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Abstract—Interplanetary exploration and colonization are
rapidly expanding fields. Robots without self-charging capabil-
ities can be used to reduce the existing heavy payloads on
spaceships, and their charging processes can be transferred to
a single charging dock. This study proposes the use of vision
and navigation ROS2 (Robot Operating System 2) packages to
create a docking algorithm for the robots. A communication
and queuing system was considered to determine the ranking
of each robot that requires charging. Simulations confirmed the
effectiveness of the proposed docking algorithm and priority
scheduler.

Index Terms—AprilTag, dock, docking manager, charging
queue, priority scheduler

I. INTRODUCTION

Robots can be heavy, and they carry a large payload in
a spacecraft, thus creating less room for other equipment.
To solve this issue, multiple robots can share one docking
and charging station, allowing extra payload for other needs.
To use a single charger for multiple robots, the robots must
manage to organize themselves such that they can all charge
flexibly without running out of battery in the field.

The first step is to navigate the robot to the dock. Guangrui
et al. [1] proposed a two-step vision-based autonomous dock-
ing system for a mobile robot using AprilTag with an enhanced
ORB-SLAM [2]. AprilTag is a visual fiducial system that can
compute the precise 3D position, orientation, and identify the
identification number of the tag relative to the camera [3]. We
used a docking control system similar to that proposed in [1]
which consists of three phases: approach, pose adjustment, and
docking. Although this method works well for a single robot,
additional states must be added for multiple robots.

When multiple mobile robots are used, wireless communi-
cation systems, such as Wi-Fi, must be used. A small solution
is ideal, and Cai et al. [4] proposed a compact, low-cost radio-
frequency system-on-chip method using a microcontroller and
a transmission chip. Although this could be an ideal system for
transmitting messages between machines, additional hardware
and software are required. ROS2 uses data-distribution ser-
vices (DDS) for communication [5]. The primary mechanism

in DDS is called a domain ID which allows for having different
logical networks share a physical network [6]. The domain ID
is used to compute the user datagram protocol (UDP) ports
used for communication and discovery. Every ROS2 node that
uses the same ID can freely pass messages between nodes, thus
eliminating the need for additional hardware and software.

To charge multiple robots using a single dock, there must
be a queue of some sort and possibly a priority system.
Several studies proposed different fuzzy-based approaches for
prioritizing charging for electric vehicles (EVs). However,
they based their successful results only on power conservation
and/or charging costs [7], [8], and did not consider the wait
time for the EVs. Wait times are important because a robot
relies on its power source to move autonomously for task
completion; if time is wasted in waiting to charge, the task
may not be completed efficiently. Hussain et al. [9] proposed
an algorithm using a fuzzy inference system to optimize wait
times for EVs. This algorithm considers multiple chargers
and the same initial starting location for each EV at the
charging center. Mobile robots return to charge only when
required; therefore, their initial locations vary. Park et al. [10]
proposed a fuzzy-based scheme to schedule charging of EVs
with multiple charging centers. This scheme considers varying
the initial distances, charging times, and charging speeds of
each EV. For manual operations, the driver determines when
charging is required. However, for autonomous operations, the
robot determines when charging is required.

The objective of this study was to demonstrate the feasibility
of an autonomous docking controller for multiple robots with
a singular charging station based on ROS that allows each
robot to charge without running out of power before reaching
the dock. For this, the following are the requirements:

• A ROS2 fuzzy-based priority ranking and queue system
that considers multiple robots, a single charger, and that
uses varying initial distances and battery percentage as
requirements.

• A docking controller that allows the robots and docking
manager (DM) to communicate via services and topics [5]



based on six main states that provide autonomous naviga-
tion to the charger and waiting areas. Dock localization,
pose adjustment, and self-localization of the robot rely
on the use of AprilTags and the ROS Nav2 package [11].

• A docking determination algorithm based on distance,
battery percentage, and queue length that calculates when
charging is needed.

The paper is organized as follows. Section II describes the
docking controller that handles docking determination and the
navigation required to reach the charger. The priority scheduler
that places the robots in a charging queue when charging is
required and handles the fuzzy ranking system is described in
Section III. In Section IV, we describe the ROS2 architecture.
The simulation results are presented in Section V. Finally,
Section VIpresents the conclusions.

II. DOCKING CONTROL

The system in this study allows multiple robots with a
single battery-charging station or dock. The docking control
described in this section was applied to each robot individually,
which allows them to determine when docking is needed and
how to navigate to the dock from its location in the charging
queue, which is described further in Section III.

A. Docking Determination

To determine when a robot needs to initiate its docking
sequence to charge, various factors such as the distance from
the docking station, velocity, battery percentage, and battery
voltage can be examined. The robot must ideally initiate
its docking sequence when the current battery percentage or
voltage required to return to the dock is equal to the current
battery percentage or voltage of the robot. However, this would
only be ideal if all measurements are perfect and the robot
encounters no obstacles or other robots.

The current battery percentage of the robot, Pcurr, is used
to calculate the required battery percentage, Preq, needed to
return to the dock safely. To account for potential obstacles
and the waiting time of other robots in the charging queue,
the battery reserve or percentage buffer is subtracted from the
required battery percentage as (1):

Preq = Pcurr − Pbuff −Qbuff , (1)

where Pbuff is a constant set to a fraction of the maximum
percentage, and Qbuff is determined by the size of the queue
and predetermined charging time. In this study, a short charge
time of 60 s was assumed.

The robot must satisfy one of the following conditions to
be considered eligible for docking: The first condition depends
on battery percentage. Battery dissipation tests were performed
to determine the battery percentage required to return to the
dock. From the test data, we obtained Pm, which is the battery
percentage used per meter at a given velocity. When multiplied
by the current distance of the robot Dcurr, the percentage
needed to return to the dock is found by the term in the right
side of the inequality in (2)

Preq − Pmin ≤ Dcurr × Pm, (2)

Fig. 1. Simplified docking algorithm control states used to navigate robot
from starting point to charger.

where the minimum percentage Pmin required to drive the
motors is subtracted from Preq, yielding the actual percentage
required based on the motor specifications. This condition is
satisfied when the required battery percentage is less than or
equal to the percentage required to return to the dock. The
second condition is dependent on the distance between the
robot and dock. If the current distance Dcurr of the robot,
when subtracted by a distance buffer Dbuff , is more than half
of its maximum allowed distance, this condition is satisfied as
in (3).

Dcurr −Dbuff >
Dmax

2
, (3)

where Dbuff is a constant set to account for obstacle avoid-
ance and Dmax is arbitrarily set depending on the user
requirements, which must be within the capabilities of the
robots.

If either of these docking eligibility conditions is true,
then the robot ceases its current task and begins the docking
procedure.

B. Docking Algorithm

The proposed method uses two non-docking states (wait and
start), four docking states (searching, approach, final approach,
and docked), and two queuing states (queue approach and in
queue), as shown in Fig. 1.



Wait State: This is the default docking state in which the
robot performs nondocking actions. When the battery needs
to be charged, it will move to the “start” state.

Start State: In this state, the motion of the robot is halted,
and a request to the DM to add a new robot to the charging
queue is made. If accepted, the robot will receive a pose goal
or movement command, then enter the “search” state.

Search State: The robot begins its AprilTag detection node.
The Python bindings for the AprilTag library were obtained
from [12]. While searching for an AprilTag, the ROS2 Nav2
package was used to navigate to the origin of the map.
Nav2 is a ROS2 navigation stack that uses behavior trees
in combination with different servers to complete various
navigation tasks. When an AprilTag is detected, it creates the
approach and final approach pose goals. Depending on the
queue state of the robot, it can either proceed to the “approach”
state or the “queue approach” state.

Queue Approach State: If the queue state of robot is
”queuing”, it enters the “queue approach” state. The robot then
proceeds to its queue-index goal (QiG), which is provided by
the DM. Each robot receives an index in the queue that is used
to calculate its queue goal. Once it reaches QiG, it changes to
the “in queue” state.

In Queue State: Once in this state, the robot sends a
request to the DM to change its queue state from “queuing” to
“queued.” The robot waits in the queue at its designated QiG
until the currently charging robot has completed charging. At
this point the robot in the queue receives a new QiG to move
forward in the queue, or begins docking with the charger if it
is next in the queue to charge.

Approach State: The sole function of this state is to navigate
towards the approach goal pose while avoiding obstacles using
the ROS2 Nav2 package. The approach goal pose is set 1 m
in front of the AprilTag as shown in Fig. 2. Once the initial
approach goal (IAG) is reached, it will move to the “final
approach” state.

Final Approach State: The objective of this state is to
appropriately adjust the pose of the robot to align with
the dock. It first rotates itself appropriately and then moves
forward as required until the final approach goal (FAG) is
achieved. Fig. 2 shows the FAG set to 0.5 m in front of the
AprilTag or dock. To achieve this goal, the robot should be
within the docking limits to complete its charge.

Docked State: When the FAG is reached, the robot moves to
this state. In this state, the robot stops its motion and completes
charging.

III. PRIORITY SCHEDULING

The priority scheduler handles the addition of new robots to
the charging queue, assigns priority ranks, performs priority
determination if needed, and sends docking commands to
the robots. The charging queue is structured as a variable
queue. However, it functions as a queue for the necessary
charging order of the robots and can change when the priority
determination is deemed necessary.

Fig. 2. Layout of dock and docking positions (IAG and FAG are the initial
and final approach goals, respectively, and Q1–Q3 are the queue index goals
(QiGs)).

When one robot is already docked, the other robots waiting
to charge are assigned waiting areas or QiGs, as points
beginning with Q, for example, Q1–Q3, as shown in Fig. 2,
with the number being the index of the robot in the queue.
The first waiting area is 1 m away from the IAG to avoid
collision when a robot is charged and for easy access to the
goal. Each additional robot waiting area is located 1 m behind
the previous one.

A. Priority Scheduler

The priority scheduler has three main functions: adding new
robots to the charging queue, changing the queue state of the
robots, and sending docking commands to the robots. A robot
can request to be added to the charging queue or change its
queue state. After these requests are completed, the DM sends
new movement commands to all robots in the charging queue
via service calls.

1) Adding a New Robot: When a robot requests to be
added to the charging queue, it sends its ID, distance from
the origin, and battery percentage to the DM. The DM then
computes and assigns a rank to the robot based on the provided
information. The queue is then checked to determine the queue
state for assigning the robot. If the queue is empty, the robot is
assigned to the “docking” state (moved to the dock to charge),
added to the queue, and prepared for the docking procedure.
If the queue is not empty, it is assigned to the “queuing” state
(moved to queuing area). Simultaneously, the state of the last
robot is checked, and the current robot is added to the queue
accordingly. If the last robot in the queue is in a “queuing”
state, then a priority ranking is performed, and the appropriate
states are reassigned. At this point, the queuing procedure for
this request is completed, and the DM sends each robot in the
charging queue docking commands based on their state and
rank.

2) State Change: Another possible request to a DM is a
state change. This occurs when a robot completes an action
related to the moving queue state (“docking” or “queuing”)
and arrives at its destination (FAG or QiG) or when charging
is completed. If the current state of a robot during the request



is “docking” or “queuing”, then it is reassigned to “charging”
(currently charging) or “queued” (waiting in the queuing area),
respectively. If the current state is “charging,” then the robot
is removed from the queue, and the next available robot in the
queue is assigned to “docking”. At this point, the scheduler
finishes the request and sends commands to the robots, if
needed.

3) Movement Commands: Once the scheduler completes
the queue for the current request, it reassesses the queue and
sends each robot an appropriate movement command. A robot
can only move after it or another robot is finished charging or
when it is initially added to the queue. Once a robot completes
charging, the first robot in the queue moves from Q1 to IAG as
shown in Fig. 2, performs pose adjustment, and finally moves
on to the FAG. If a robot is at Q2, it moves forward in the
physical queue to Q1 and the process continues.

B. Priority Queue States

A robot can move through either two or four priority states;
only two states, “docking” and “charging”, are used for a
robot if the charging queue is empty. The robot enters the
“docking” state and navigates to the dock and switches to
the “charging” state when it is successfully connected to the
charger. If the charging queue is not empty, the robot must first
use the “queuing” and “queued” states to wait for the previous
robots to complete charging. Although multiple robots can be
in the “queuing” or “queued” states, only one maybe be in the
“charging” or “docking” states at a time.

C. Priority Ranking

The factors used to determine the priority ranks were the
distance from the origin and battery percentage. A shorter
distance and battery percentage are given a higher priority.
Because a shorter distance has a higher priority than a longer
distance, wait times can be optimized. Fuzzy logic is used
to obtain the priority rank for each robot. A rule-based table
containing nine rules is presented in Fig. 3, which depends on
the combination of two different factors: distance and battery
percentage. These rules are based on “if-then” rules and were
selected for simplicity because rule-based systems are robust.

Each robot receives an initial ranking score when it requests
to dock. Using fuzzy logic for a simpler priority comparison,
its initial rank is then grouped into one of the five categories:
very high, high, medium, low, and very low.

D. Priority Determination

Priority determination is aimed at optimizing the waiting
times for charging when multiple robots need to be charged
simultaneously. When two or more robots are actively moving
to the queuing areas (“queuing” state), a priority determination
can be made because the robot requested later may or may not
have priority over the previous robot to dock first. One scenario
in which this might occur is if Robot 1 is farther and requests
first when Robot 2 is closer to the dock. Even though Robot 1
has an earlier request in this case, if Robot 2 docks first, then
the overall wait time is reduced because Robot 1 would still be

Fig. 3. Fuzzy rule-based table used for assigning robots to a priority rank.

navigating toward the dock. Robots are not compared if they
are in the same rank or the rank directly above or below. This
can help minimize collisions and unnecessary comparisons.

IV. ARCHITECTURE

This section describes the ROS2 architecture of the system
shown in Fig. 4 which comprises multiple robots and a single
charging dock.

A. Robot Architecture

1) Docking Client: This node determines whether the robot
is eligible for docking by obtaining and using distance and
battery data to determine whether it meets the eligibility
conditions. If it meets the eligibility conditions, it begins the
docking procedure and the AprilTag detection node.

2) AprilTag Detection: The only functions that this node
serves are to perform AprilTag detection, pose estimation, and
publishing the estimated poses as frames.

3) Docking Controller: This node has the following two
main functions: First, it communicates the data back and forth
with the DM. The robot sends its ID, distance, and battery
percentage to the DM and requests to dock. If the request is
accepted, the Docking Controller moves to its second function
as the docking state manager. The role of the docking state
manager is to dock the robot successfully. To achieve this, we
used the docking algorithm described in section II-B.

B. Dock Manager Architecture

The Dock Manager has two functions: granting docking
access and maintaining a charging queue with a priority
scheduler. When a robot requests to dock, the DM assigns
the robot to one of five designations and updates the charging
queue. It then sends appropriate movement commands to each
robot on the list.



Fig. 4. Simplified ROS2 architecture that includes three nodes for a single robot and one node for the DM.

Fig. 5. Simulation of a single robot demonstrating the docking algorithm.

V. SIMULATION AND RESULTS

This section shows simulations and their results to confirm
the effectiveness of the proposed docking algorithm and prior-
ity scheduler. Two Gazebo simulations were conducted in this
study. The robot selected for this simulation was the Turtlebot3
Waffle-Pi.

A. Docking Control

Fig. 5 shows the first simulation consisting of a single robot
and demonstrates the docking algorithm without a priority
scheduler to verify its navigation method. The left side of
the figure shows the Gazebo simulation with three randomly
placed obstacles (cubes), the robot with its light detection and
ranging (LiDAR) field (blue rays) and the grey dock. The right
side of the figure illustrates the ROS visualization (RVIZ)
client, thereby showing the robot, occupancy grid, detected
objects, and planned path. The robot could successfully dock
for each of the 10 tests conducted using the Nav2 package,
a map for obstacle avoidance, and AprilTag detection for
navigation and self-localization.

B. Priority Scheduling

The results of the second simulation are shown in Fig. 6,
verifying the functionality of the priority scheduler. It shows

Fig. 6. Simulation of the priority scheduler using three robots and a dock.

the three robots, their LiDAR fields, and the dock. To test this
hypothesis, three robots were simulated using three different
sets of distance thresholds and one set of battery thresholds,
which were used for the fuzzy rankings listed in Table I. The
low threshold for the battery begins at 27% because that is the
minimum percentage needed to power the motors. Only one
battery threshold was tested in order to have less dependent
variables during testing. The distance thresholds were selected
to be within the maximum distance that a robot can travel,
which was arbitrarily set at, 100 m. Each set of thresholds
was tested for three percentage buffer constants: 10%, 5%,
and 2.5%. Each combination of threshold and percent buffer
constants consisted of 18 different tests using combinations
of initial positions, as shown in Table II. In the simulation,
because the robots did not have any real battery data, a
pseudo–battery node was created using a linear timer to reduce
the battery percentage. Although this did not accurately mimic
a real battery, it allowed us to test the functionality of how
the ranks can change over time when the robots move toward
the docking area; the docking determination method described
in Section II-A. All batteries were initially at 100% charge
in these simulations. Because battery data were simulated,



TABLE I
DIFFERENT FUZZY RULES THRESHOLD LIMITS TESTED

Distance Threshold Close Mid Far
1 0–25 m 25–62.5 m 62.5+ m
2 0–10 m 10–25 m 25+ m
3 0–33 m 33–66 m 66+ m

Battery Threshold Low Med High
1 27–50% 50–75% 75–100%

TABLE II
STARTING POSITIONS OF ROBOTS USED FOR SIMULATION IN METERS

Position Robot 1 Robot 2 Robot 3
1 (−10, 0) (−10, 10) (−10, −10)
2 (−30, 0) (−30, 30) (−30, −30)
3 (−70, 0) (−70, 70) (−70, 70)

navigation was not performed in any of these tests as the
docking determination algorithm relied on both accurate bat-
tery data and velocity. Therefore, timers were used to simulate
movement times while assuming no obstacle avoidance and a
constant velocity of 0.1 m/s when navigating. Table III shows
the results of all tests conducted. To pass a test, all robots
must successfully complete charging before their batteries die.
If the battery of a single robot dies before completion, the
test is considered a failure. All tests were performed for each
threshold set at 10% and 5% percentage buffer passed. Only
94.4% of the tests performed at each threshold set passed the
2.5% percentage buffer. Each failed test at this threshold failed
at the same initial position of the robots (one far robot and
two close robots). This is because the percentage buffer was
not sufficiently high as the queue buffer only updates when
a new robot is added to the queue. If too many robots are
added simultaneously, the docking determination algorithm
does not have sufficient time to increase the queue buffer,
thereby producing a failed result.

VI. CONCLUSION

In the current study, a docking algorithm was developed
using ROS2 and AprilTags, which was successfully tested
using a single-robot simulation. A priority scheduler was
created to accurately rank robots in a charging queue and
send movement commands to each robot accordingly. The
simulation results verified the functionality of the priority
scheduler, which could accurately rank robots based on fuzzy
ranks, update their states, and dock without running out of
power.

To apply the proposed method to interplanetary exploration
and colonization, the pseudo–battery node must be adjusted by
acknowledging the effects of temperature variation and battery
degradation on a robot by being on another planetary body as
well as the operating conditions of the robot and its actual
battery depletion rate.

To verify the proposed method, the communication using
long-distance Wi-Fi needs a further discussion because this

TABLE III
PASSING TEST RESULTS USING THREE DIFFERENT DISTANCE THRESHOLDS
SHOWN IN TABLE I AND THREE DIFFERENT PERCENT BUFFER CONSTANTS

Threshold 10% 5% 2.5%
1 100% 100% 94.44%
2 100% 100% 94.44%
3 100% 100% 94.44%

can consume large amounts of energy. Thus, the maximum
distance from the dock and maximum number of robots the
proposed method can handle should be considered. Once these
parameters are known, then the range of the robots can be
maximized and possible work area switching can be performed
when multiple chargers are used.

Testing physical robots once all simulations are complete is
also necessary. Currently, a physical robot has been assembled
and its default software has been tested. A camera was
installed and calibrated. The code from the simulation was
transferred to the physical robot in steps and carefully tested.
AprilTag detection was tested, and a tag was successfully
detected. The docking algorithm was also tested; however,
changes were made to the mapping and odometry features. A
local laptop was used to simulate the DM. A priority scheduler
was implemented and tested via Wi-Fi for a single robot. We
also successfully tested the priority scheduler using service
calls on the terminal.
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