
University of Toulouse III in 2012.

	Introduction
	Telemetry: Concepts & Architecture
	Telemetry Data
	Traces
	Metrics
	Logs

	Telemetry Architecture

	Telemetry at Berger-Levrault
	Industrial Case Study of GWT-Spring Applications
	Telemetry Agents
	Frontend Instrumentation Agent
	Backend Instrumentation Agent

	Telemetry Collector
	Telemetry and Observability Backend

	Performance Overhead Evaluation
	Overview
	Evaluation Metrics
	Response Time Metrics
	Performance Overhead Metric

	Execution Scenarios
	Research Questions and Evaluation Methodology
	RQ1: What is the ground-truth reference for evaluating the performance of agents?
	RQ2: What is the performance overhead of the frontend agent?
	RQ3: What is the performance overhead of the program understanding backend agent?
	RQ4: What is the performance overhead of the data exchange backend agent?

	Results
	RQ1: What is the ground-truth reference for evaluating the performance of agents?
	RQ2: What is the performance overhead of the frontend agent?
	RQ3: What is the performance overhead of the program understanding backend agent?
	RQ4: What is the performance overhead of the data exchange backend agent?

	Threats to Validity
	Internal Threats to Validity
	External Threats to Validity

	Lessons Learned and Discussion
	Manual Instrumentation of GWT Applications
	Data Serialization
	Serialization Cost
	Lazy loading of proprieties
	Nested DTO Java Objects:

	Cross-Origin Resource Sharing (CORS):

	Related Work
	Existing Telemetry Approaches
	Performance Overhead Evaluation of Telemetry Agents

	Conclusion & Future Works
	References
	Biographies
	Anas Shatnawi
	Bachar Rima
	Zakarea AL SHARA
	Gabriel Darbord
	Djamel Seriai
	Christophe Bortolaso

