
HAL Id: hal-04344435
https://hal.science/hal-04344435v1

Submitted on 14 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Formal approach for the correct deployment of cloud
applications

Amel Mammar, Meriem Belguidoum, Saddam Hocine

To cite this version:
Amel Mammar, Meriem Belguidoum, Saddam Hocine. A Formal approach for the correct deployment
of cloud applications. Science of Computer Programming, 2024, �10.1016/j.scico.2023.103048�. �hal-
04344435�

https://hal.science/hal-04344435v1
https://hal.archives-ouvertes.fr

A Formal Approach for the Correct Deployment of
Cloud Applications

Amel Mammara,∗, Meriem Belguidoumb, Hocine Hibab

aSAMOVAR, Institut Polytechnique de Paris, Télécom SudParis, France
bConstantine 2 University, Algeria

Abstract

Deployment of cloud applications is a complex task. It refers to the enable-
ment of SaaS, PaaS or IaaS solutions that may be accessed on demand by end
users. It encompasses all the activities from installation to uninstallation, in-
cluding reconfiguration, etc. To facilitate the deployment of cloud applications,
it is essential to design them as component-based applications in order to fa-
vor the design by reuse and reduce the development cost. However, assembling
components can be a tedious and error-prone task if sufficient precautions are
not taken regarding different constraints, dependencies, and conflicts between
components. In this paper, we introduce a formal Event-B-based approach for
the modelling and the verification of component-based applications deployment.
Our goal is to build correct by-construction systems that fulfill the different con-
straints regarding the components, the cloud infrastructure, and the deployment
process. Basically, our approach starts with an abstract model describing the
main concepts of the system. Then different details are gradually introduced
by refinement. For each refinement step, proof obligations are produced to
ensure the model’s correctness. The obtained formal model consists of a pre-
cise specification on which mathematical reasoning can be carried out to prove
the correctness of our component-based application model and validate its de-
ployment in a cloud environment by using ProB. The presented approach is
illustrated through a case study.

Keywords: Cloud computing, Software deployment, Component-based

application, Elasticity management, Event-B, Formal verification,

Refinement.

∗Corresponding author
Email addresses: amel.mammar@telecom-sudparis.eu (Amel Mammar),

meriem.belguidoum@univ-constantine2.dz (Meriem Belguidoum),
hiba@univ-constantine2.dz (Hocine Hiba)

Preprint submitted to Elsevier 14/12/2023

1. Introduction

1.1. Context and motivation

Over the years, cloud computing [15, 29] has been a strongly emerging IT for
data storage, virtualization, and computing power. Its main growing appeal is
reducing IT costs and resource availability at any time from any location via the
internet. Cloud applications represent a set of interconnected components dis-
tributed over virtual machines and executed on servers. Deploying such applica-
tions, that is installation/uninstallation of components, activation/deactivation
of services [6], etc., is still a challenging problem [13] as it is a tedious and error-
prone task if sufficient precautions are not taken regarding different constraints,
dependencies, and conflicts between components. On the one hand, it requires
ensuring that all intra-dependencies and inter-dependencies of components are
satisfied, i.e. requirements are still available in virtual machines, and conflicts
between components/services or services/services are always avoided.

On the other hand, the deployment in the Cloud should take into account
the most appropriate elasticity management that adjusts dynamically the num-
ber of allocated resources to meet changes in workload demands [5, 16, 19]. The
elasticity mechanism aims at minimizing the resources of allocated virtual ma-
chines (i.e. add/remove VM or increase/decrease the amount of VM resource),
reducing the cost of operation, including new requirements, fulfilling the users’
expectations in terms of QoS, and performing failure recovery.

Existing deployment solutions are ad hoc and require human intervention
to carry out a deployment. The internal application architecture dependen-
cies are not described, and the elasticity is rarely handled. Moreover, they are
customized and work for a specific application and a particular platform. For
instance, Microsoft Azure only supports Microsoft-based applications. Further-
more, none of these solutions formally specifies or verifies the internal application
architecture; including dependencies, conflicting constraints, and deployment
phases (installation, uninstallation, and reconfiguration with cloud elasticity
management). A more detailed description of these approaches is presented in
Section 2.

To ensure the correct deployment of cloud applications, the use of formal
methods is highly required. First, it is necessary to build a formal model for
cloud application architecture, enabling a precise description regarding different
constraints, dependencies, and conflicts between components/services. Indeed,
for each service provided by a component we know exactly its software and hard-
ware requirements, dependencies, conflicts, etc. Then, the deployment phases:
installation, uninstallation, and reconfiguration must be formally specified. This
formalization allows us to ensure that the deployment of component-based ap-
plications respects the desired properties like: (i) two conflict components are
not deployed on the same VM, (ii) all the services required for the activation of a
given service are also activated, (iii) all the resources required for the execution
of a service are available, etc.

2

1.2. Our proposal

In order to address the goals outlined above, we propose a formal approach
for modelling and verifying cloud applications architecture and their deploy-
ment using the Event-B formal method [3]. Event-B is a refinement-based
theorem proving method, which uses set theories and first-order logic to specify
the behavior of software and/or hardware elements. The significant advantage
aspect of Event-B is that it offers a set of tools, like the Rodin platform [4],
for specification and animation that allows building a rigorous development
with interactive proof support. We aim at building correct by-construction
component-based applications that fulfill the different constraints regarding the
component’s dependencies, the cloud infrastructure, and the deployment pro-
cess. Basically, our approach starts with an abstract model describing the main
constraints of cloud applications and their deployment phases. Then, different
details are gradually introduced by refinement. For each refinement step, proof
obligations are produced to ensure the model’s correctness. In this study, we
used the ProB [26] model checker to validate the development by animation.
The proposed approach makes it possible to model, verify and formally validate
any application and its deployment. Indeed, before the real deployment, we
can detect and prevent deadlock and conflict situations which could be really
problematic.

1.3. Paper structure

The remainder of this paper is organized as follows. In Section 2, we present
an overview of the literature related to our contribution with a comparative
study. Sections 3 and 4 introduce the basic concepts of the Event-B method
and the main characteristics of component-based applications. A motivating
case study used throughout the paper for illustrating our proposal is described
in Section 5. An Event-B model for the deployment of the component-based
application is introduced in Section 6. Section 7 describes the verification of the
proposed Event-B model using animation and proofs. Finally, we conclude the
paper and present insights for future work in Section 8.

2. Related work

Several literature reviews have been conducted in the field of formal verifica-
tion for cloud systems. For instance, the authors of [14] conducted a systematic
literature review focusing on the use of formal methods for verifying the correct-
ness of Cloud and Fog systems. They classified the reviewed studies based on the
verification method, modeling language, verification tool, supported properties,
and application domains. Similarly, in [38], a detailed survey on formal verifica-
tion mechanisms and standards in cloud computing for proving the correctness
of a system’s behavior in cloud computing is provided.

There are also some studies that have investigated the verification of various
aspects of cloud computing such as security, resource allocation, SLA (Service

3

Level Agreement), and performance analysis. Some notable examples include
[40, 22, 20, 23, 32, 31]. In [40], a framework is presented for verifying SLAs in a
semi-trusted cloud using a testing algorithm to detect violations related to VM
memory size and defending against attempts to hide SLA violations, ensuring
transparency and accountability in cloud computing. In a similar context. a for-
mal approach based on BRSs and model-checking techniques to model and verify
interaction behaviors of SLA-based cloud computing, providing a comprehen-
sive formal description of cloud entities and their properties, is introduced [22].
A formal framework called cloud calculus is proposed in [20] to address security
verification challenges in elastic cloud computing platforms. The framework
allows for the specification and verification of virtual machine migration and se-
curity policy updates, ensuring consistent preservation of global security policies
during dynamic changes. Karam et al. [23] introduce a secured objective-driven
programming model for cloud-based applications, which is automatically created
at runtime by the PAA Cloud Engine. The model incorporates the XACML
security annotation representation, providing a separate abstraction layer for
enforcing security policies and protecting user information in the cloud. In [32],
a risk-based approach is proposed for analyzing security risks in elastic cloud
applications. Markov decision process model and probabilistic model checking
are used to perform online analysis and decision-making regarding security and
elasticity trade-offs. Muniasamy et al., in [31], focus on ensuring the security of
cloud-based manufacturing cyber-physical systems (C2PS). They use concepts
from Communicating Sequential Processes (CSP) and formal methods to model
and verify security properties in C2PS. The research emphasizes the impor-
tance of composability and scalability in enhancing system security, providing
formalisms and authentication conditions for verifying C2PS.

While the above researches address more security concerns in cloud com-
puting,, our current study serves a distinct purpose that aims at modeling
and verifying of the architecture, the deployment, and the elasticity of cloud
applications. It concerns several aspects in terms of dependency management
and parameterized deployment and elasticity (e.g., conflicting services), optional
services (personalized configuration), etc.). Hereafter, we report on the most
relevant approaches dealing with these aspects and categorized according to the
type of formal method used: Proof-based and Model-checking-based methods.

2.1. Proof-based methods

In [18], an Event-B-based approach is proposed for formal verification of
elastic SCA-based application. The authors formally model the SCA artifacts
and define the Event-B events to represent the elasticity mechanisms (dupli-
cation and consolidation). The verification is driven using the proof obligations
and the ProB animator [26].

Similarly, to this work, the approach described in [1] is also based onEvent-B.
It starts by specifying the main concepts of PFOS (Package-based Free and Open
Source) software, and then refines them through multiple steps to ensure the
correctness of the horizontal and the vertical elasticity properties for composite

4

PFOS. The authors perform the verification using the integrated provers of the
Rodin platform and present an animation process using ProB to trace possible
modelling errors. However, these approaches do not consider the component
deployment and the conflicting constraints.

2.2. Model-checking-based methods

In [33, 41], a formal framework based on the SMT solver Z3 [30] is pro-
posed for modelling and verification of cloud applications. The authors start by
specifying basic cloud services that are used then in a compositional approach
building more elaborated cloud services. The proposed framework focuses on
data and time-related properties of cloud services. Contrary to our approach,
service dependencies, like conflict avoidance and optional services, are not con-
sidered.

In [13], a decentralized-based self-deployment protocol is introduced to au-
tomatically configure a set of software elements deployed on virtual machines.
The proposed protocol is specified and verified using the LOTOS NT (LNT)
language [11] and the CADP model checker [17]. This approach only consid-
ers a restrictive set of requirements, that are, the mandatory services. Inter-
dependencies requirements, like conflicts between components and services, are
not considered. Moreover, model-checking suffers from the well-known state
explosion problem. In other words, this technique may fail when verifying large
systems. Madeus [12] is a component-based deployment model for complex dis-
tributed software. It uses Petri nets to describe the life cycle of components
and the dependencies between them in the form of a dependency graph. This
dependency graph is then used to reduce deployment time by parallelizing de-
ployment actions. However, this approach does not address the verification of
the proposed model.

In [10], the planning problem of the deployment and redeployment of mi-
croservice architectures is considered. Real-world microservice architecture is
modelled using the abstract behavioral specification language (ABS) [21] to
allow for proving formal properties and realizing a set of deployment plans.
Although the approach covers the required/provided/conflicting interfaces and
bind/unbind between them, it does not take into account optional and vertical
elasticity requirements. Moreover, as it uses a simulation technique to validate
the deployment, the correctness of the deployment is not ensured.

In [24], Bigraphical Reactive Systems and Bigraphs are used to model the
cloud system’s structure and elastic behaviors, with Maude encoding for auto-
nomic executability and verification. Future work includes enhancing resource
management through load balancing and vertical scaling strategies.

In [39], Bigraphical Reactive Systems and Bigraphs are employed to model
the cloud’s elasticity structure and dynamic behavior, focusing on cross-layer
elasticity and incorporating horizontal and vertical scaling strategies. The cor-
rectness of the approach is verified using the BigMC model checker tool.

Authors in [9] propose a model-based approach for formal verification and
performance analysis of dynamic load-balancing protocols in cloud environ-

5

ments. A formal modeling language called BIP (Behavior, Interaction, Priority)
is used to model the cloud architecture and load-balancing protocols, and then
use a stochastic extension of BIP to analyze the performance of these protocols.
In addition, the authors use the PRISM model checker to perform probabilistic
model checking of the BIP model.

2.3. Comparative Analysis Criteria

In this section, we outline the criteria for conducting a comparative analy-
sis of the synthesis-related aspects discussed in the related work. The chosen
criteria aim to provide a comprehensive evaluation of the papers based on their
application modeling, modeled and verified properties, formalism used, and the
mechanisms or tools employed for formal verification. By considering these
criteria, we can gain insights into the strengths and limitations of different ap-
proaches in addressing the challenges and requirements of synthesis in cloud
computing. Table 1 presents a comparative analysis based on the following
criteria:

• Application Modelling (App. Model.): states whether the optional
requirements (OR) and the conflict requirements (CR) are covered.

• Modelled and Verified properties (Mod. and Verif. Props.): de-
fines the set of deployment and elasticity properties modelled and verified
by the approach.

• Formalism: presents the formal language/method used for the modelling
and the verification.

• Formal Verification (For. Ver): specifies which mechanisms/tools are
used in the verification phase.

Work
App. Model. Mod. and Verif. Props.

Formalism For. Ver.
OR CR Deployment Elasticity

[18] - - - Duplication/
Consolidation

Event-B Proofs/ProB

[1] - - Installation
Uninstallation

Vertical/
Horizontal

Event-B Proofs/
ProB

[33, 41] - - Data and
time-related
properties

- Z3 SMT solver

[13] + - Configuration /
Activation

- LNT Model
checking

[12] - - Operational
semantics

- Madeus -

[10] - + Reconfiguration Horizontal ABS -
[24] - - Reconfiguration Vertical/

Horizontal
BRS,

bigraph
Maude LTL

model
checker

[39] - - N/P Vertical/
Horizontal

BRS,
Bigraphs

BigMC

6

[22] - - N/P only
interaction
behaviors of

SLA

- BRS BigMC and
NuSMV
symbolic
model
checker

[9] - - N/P N/P only load
balancing

BIP stochastic
extension of

BIP,
PRISM
model
checker

Our ap-
proach

+ + Installation/
Uninstallation/
Reconfiguration

Replication
/Resizing

Event-B Proofs/ProB

Table 1: Comparative study of formal approaches for cloud application deployment

In light of the aforementioned points, it is evident that no single approach
fulfills all the criteria simultaneously: 1) modelling optional and conflict re-
quirements, 2) modelling and verifying deployment and elasticity properties 3)
Formal specification and verification, and 4) using verification and validation
tools.

This paper contributes to the state of the art by:

1. introducing an Event-B-based approach that enables the modeling and
verification of component-based application architecture taking into ac-
count the deployment phases (installation, uninstallation, and reconfigu-
ration), as well as horizontal and vertical elasticity strategies.

2. specifying and verifying components’ intra-dependencies [8] in terms of
optional, mandatory, and conflicting requirements between components
and services.

3. proposing a proof-based approach that scales up and can handle applica-
tions of any size.

However, our approach has certain limitations that we intend to address in
future work:

• Dynamic reconfiguration: The current approach does not facilitate dy-
namic adaptation to new configurations of virtual machines (VMs), such
as adding, removing, or updating resources, while the application is run-
ning. In our approach, reconfiguration is performed offline.

• Considering other elasticity strategies: Although this paper focuses on re-
source resizing and VM duplication, other elasticity strategies could be ex-
plored, such as duplication/consolidation of overloaded/under-provisioned
services. Additionally, incorporating timed constraints on elasticity deci-
sions could prevent repetitive duplication/consolidation operations. For
example, a duplication operation would only be performed if a VM re-
mains overloaded for a specified period of time.

7

• Security issues: To address security concerns, integrating an access control
model, such as the one defined in [27, 34, 36], to restrict access to certain
resources would be beneficial.

3. Component-based applications characteristics

In this section, we focus on the main characteristics of the component-based
applications which we consider. A component-based application can be viewed
as a set of components interacting together through their required and provided
services. A component may provide one or several services while each provided
service generally requires one or several services, which are provided by other
components. In addition to the required services, different constraints can be
expressed for each provided service as hardware resources or software dependen-
cies. In a nutshell, a component-based application should respect the following
requirements introduced in [7, 8]:

Req1 The domain we deal with is composed of a set of virtual machines (VMs).

Req2 We have to deal with a set of components: Postfix and Sendmail are
examples of components.

Req3 A conflict constraint can be defined on two components to state that they
cannot be deployed, at the same time on the same VM. For instance, the
components Postfix and Sendmail are in conflict because the installation
of both components will create a symlink called /usr/bin/mailq, pointing
to the main executable. Also, Postfix does emulate Sendmail’s implemen-
tation, they serve the same purpose but accomplish it by rather different
means. Indeed, Postfix will actually install an executable called ”Send-
mail” for compatibility reasons. So both software has common files that
make them conflicting components.

Req4 A component can be deployed on one or several VMs. Of course, at a
given moment, a component may not be deployed on any VM. One or
several components can be deployed on the same VM.

Req5 A component provides one or several services: at least one of them is
mandatory while others could be optional. Postfix, for instance, provides
MTA as a mandatory service, while the services AmavisdMTA and Anti-
virusMTA are optional and can be activated if needed.

Req6 Each service of a deployed component can be active or not.

Req7 After the deployment of a component, all its mandatory provided ser-
vices are activated. These mandatory services remain activated while the
component is not uninstalled. When deploying the service Postfix, for in-
stance, the mandatory service MTA is directly activated and cannot be
deactivated until uninstalling the component.

8

Req8 An optional service can be activated/deactivated during the deployment of
the component. As the services AmavisdMTA and Anti-virusMTA are op-
tional, they can be activated/deactivated during the deployment of Postfix.

Req9 On a service, the following constraints can be defined:

a. Conflicting services: it denotes a conflicting constraint between two
different services regardless of the components that provide them. It
means that two services cannot be active at the same time on the
same VM. Let us note that at least one of these services is optional,
otherwise, this comes to conflicting components, which are already
covered by the requirement Req3. For instance, any anti-virus ser-
vice is in conflict with the service ftp.

b. Conflicting services of given components: it means that two services
provided by two specific components cannot be active on the same
VM. For instance, the service Anti-virusMTA, of component Postfix,
is in conflict with the service Firewall provided by the component
OS Firewal.

c. Needed resources: to be executed, a service needs a specific amount
of RAM and disk space. Let us note that the same RAM may be
shared by several services whereas it should be enough disk space for
each service. For instance, a RAM of 2 Gb can be shared by several
services if the maximum capacity needed by each of them does not
exceed 2 Gb. However, in terms of disk space, the size of the disk
should be at least equal to the sum of the capacity needed by each
of those services.

d. Needed service of a specific component : it means that a service re-
quires another service from a specific component to be activated. For
instance, the service AntiVirus of the component ClamAV is needed
by the service AntiVirusMTA of the component Postfix.

e. Needed services: it means that the activation of a service requires
some services regardless of the components that provide them. For
instance, the service Mailbox needs the service DNS to work.

Req10 A component can be uninstalled only if none of its provided services is used
by other components in a mandatory way (see Requiement Req9.d).

Req11 Each VM provides different resources like RAM, Memory disk space, etc.

Req12 A VM can be, among others, in one of the two following states: overloaded,
and unused. An overloaded VM means that at least one of its resources is
fully used, whereas an unused VM denotes a VM on which no component
is deployed.

Req13 When a VM becomes unused (no component is installed on it), this latter
can be removed.

9

Req14 When the existing VMs become overloaded, new ones can be added.

Req15 For a given VM, we can decide to increase (resp. decrease) the amount of
a given resource when the VM is over-used (resp. under-used).

Req16 To keep the costs at an acceptable level, we put a constraint on the max-
imum number of installed VMs.

In Section 6, we present a formalization of these requirements usingEvent-B.
The goal of this formal model is to obtain precise and unambiguous specifica-
tions on which mathematical reasoning can be carried out, in order to prove
the correctness of our component-based application model and to verify elastic-
ity management during its deployment in a cloud environment. In this paper,
a correct elasticity management means the possibility to execute elasticity ac-
tions (adding/removing VMs, increasing/decreasing resources) when conditions
specified in requirements Req13-Req16 are fulfilled. Optimization aspects re-
lated to elasticity, that is the more appropriate strategy to execute an elasticity
operation, are not considered.

4. Event-B method

Event-B is the successor of the B method [2], it permits to model discrete
systems using mathematical notations. The complexity of a system is mastered
thanks to the refinement concept that introduce gradually the different parts
that constitute the system starting from an abstract model to a more concrete
one. An Event-B specification is made of two elements: context and machine.
A context describes the static part of an Event-B specification; it consists of
constants C and sets S (user-defined types) together with axiomsAx that specify
their properties. The dynamic part of an Event-B specification is included in
a machine that defines variables V and a set of events. The possible values
that the variables hold are restricted using an invariant, denoted Inv, written
using a first-order predicate on the state variables. Each event is of the form
(G | Act); it can be executed if it is enabled, i.e. all the conditions G, named
guards, hold. In this case, the substitutions Act, called actions, are applied over
variables. For each event, the following proof obligation is generated to ensure
that its execution maintains the invariant:

∀ (S, C, V). (Ax ∧ G ∧ Inv ⇒ [Act]Inv)

Refinement is a process of enriching a model in order to augment the func-
tionality being modelled, or/and explain how some purposes are achieved. Both
Event-B context and machine can be refined. A context can be extended by
defining new sets Sr and/or constants Cr together with new axioms Axr. A
machine is refined by adding new variables and/or replacing existing variables
with new ones Vr that are typed with an additional invariant Invr. New events
can also be introduced to implicitly refine a skip event. In this paper, we are
interested in safety properties that mean that no bad situation can happen.

10

Liveness properties that ensure that a desired situation will eventually happen
are not considered. Therefore, we accept scenarios in which the triggering of
abstract events are prevented by concrete events that are triggered infinitely
many times. In other words, our refinement may be subject to livelock without
affecting the safety properties. Therefore, the correctness of a refinement we
consider in this paper comes down to establishing that the effect of the refined
event is included in that of the abstract one. For each event (G | Act) refined by
the event (Gr | Actr), we have to establish the following two proof obligations:

• guard refinement: the guard of the refined event should be stronger than
the guard of the abstract one:

∀(S,C, Sr, Cr, V, Vr) . (Ax ∧ Axr ∧ Inv ∧ Invr ⇒ (Gr ⇒ G))

• Simulation: the effect of the refined action should be stronger than the
effect of the abstract one:

∀ (S, C, Sr, Cr, V , Vr, X, Xr). (A ∧ Ar ∧ Inv ∧ Invr ⇒ [Actr]¬[Act]¬Invr)

To discharge the different proof obligations, the Rodin1 platform offers an
automatic prover, but also the possibility to plug additional external provers
like the SMT and Atelier B provers that we use in this work. Both provers offer
automatic and interactive options to discharge the proof obligations. Table A.5
in Appendix A gives the semantics of the different mathematical symbols used
in the rest of the paper.

5. A motivating case study: Zimbra software

We illustrate our approach through the example of Zimbra Collaboration
Suite (ZCS)2. It is a collaborative software and a complete messaging solution.
The choice of such a case study is motivated by its entities (components, ser-
vices) and characteristics that permit to show different aspects and constraints,
constituting a typical could application. The installation and utilization re-
quirements (software and/or hardware) of Zimbra provide us the possibility to
better explore, test, verify and validate all the aspects and properties of our
approach regarding different constraints, dependencies, optional requirements,
and conflicts between components and services. ZCS includes an email and a
calendar server, document sharing and storing, instant messaging, and simpli-
fied administrative controls using a web interface. Figure 1 depicts the Zimbra
component-based architecture, it represents a set of interconnected components
described as follows:

1http://www.event-b.org/install.html
2https://www.zimbra.com/email-server-software/

11

Figure 1: ZCS component-based architecture

• Zimbra Core: it is the main component of the application and provides
a Mailbox service that ensures access to end-users and administrators by
the browser and three optional services: ZArchive, ZSpell and ZProxy. Its
requirements are described as follows:

– The Zimbra Core must be installed on a VM that has an Ubuntu
server 12.04 as an operating system (OS).

– The mandatory service Mailbox requires four services: MTA, DNS,
WebServer and Store, and hardware resources: 8Gb of RAM and
10Gb of free disk space (FDS).

– When it is activated, the optional service ZArchive requires the ser-
vice Archive.

– When it is activated, the optional service ZSpell requires the service
Spell.

– When it is activated, the optional service ZProxy requires the service
Proxy.

• Zimbra Proxy: it is a high-performance reverse proxy component for
passing IMAP(S)/POP(S)/HTTP(S) client requests to other internal Zim-
bra services. It offers the Proxy service.

• Zimbra Store: it provides the Store service to the Zimbra core compo-
nent. It is a storage space that includes Datastore, i.e., MySQL database

12

where internal mailbox IDs are linked with user accounts, the Message
store, i.e., where all email messages and file attachments reside, and the
Index store, i.e., where each message is indexed as it enters the system.

• OpenLDAP: it is an implementation of the Lightweight Directory Access
Protocol (LDAP) used to guarantee user authentication. It provides the
LDAP service.

• Amavisd-new: it is a reliable content filter used as a high-performance
interface between MTA such as Postfix and one or more content checkers:
virus scanners, and/or SpamAssassin. It provides the Amavisd service.

• ClamAV: it denotes an anti-virus scanner that protects against malicious
files. It provides Anti-virus service.

• Zimbra Spell: it represents an open-source spell checker used on Zimbra.
It provides the Spell service.

• Postfix: it is a mail transfer agent (MTA) that receives email via SMTP
and routes each message to the appropriate Zimbra mailbox. It provides
three services:

– MTA service: it is a mandatory service and requires LDAP service
and 2Gb of FDS.

– AmavisdMTA service: it is an optional service and requires the Amav-
isd service.

– Anti-virusMTA service: it is an optional service and requires the
service Anti-virus from ClamAV component and the deactivation of
the Firewall service, provided by the OS Firewall component, with
which it is conflicting.

• SendMail: it is an open-source program that is responsible for the deliv-
ery and sending of emails. It supports a wide range of email transfer and
delivery methods, including popular SMTP. This component provides the
SMTA service, which requires an LDAP service and 2 Gb of FDS. Send-
mail is conflicting with Postfix component.

• OS Firewall: this component is defined as a network security program
that controls incoming and outgoing connections based on predetermined
security rules. It provides a Firewall service that is in conflict with the
service Anti-virusMTA of the PostFix component.

• Web Server: it denotes the web application server that Zimbra runs in.
It must be installed in a separate VM that has: an Ubuntu server 12.04
OS, RAM 8Gb, and 20Gb of FDS.

• DNS Server: it is needed for Domain Name System. The purpose of the
DNS is to translate the domain names to the IP addresses and vice-versa.
The DNS is used by Zimbra to find out the mail server of the other side. It

13

requires a VM that has: Windows Server 2012 OS, RAM 8Gb, and 30Gb
of FDS.

Component Provided
Service

Type Service Requirements

Required Services Resources

Zimbra Core

Mailbox M DNS, WebServer, MTA,
Store

OSType:
Ubuntu12.04,

RAM 8Gb, FDS
10Gb

ZSpell O Spell FDS 1Gb
ZProxy O Proxy FDS 2Gb
ZArchive O Archive -

Postfix
MTA M LDAP FDS 2Gb

AmavisdMTA O Amavisd FDS 1Gb
Anti-virusMTA O Anti-virus FDS 1Gb

SendMail SMTA M LDAP FDS 2Gb
OS Firewall Firewall M - -
OpenLDAP LDAP M - -

Amavisd-new Amavisd M - -
ClamAV Anti-virus M - -

Zimbra Proxy Proxy M - -
Zimbra Spell Spell M - -
Zimbra Store Store M - -
Web Server WebServer M - OSType:

US12.04, RAM
8Gb, FDS 20Gb

DNS Server DNS M - OSType:
WS2012, RAM
8Gb, FDS 30Gb

Zimbra
Archive

Archive M - OSType:
WS2012, RAM

8Gb, FDS
120Gb

Browser Interface M Mailbox -
Table 2: ZCS intra-dependencies description

Table 2 summarizes all the Zimbra Collaboration Suite intra-dependencies.
For each component of ZCS we describe its intra-dependencies, including for
each provided service its type (mandatory ’M’ or optional ’O’), its requirements
in terms of conflicting constraints, resources (RAM, OS, FDS, etc.) or required
services.

As we can notice, to ensure the correct deployment of such an application,
we have to cope with several interrelated requirements. Doing this by hand
would be a difficult and error-prone task. The next section introduces a generic
Event-B modelling for the correct by-construction deployment of component-
based applications. We also show how the defined generic modelling is used for
the deployment of the Zimbra Collaboration Suite.

6. Event-B specification of component-based applications

This section introduces our modelling of elastic component-based applica-
tions using Event-B. In this paper, we describe the main modeling elements,
the complete Event-B specification, whose architecture is depicted in Figure 2,
is available at [28]. The built specification is composed of four levels (machines

14

Requirements Component Invariant/Event/Axiom

Req1 C1 Axiom axm1
Req2 C1 Axiom axm1
Req3 C1 Axioms axm2 -axm4

M1 Invariant inv3
Req4 M1 Invariant inv2
Req5 C2 Axioms axm1 -axm4
Req6 M2 Invariant inv1
Req7 M2 Invariant inv2
Req8 M2 Events putActive and putNotActive
Req9(a-b, d-e) C3 and M3 Axioms of C3 and the invariants of M3
Req9 (c) M4 Invariants inv2 and inv4
Req10 M3 Invariant inv4
Req11 C4 Axiom axm1

M4 Invariant inv1
Req12 M4 Invariant inv3
Req13 M1 Event removeVm
Req14 M4 Event addVm
Req15 M4 Event updateRessource
Req16 M4 Invariant inv5

Table 3: Cross-reference between the components of our model and the requirements of Section
3

and contexts) linked with sees/extends/refines relations. In the first level (M1 +
C1), we model the components along with VMs on which they can be deployed.
The second level (M2 + C2) describes the services of components along with
their activation/deactivation. Different constraints associated with services and
components are modeled in the third level (M3 + C3). Finally, the last level
(M4 + C4) deals with the elasticity mechanism. Table 3 relates the components
of our model with the requirements listed in Section 3.

For a step-by-step validation purpose, at each level i, we validate the de-
veloped model Mi by creating a new machine MiInst that refines Mi without
introducing any modification. This machine sees a new context CiInst that ex-
tends both contexts Ci and Ci−1Inst. More details about the validation phases
are provided in Section 7.

The above modelling steps are illustrated through the case study described
in the previous section. It is noteworthy that several solutions (architectures)
are possible for modeling a system in Event-B. The main criterion that makes
one of them better is the correctness proof complexity. A good strategy is to
introduce a particular system characteristic at each refinement level. This is
what we have done in the present work.

15

Figure 2: Architecture of the Event-B models

6.1. Modelling component deployment

At the abstract level, the component-based application is seen as a set of
components deployed on a set of VMs (Requirements Req1 and Req2). In
Event-B, this is formalized as follows. We introduce a context C1 that defines
two abstract sets Components and VMs to represent the set of all possible
components and virtual machines, respectively (Axiom axm1). In this context,
we define a constant conflictComponents, as a relation, to model the fact that a
component is in conflict with some other components (Requirement Req3, see
axioms axm2 -axm4 of Figure 3). Axiom axm3 states that a component cannot
be in conflict with itself; Axiom axm4 specifies that the conflict property is
symmetric.

16

CONTEXT C1
SETS

Components, VMS

CONSTANTS

conflictComponents

AXIOMS

axm1: finite(Components) ∧ finite(VMS)

axm2: conflictComponents ∈ Components ↔ Components

axm3: id ∩ conflictComponents = ∅
axm4: conflictComponents = conflictComponents−1

END

Figure 3: Event-B context C1

To model the case study, the sets and constants of C1 are valued as follows:

CONTEXT C1Inst
EXTENDS C1
AXIOMS

axm1: partition(Components,{ZimbraCore}, {ZimbraProxy}, {ZimbraStore},
{OpenLDAP}, {Amavisdnew}, {ClamAV }, {ZimbraSpell}, {Postfix}
{SendMail}, {OSFirewall}, {WebServer}, {DNSServer})

axm2: partition(VMS, {VM 1}, {VM 2}, {VM 3}, {VM4})
axm3: conflcitComponents = {Sendmail 7→ Postfix,

Postfix 7→ Sendmail, . . .}
END

Context C1 is seen by Machine M1 that models the deployment of compo-
nents of VMs (see Figure 4). For that purpose, we define two variables: Variable
vms to represent the set of existing VMs at a given moment (Invariant inv1),
and Variable deployedOn to model the deployment of a component on differ-
ent VMs. Invariant inv2 states that a component can be deployed on several
VMs (Requirement Req4) whereas inv3 prohibits the deployment of conflict
components on the same VM (Requirement Req3).

17

MACHINE M1
SEES C1
VARIABLES

vms, deployedOn

INVARIANTS

inv1: vms ⊆ VMS

inv2: deployedOn ∈ Components ↔ vms

inv3: ∀ c1, c2. c1 7→ c2 ∈ conflictComponents
⇒

deployedOn[{c1}] ∩ deployedOn[{c2}]=∅
END

Figure 4: Machine M1 : component deployment

To make the state of the application evolve, four events are defined in Ma-
chine M1 in order to add/remove a VM and install/uninstall a component.
Figure 5 gives the Event-B specification of the events that add a new VM or
remove an existing one. Guard grd1 of Event addVm checks that the VM vm to
add does not exist yet. Similarly, Guard grd2 of Event removeVM checks that
no component is deployed on the VM vm that will be removed.

Event addVm =̂

any
vm

where
grd1: vm ∈ VMS \ vms

then
act1: vms:=vms ∪ {vm}

end

Event removeVm =̂

any
vm

where
grd1: vm ∈ vms
grd2: vm /∈ ran(deployedOn)

then
act1: vms:=vms \ {vm}

end

Figure 5: Event-B events to add and remove a VM

Figure 6 gives the events that install and uninstall a component c on a given
VM vm. Guard grd3, of Event Install, checks that no conflict component is
already deployed on the related vm. Similarly, Guard grd2, of Event UnInstall,
checks that the component c is actually deployed on the VM vm. For instance, to
deploy the component ZimbraCore on the VM1, we trigger the event Install with
parameters ZimbraCore and VM1. After, verifying that the guards are satisfied,
the action act1 is executed by adding the tuple (ZimbraCore 7→ VM1) to the
variable deployedOn.

18

Event Install =̂

any
c, vm

where
grd1: c ∈ Components ∧ vm ∈ vms
grd2: c 7→ vm /∈ deployedOn
grd3: conflictComponents[{c}] ∩ deployedOn−1[{vm}]=∅

then
act1: deployedOn := deployedOn ∪ {c 7→ vm}

end

Event UnInstall =̂

any
c, vm

where
grd1: c ∈ Components ∧ vm ∈ vms
grd2: c 7→ vm ∈ deployedOn

then
act1: deployedOn := deployedOn \ {c 7→ vm}

end

Figure 6: Installing and uninstalling a component on a VM

6.2. Modelling component services

The next step concerns the modelling of component services. So, we extend
C1 by a new context C2 that defines an abstract set Services to represent the
set of all possible services and a constant mandProvSers (resp. optProvSers)
to denote the set of mandatory (resp. optional) services of a component (see
Figure 7). Axiom axm1 (resp. axm3) defines the mandatory (resp. optional)
services of a component. Axiom axm2 states that each component should have
at least one mandatory service whereas axm4 specifies that each service of a
component is either mandatory or optional (Requirement Req5).

CONTEXT C2
EXTENDS C1
SETS

Services

CONSTANTS

mandProvSers, optProvSers

AXIOMS

axm1: mandProvSers ∈ Components ↔ Services

axm2: dom(mandProvSers) = Components

axm3: optProvSers ∈ Components ↔ Services

axm4: mandProvSers ∩ optProvSers=∅
END

Figure 7: Axioms of the Event-B context C2

For our case study, constants of C2 are instantiated as follows:

19

CONTEXT C2Inst
EXTENDS C2, C1Inst
AXIOMS

axm1: partition(Services, {Mailbox}, {ZSpell},{ZProxy}, {ZArchive},. . .)
axm2: mandProvSers={ZimbraCore 7→ Mailbox, . . . }
axm3: optProvSers={ZimbraCore 7→ ZSpell, ZimbraCore 7→ ZProxy,

ZimbraCore 7→ ZArchive, . . . }
END

At this level, we model the activation/deactivation of services of a component
when this latter is deployed on a given VM (Requirement Req6). To this
aim, a new machine M2, which refines Machine M1, introduces a new variable
isActive along with the invariant depicted in Figure 8. Invariant inv1 models
the activation of services as a subset of tuples c 7→(vm 7→ s) to state that the
service s of the component c deployed on VM vm is active. This invariant
uses the direct product operator (⊗) whose formal definition id provided in
Appendix A. Invariant inv2 states that the mandatory provided services of a
deployed component should be always activated (Requirement Req7).

MACHINE M2
REFINES M1
SEES C2
VARIABLES

isActive

INVARIANTS

inv1: isActive ⊆ deployedOn ⊗ (mandProvSers ∪ optProvSers)

inv2: deployedOn ⊗ mandProvSers ⊆ isActive

END

Figure 8: Event-B invariants of Machine M2

To make the previous invariant preserved by the execution of the different
events, we refine the event Install and UnInstall by adding actions that update
the variable isActivate. For example, we add the following action for Event
Install to make all the mandatory services of c activated:

isActive := isActive ∪ ({c} × ({vm} × mandProvSers[{c}]))

Likewise, we add the following action to the event UnInstall to remove the cor-
responding services from the set isActive:

isActive := isActive \ ({c} × ({vm} × Services))

Moreover, MachineM2 introduces two additional events that activate/deactivate
an optional service of a deployed component (Requirement Req8). As we can
notice, both events check, in Guard grd1, that the component is deployed on
the related VM; Guard grd2, of Event putActive, checks that the service s is
optional since mandatory ones are always activated and cannot be deactivated

20

as specified in Guard gurd2 of Event putNotActive (see Figure 9). Let us no-
tice that the ANY construct nondeterministically selects a service/component
among a set of possible ones that verify the guards.

Event putActive =̂

any
c0, s0, vm0

where
grd1: c0 ∈ Components ∧ c0 7→ vm0 ∈ deployedOn
grd2: s0 ∈ optProvSers[{c0}] ∧ c0 7→ (vm0 7→ s0) /∈ isActive

then
act1: isActive:= isActive ∪ {c0 7→ (vm0 7→ s0)}

end

Event putNotActive =̂

any
c0, s0, vm0

where
grd1: c0 ∈ Components ∧ c0 7→ vm0 ∈ deployedOn
grd2: s0 ∈ optProvSers[{c0}] ∧ c0 7→ (vm0 7→ s0) ∈ isActive

then
act1: isActive:= isActive \ {c0 7→ (vm0 7→ s0)}

end

Figure 9: Activation/deactivation events in Event-B

Let us notice that, at this level, any service can be active even if the required
services are not available and/or its constraints are not satisfied. This is made
possible since such constraints are not specified yet, and they will be introduced
in the next level.

6.3. Modelling service constraints

In the next level, we model the constraints that can be defined on the service
of a component, which are some of those specified in Requirement Req9 (a, b, d
and e) related to a specific need/prohibition of a given service/component . To
do that, a new context C3 is introduced by extending the Context C2. Each con-
straint on service is modelled by a constant in the context C3. To this purpose,
we define, in Figure 10, the constants conflictServ, conflictCompServ, needed-
Serv and neededServComp to model respectively the conflict between services
(Req9a, Axiom axm1), between services of specific components (Req9b, Ax-
iom axm4), the services required by a given service (Req9e with Axioms axm8
and Req9d with axm10). Axiom axm2 states each service cannot be in conflict
with itself and that the relation conflictServ is symmetric. Axiom axm3 speci-
fies that a mandatory service cannot be in conflict with an optional/mandatory
service of the same component. Axiom axm5 states that if two services s1 and
s2 are in conflict, then for any two components c1 and c2, we do not need to
specify that the couples (c1, s1) and (c2, s2) are also in conflict with respect
to conflictCompServ. Furthermore, the axiom axm6 states that if two services
are in conflict then at least one of them is optional. Axiom axm7 specifies that

21

if two components c1 and c2 are in conflict, we do not need to specify that
their services are in conflict too. Axiom axm9 specifies that the required service
should not be in conflict with the related service, Finally, Axiom axm11 and
axm12 respectively specify that for each service t of a component z needed by
the service y of the component x, the components x and z are not in conflict,
and y and t are not in conflict.

CONTEXT C3
EXTENDS C2
CONSTANTS

conflictServ, conflictCompServ, neededServ, neededServComp

AXIOMS

axm1: conflictServ ∈ Services ↔ Services

axm2: id ∩ conflictServ = ∅ ∧ conflictServ = conflictServ−1

axm3: ∀ c. c ∈ Components⇒
(mandProvSers [{c}]×

(mandProvSers ∪ optProvSers)[{c}]) ∩ conflictServ=∅
axm4: conflictCompServ ∈ mandProvSers ∪ optProvSers ↔

mandProvSers ∪ optProvSers ∧
conflictCompServ = conflictCompServ−1 ∧ id ∩ conflictCompServ=∅

axm5: ∀ c,s.
conflictCompServ [{c 7→ s}] ∩ (Components× conflictServ [{s}])=∅

axm6: ∀ s, c. s ∈ mandProvSers[{c}]
⇒
conflictCompServ [{c 7→ s}] ⊆ optProvSers

axm7: ∀ c1, c2. c1 7→ c2 ∈ conflictComponents
⇒
(({c1} × Services) × ({c2} × Services)) ∩ conflictCompServ = ∅

axm8: neededServ ∈ mandProvSers ∪ optProvSers ↔ Services

axm9: ∀ c, s. c 7→ s ∈ dom(neededServ) ⇒
neededServ [{c 7→ s}]∩ conflictServ [{s}]=∅

axm10: neededServComp ∈ mandProvSers ∪ optProvSers ↔
mandProvSers ∪ optProvSers

axm11: ∀ x,y,z,t. (x 7→ y) 7→ (z 7→ t)∈ neededServComp
⇒

z /∈ conflictComponents[{x}]
axm12: ∀ x,y,z,t. (x 7→ y) 7→ (z 7→ t)∈ neededServComp

⇒
(x 7→ y) 7→ (z 7→ t)/∈ conflictCompServ

END

Figure 10: Axioms of the Event-B context C3

Instantiating this context with the case study gives:

22

CONTEXT C3Inst
EXTENDS C3, C2Inst
AXIOMS

axm1: conflictServ= ∅
axm2: conflictCompServ= {(Postfix 7→ AntiVirusMTA) 7→

(OSFirewall 7→ Firewall)}
axm3: neededServ = {ZimbraCore 7→ Mailbox 7→ MTA,

ZimbraCore 7→ Mailbox 7→ DNS,
ZimbraCore 7→ Mailbox 7→ Webserver,
ZimbraCore 7→ Mailbox 7→ Store,
ZimbraCore 7→ ZArchive 7→ Archive, . . . }

axm4: neededServComp={(Postfix 7→ AntiVirusMTA) 7→
(ClamAV 7→ AntiVirus) }

END

To take the constraints specified in C3 into account, we refine Machine M2
by a new machine M3 that introduces some invariants without any new variable.
These invariants state that the deployment of components and the activation of
services must be performed with respect to these constraints.

MACHINE M3
REFINES M2
SEES C3
INVARIANTS

inv1: ∀ c, s, c1, s1, vm. s 7→ s1 ∈ conflictServ ∧ c 7→ (vm 7→ s) ∈ isActive
⇒
c1 7→ (vm 7→ s1) /∈ isActive

inv2: ∀ c, s, c1, s1, vm. c 7→ (vm 7→ s) ∈ isActive ∧
c1 7→ s1 ∈ conflictCompServ [{c 7→ s }]
⇒
c1 7→ (vm 7→ s1) /∈ isActive

inv3: ∀ c, s, s1, vm. c 7→ (vm 7→ s) ∈ isActive ∧ . s1 ∈ neededServ [{c 7→ s}]
⇒
(∃ c1, vm1· c1 7→ (vm1 7→ s1) ∈ isActive

inv4: ∀ c, s, c1, s1, vm. c 7→ (vm 7→ s) ∈ isActive ∧
c1 7→ s1 ∈ neededServComp[{c 7→ s}]
⇒
(∃ vm1. c1 7→ (vm1 7→ s1) ∈ isActive)

END

Figure 11: Event-B invariants of Machine M3

Figure 11 depicts the invariants related to the different constraints. Invariant
inv1 specifies that two conflicting services cannot be activated at the same time
on the same VM (Requirement Req9.a). Invariant inv2 states that for each
couple of conflicting services (s, s1) provided by two components c and c1 that
are deployed on the same VM, then both cannot be activated at the same time
(Requirement Req9.b). Invariant inv3 states that, for each service s1 needed
by another service s, it should exist a deployed component c1 that provides
s1 (Requirement Req9.d). Finally, inv4 specifies that if a service s needs a
service s1 of a specific component c1, then a VM vm1 should exist on which c1

23

is deployed with the service s1 activated (Requirement Req9.e).
To make these invariants preserved after the execution of each event, we

add adequate guards at each event that updates the variables involved in these
invariants. For instance, to make the event Install preserve the invariants inv1,
inv2 and inv4, we add the guards grd inv1, grd inv2 and grd inv4 as depicted
by Figure 12. Guard grd inv1 states that each service s1 in conflict with a
mandatory service s of the component c should be not active on the VM vm on
which c is deployed. Guard grd inv2 ensures that any service s1, of a component
c1 that is in conflict with a mandatory service s of the new installed component
c, is not activated on the same VM. Guard grd inv4 specifies that for each
service s1 of the component c1 needed by a mandatory service s of c, it should
exist a VM vm1 on which the component c1 is deployed with the service s1
activated.

Event Install =̂

any
...

where
:
grd inv1: ∀ c1, s1, s. s ∈ mandProvSers[{c}] ∧ s 7→ s1 ∈ conflictServ

⇒
c1 7→ (vm 7→ s1) /∈ isActive //for Invariant inv1

grd inv2: ∀ s, c1, s1· c 7→ s ∈ mandProvSers ∧
c1 7→ s1 ∈ conflictCompServ [{c 7→ s}]
⇒
c1 7→(vm 7→ s1) /∈ isActive //for Invariant inv2

grd inv4: ∀ s, c1, s1. c 7→ s ∈ mandProvSers ∧
c1 7→ s1 ∈ neededServComp[{c 7→ s}]
⇒
(∃ vm1. c1 7→ (vm1 7→ s1) ∈ isActive) //for Invariant inv4

then
act1: ...

end

Figure 12: Refinement of the event Install

The refinement of the event Uninstall is achieved in a similar manner by
adding guards that permit to satisfy the invariants of the machine M3 . Figure
13 depicts the refinement of such an event. Two guards grd inv3 and grd inv4
are added in order to fulfill the invariants inv3 and inv4 respectively. Guard
grd inv3 ensures that for each service s0 of a component c0 that needs a service
s1 of the component c to uninstall, there is a component c1 installed on a VM
vm1 with the service s1 activated. Component c1 must be different from the
component c or installed on a VM different from the VM vm on which c is
installed (c1 7→ vm1 ̸= c 7→ vm). Guard grd inv4 ensures that for each active
service s1 of a component c1 that needs a service s of the component c to
uninstall, there is the same component c installed on a different VM vm2 (vm2

̸= vm) with the service s activated.

24

Event Uninstall =̂

any
...

where
:
grd inv3: ∀ c0, s0, vm0, s1. c0 7→ (vm0 7→ s0) ∈ isActive ∧

s1 ∈ (mandProvSers ∪ optProvSers)[{c}] ∧
s1 ∈ neededServ [{c0 7→ s0}]
⇒
(∃ c1, vm1. c1 7→ vm1 ̸= c 7→ vm ∧ c1 7→ (vm1 7→ s1) ∈ isActive)
//for Invariant inv3

grd inv4: ∀ s, c1, s1, vm1. c 7→ s ∈ neededServComp[{c1 7→ s1}] ∧
c1 7→ (vm1 7→ s1) ∈ isActive
⇒
(∃ vm2· vm2 ̸= vm ∧ c 7→ (vm2 7→ s) ∈ isActive) //for Invariant inv4

then
act1: ...

end

Figure 13: Refinement of the event Uninstall

Likewise, we add the guards grd inv1 and grd inv4 to the event that activates
an optional service. Guard grd inv1 specifies that any service s1 in conflict with
s0 cannot be active on the same VM vm0. Guard grd inv4 states that for each
service s1, of the component c1, needed by the service s0, it should exists a VM
vm1 on which the component c1 is deployed with the service s1 active. This
guard is similar to that of mandatory services when a component is deployed
(Event Install).

Event putActive =̂

any
c0, s0, vm0

where
grd1: . . .
grd2: . . .
grd inv1: ∀ c1, s1. s 7→ s1 ∈ conflictServ ⇒

c1 7→ (vm0 7→ s1) /∈ isActive //for Invariant inv1)
grd inv4: ∀ c1, s1. c1 7→ s1 ∈ neededServComp[{c 7→ s0}]

⇒
(∃ vm1. c1 7→ (vm1 7→ s1) ∈ isActive) //for Invariant inv4)

then
act1: . . .

end

Let us suppose that the user would like to install the component Zimbra-
Core. This is not possible since Gaurd grd1 of Event Install requires an existing
VM on which the component will be deployed. Thus, a prior step consists of
adding a new VM, for instance, VM 1. Now, if the user tries to install this
component on VM 1, the above guard grd inv3 prohibits such an installation
since there is no component c1 that would provide the service DNS required
by the mandatory service Mailbox. In other words, the guards establish an
order on the actions/events that can be carried out at each moment and avoid
inconsistent states, for instance in the case of activating a service without its

25

required services. In this particular example, the user has to install all the com-
ponents that would offer the services required by Mailbox before a successful
installation of the ZimbraCore component.

6.4. Modelling elasticity management

The last step of the Event-B modelling of component-based applications
and their deployment deals with the resources and elasticity mechanisms. For
this sake, we extend the context C3 by a new context C4, that introduces two sets
Resources and osType to respectively denote the set of all possible resources and
the different operating systems that equipped a VM, and have to be managed
during the deployment (see Figure 14). Axiom axm1 states that we distinguish
two kinds of resources, Axiom axm2 associates each VM with its operating
system, Axiom axm3 (resp. axm4) states the needs and requirements of each
service in terms of resources (OS type, RAM, disk space, etc.). Finally, the
invariant inv5 states the maximum number of installed VMs.

CONTEXT C4
EXTENDS C3
SETS

Ressources, oSType

CONSTANTS

ram, diskspace, osType, serviceNeedCapacity, serviceNeedOs, NB

AXIOMS

axm1: partition(Ressources,{ram},{diskspace})
axm2: osType ∈ VMS → oSType

axm3: serviceNeedCapacity ∈ Services × {ram, diskspace} → N
axm4: serviceNeedOs ∈ Services → oSType

axm5: NB ≥ 1

END

Figure 14: Axioms of the Event-B context C4

Instantiating the context C4 on the case study gives:
CONTEXT C4Inst
EXTENDS C3Inst, C4
AXIOMS

axm1: partition(oSType,{UbuntuS1204}, {US1204}, {WS2012})
axm2: osType ={VM1 7→ WS2012, VM2 7→ WS2012, VM3 7→ WS1204,

VM4 7→ WS1204}
axm3: serviceNeedCapacity = {Mailbox 7→ ram 7→ 8, Mailbox 7→ diskpace 7→

10, MTA 7→ diskpace 7→ 2, Archive 7→ ram 7→ 8, Archive 7→ diskspace 7→
120, . . . }

axm4: serviceNeedOs = {Mailbox 7→ US1204, Archive 7→ WS2012, . . . }
END

To model the service resource needs, we refine the machineM3 by introducing
a new machine M4 that sees the context C4. Machine M4 defines a single
variable vmRessources along with four invariants (see Figure 15). For each VM,
the invariant inv1 states the provided capacity on each resource (Requirement

26

Req11). Invariant inv2 states that the capacity of a VM should be sufficient to
cope with the need of each active service deployed on it. Invariant inv3 ensures
that the total disk space needed by all the active services is less or equal to the
disk space of the related VM. This invariant uses a function SUM specified in the
theory SUMandPRODUCT [25]. SUM takes as input a set of services, active
on a given VM, and returns the total of disk space needed by them. Invariant
inv4 ensures that each service is deployed on the adequate operating system,
i.e., the required operating system of the service matches with the one of the VM
on which it is deployed. Finally, the last invariant inv5 models the requirement
Req16 related to the maximum number of installed VMs.

MACHINE M4
REFINES M3
SEES C4
VARIABLES

vmRessources

INVARIANTS

inv1: vmRessources ∈ vms → ({ram, diskspace} → N)
inv2: ∀ vm, s. vm ∈ VMS ∧ vm 7→ s ∈ ran(isActive) ⇒ serviceNeedCapac-

ity(s 7→ ram) ≤ (vmRessources(vm))(ram)

inv3: ∀ vm. vm ∈ vms ⇒ SUM((ran(isActive)[{vm}] × {diskspace})◁
serviceNeedCapacity) ≤ (vmRessources(vm))(diskspace)

inv4: ∀ s,vm. s ∈ dom(serviceNeedOs) ∧ vm ∈ vms ∧ vm 7→ s ∈ ran(isActive)
⇒ serviceNeedOs(s) = osType(vm)

inv5: card(vms) ≤ Nb

END

Figure 15: Invariants of the Event-B machine M4

To preserve the invariant of the machine M4, we refine each event by adding
adequate guards. For instance, we add adequate guards to the event putActive
in order to preserve the invariants inv2, inv3, and inv4. Guard grd8 ensures
that the capacity of the VM in terms of RAM is sufficient to meet the service’s
need, Guard grd9 indicates that the size of the available disk space is sufficient
for all services already active including this service which will become active
later on. Finally, Guard grd10 checks that the operating system of the VM
matches the one needed by the service.

Event putActive =̂

any
c0, s0, vm0

where
grd1: . . .
grd2: . . .
grd inv1: . . .
grd inv3: . . .
grd8: serviceNeedCapacity(s 7→ ram) ≤ (vmRessources(vm))(ram)
grd9: SUM(((ran(isActive)[{vm}] ∪ {s}) × {diskspace}) ◁ service-

NeedCapacity) ≤ (vmRessources(vm))(diskspace)
grd10: serviceNeedOs(s) = osType(vm)

then

27

act1: . . .
end

Elasticity in component-based applications consists in adding a new VM or
removing an existing one (horizontal elasticity) or increasing/decreasing the
resource capacity of an existing VM (vertical elasticity) [37]. In our case, a new
VM is added when the resources of all the existing VM are over-used, that is
more than 80% of their disk capacities is used. Therefore, for example, we refine
the events addVM and removeVM by adding respectively the following guards:

∀ vm1. vm1 ∈ ran(deployedOn) ⇒
SUM((ran(isActive)[{vm}] × {diskspace}) ◁ serviceNeedCapacity)

>
80 × (vmRessources(vm1))(diskspace)÷ 100

and

∀ vm1. vm1 ∈ ran(deployedOn) ⇒
SUM((ran(isActive)[{vm}] × {diskspace}) ◁ serviceNeedCapacity)

<
20 × (vmRessources(vm1))(diskspace)÷ 100

For instance, when starting the deployment of the component-based appli-
cation of Figure 1, the user will install, on VM1, the components that do not
require any other component like openLDAP, AmasvidNew, ClamAV, and at
last Postfix. Now, to complete the installation of the ZimbraCore component,
the virtual machine VM 1 does not have enough free disk space required by the
component ZimbraArchive. In that case, a horizontal elasticity is performed by
adding a new VM VM 4. The same process is applied for the installation of
the other required components by adding VM 2 and VM 3. Furthermore, an-
other example of horizontal elasticity is carried out when the Web Server gets
an attack of DDoS, a Distributed Denial of Service that can saturate the RAM
of VM 2 where the Web Server is installed and make the Zimbra application
unavailable to the users. In that case, a horizontal elasticity is performed by
adding a new VM VM 5 with a new instance of the Web Server component.

Likewise, to model the vertical elasticity, Machine M4 introduces one addi-
tional event updateRessource that updates the value of a given resource of a VM
(see Figure 16). Guard grd2 (resp. grd3) checks that the new value of RAM
(resp. disk space) is sufficient to cover the needs of the services expressed by the
invariant inv2 (resp. inv3) of Machine M4. The vertical elasticity mechanism is
specified by guards grd4 and grd5 that respectively state that the resource ca-
pacity should be decreased (resp. increased) when less (resp. more) 20% (resp.
80) of this resource is used.

7. Verification and validation

To validate and verify the correctness of the Event-B models for the de-
ployment of component-based applications, we propose a strategy that includes
three complementary steps (see Figure 17).

28

Event updateRessource =̂

any
vm, res, val

where
grd1: vm ∈ vms ∧ res ∈ Resources ∧ val ∈ N
grd2: res=ram ⇒ (∀ s. s ∈ Services ∧ s ∈ ran(isActive)[{vm}] ⇒

serviceNeedCapacity(s 7→ ram) ≤ val)
grd3: res = diskspace ⇒

SUM((ran(isActive)[{vm}] × {diskspace}) ◁ serviceNeedCapacity)
≤ val

grd4: res = diskspace ∧
SUM((ran(isActive)[{vm}] × {diskspace}) ◁ serviceNeedCapacity)
< (20 × ((vmRessources(vm))(diskspace))) ÷ 100 ⇒ val < vmRes-
sources(vm)(diskspace)

grd5: res = diskspace ∧
SUM((ran(isActive)[{vm}] × {diskspace}) ◁ serviceNeedCapacity)
≥ (80 × ((vmRessources(vm))(diskspace))) ÷ 100 ⇒ val > vmRes-
sources(vm)(diskspace)

then

act1: vmRessources := vmRessources ◁−
{vm 7→ (vmRessources(vm) ◁− {res 7→ val})}

end

Figure 16: The Event-B specification of the vertical elasticity

7.1. Model checking using ProB

In the first step, we check the correctness of the models by using the ProB
model checker for three purposes:

• Axioms satisfiability: for each context, ProB checks the satisfiability of
the axioms that it contains. This means that ProB must find a valuation
of sets and constants that satisfy all the axioms. In our case, ProB checks
that each context CInst that instantiates the generic context C is correct,
that is, it satisfies all the axioms defined in C.

• Invariant correctness: ProB has to detect any scenario that violates in-
variants. A scenario is a sequence of events that, starting from the initial
state, reaches a state that violates one or several invariants. In that case,
the specification should be revised by adding guards to events or correct-
ing the invariants. For instance, according to the requirement Req16,
we have specified that the number of installed VMs should be less than
5 (Nb = 4) and have forgotten to add a guard to the event addVm to
specify that the number of the existing VMs is less than (Nb). So, ProB
returns a counterexample where 5 VMs are deployed, which violates the
invariant inv5 of the machine M4. To fix this error, we have added the
guard (card(vms) < Nb) to the event addVm. Thus, model checking
permits us to define and exhibit some forgotten guards and invariants.
The use of ProB is particularly useful for specifications with several in-
variants that produce a large number of proof obligations for which it

29

Figure 17: Validation and verification process of Event-B models

becomes very difficult to establish which ones are incorrect/correct.

• Absence of deadlock: in this step, we check that at any moment there is at
least one enabled event that can be executed to make the system evolve.

Step Action Event-B event Parameters

1 VM installation addVm vm = VM1, ram=8, diskspace=5
2 Component installation Install c=ZimbraCore, vm=VM1
3 VM installation addVm vm=VM3, ram=8 diskspace=30
4 Component installation Install c=DNSServer, vm=VM3
5 VM installation addVm vm = VM2, ram=8, diskspace=20
6 Component installation Install c=WebServer, vm=VM2
7 Component installation Install c=OpenLDAP, vm=VM1
8 Component installation Install c=Postfix, vm=VM1
9 Component installation Install c=ZimbraStore, vm=VM1
10 Component installation Install c=ZimbraCore, vm=VM1
12 Vertical Elasticity updateRessource val=15, res=diskspace, vm=VM1
13 Component installation Install c=ZimbraCore, vm=VM1

Table 4: Animating a scenario with ProB

7.2. Validation using ProB

In this step, the ProB model checker/animator is used to validate the mod-
els by playing a set of scenarios in order to ensure that we built the right models.
At each step of validation, ProB provides us with the list of the enabled events,
that are, the events whose guards are satisfied. To make this task easier, we
follow a step-by-step validation approach by checking each level according to
the architecture depicted in Figure 2:

30

Figure 18: A step-by-step validation using ProB

1. Machine M1: we animate the machine M1 Anim to validate scenarios that
add/remove a VM and install/uninstall .a component on a VM. We en-
sure for instance that two conflict components cannot be installed on the
same VM. So, we have deployed the component SendMail. Then, we have
ensured that no event is enabled to install the component Postfix because
they are in conflict,

2. Machine M2: we animate the machine M2 Anim to validate scenarios that
deploy components on VMs. We mainly verify that all the mandatory
services of a component are activated when this later is deployed on a
VM. For example, the deployment of the component ZimbraCore makes
the service Mailbox automatically activated.

3. Machine M3: we animate the machine M3 Anim to validate scenarios that
activate services that can be in conflict. We mainly verify that a service
in conflict with an other service or a service of a given component cannot
be active on the same VM. For instance, we have deployed the component
SendMail. Then, we have ensured that no event is enabled to activate the
service MTA of the component Postfix, because it is in conflict with the
component SendMail. We also verify that we cannot activate a service if
at least one of its needed services is not active on the same VM. Finally,
we validate that when a service is made active, all its needed services are
also activated.

4. Machine M4: we animate the machine M4 Anim to validate more com-
plex scenarios like the deployment of the componentZimbraCore to show
which actions are possible at each deployment step as depicted in Table
4 where unsuccessful actions are in bold. Naturally, the first step is to

31

install a VM on which a component can be deployed. So in Step (1), we
choose to install VM1 since it has the adequate OS required by Zimbra-
Core. After executing this event, ProB displays the enabled events in
green and the others are in red to state that it cannot be executed at all
(see Figure 18). ProB gives some parameters of each enabled event, but
it is possible to give ours by selecting the option ”Execute with additional
Guard Constraint. It is what we do in Step (2), when we tried to install
the component ZimbraCore on VM1. So, we get an error message that
states that the guards of the event are not satisfied since indeed the re-
quired services DNS, WebServer, MTA, Store are not available. To meet
such requirements, we have installed the related components (DNSServer,
WebServer, ZimbraStore) that provide them on the VMs with adequate
OS and resources (see Steps 3-9). Finally, in Step 10, we succeeded to
install the component ZimbraCore on VM1. In Step 11, we tried to in-
stall the component ZimbraCore on VM1. This failed because there is no
sufficient disk space as this component requires at least 12 Gb (10 Gb for
Mailbox and 2 Gb for MTA). So, we operate a vertical elasticity action
in Step 12 on VM1. This action makes the deployment of ZimbraCore
possible on VM1 (Step 13).

As one can notice, ProB permits the validation of the proposed model to ensure
that it behaves as expected by prohibiting the actions/events that violate the
requirements.

7.3. Correctness Proofs

Making the specification counterexample during the model checking phase
does not mean that the specification is correct. Indeed, ProB can fail to find
a scenario that violates the invariant for different reasons like a timeout on the
model-checking process. This is why a proof activity should be performed, in
the third step, to ensure definitely the correctness of the models. To prove
the correctness of the development, that are the first machine and all the re-
finement levels, 86 proof obligations have been generated, and 61% (53/86) of
them are automatically discharged by the automatic prover. The remaining
proofs are discharged manually using the interactive prover since they require
more deduction steps and are particularly related to the quantified invariants.
To illustrate such proof obligation, we give the following example. Let us con-
sider Invariant inv3 of Machine M3 and prove that it is preserved by the event
putActive: (inv3 ∧ gardputActive ⇒ [putActive]inv3) where [S]P denotes the
weakest-precondition obtained by replacing each variable in P with its after-
value obtained by executing S. We have to prove that for each service s1
needed by a service s, of a component c, that is active after updating the vari-
able isActive with the tuple ({(c0 7→ vm0 7→ s0) 7→ TRUE}), there should exist
a component c1, deployed on a VM vm1, that offers the service s1 (G1):

c 7→ s ∈ mandProvSers ∪ optProvSers ∧
c 7→ vm ∈ deployedOn ∧

32

(isActive <+ {(c0 7→ vm0 7→ s0)7→ TRUE})
(c 7→ vm 7→ s) = TRUE∧

s1 ∈ neededServ[{c 7→ s}]
⇒

(∃c1, vm1. c1 7→ vm1 ∈ deployedOn∧
c1 7→ s1 ∈ mandProvSers ∪ optProvSers ∧

(isActive<+{(c0 7→ vm0 7→ s0) 7→ TRUE})
(c1 7→ vm1 7→ s1) = TRUE)

Under hypotheses (H1) and (H2) that respectively correspond to the invariant
of M4 and the guard of the event putActive:

H1= ∀ c, s, s1, vm. c 7→ s ∈ mandProvSers ∪ optProvSers ∧ c 7→ vm ∈ deployedOn ∧
isActive(c 7→ vm 7→ s) = TRUE∧ s1 ∈ neededServ [{c 7→ s}]
⇒

(∃ c1, m1. c1 7→ vm1 ∈ deployedOn ∧ c1 7→ s1 ∈ mandProvSers ∪ optProvSers ∧
isActive(c1 7→ vm1 7→ s1) = TRUE)

H2= ∀ s2. s2 ∈ neededServ [{c0 7→ s0}] ⇒
(∃ c2, vm2. c2 7→ vm2 ∈ deployedOn ∧ c2 7→ s2 ∈ mandProvSers ∪ optProvSers ∧

isActive(c2 7→ vm2 7→ s2)=TRUE)

So, we have to prove that (G2)

(∃ c1, vm1. c1 7→ vm1 ∈ deployedOn ∧ c1 7→ s1 ∈ mandProvSers ∪ optProvSers ∧
(isActive <+ {(c0 7→ vm0 7→ s0) 7→ TRUE})

(c1 7→ vm1 7→ s1)=TRUE)

With the additional hypothesis (H3):

H3= c 7→ s ∈ mandProvSers ∪ optProvSers ∧
c 7→ vm ∈ deployedOn ∧

(isActive <+ {(c0 7→ vm0 7→ s0) 7→ TRUE})
(c 7→ vm 7→ s)=TRUE ∧

s1 ∈ neededServ [{c 7→ s }]

To prove (G2), we distinguish two cases:

1. (c 7→ vm 7→ s = c0 7→ vm0 7→ s0): the hypothesis (H3) becomes:

H3= c0 7→ s0 ∈ mandProvSers ∪ optProvSers∧
c0 7→ vm0 ∈ deployedOn ∧
s1 ∈ neededServ[{c0 7→ s0}]

Goal (G2) is discharged for the following values: c1 = c0 and vm1 = vm0.

2. (c 7→ vm 7→ s ̸= c0 7→ vm0 7→ s0): hypothesis (H3) becomes:

33

H3= c 7→ s ∈ mandProvSers ∪ optProvSers∧
c 7→ vm ∈ deployedOn ∧
isActive(c 7→ vm 7→ s) = TRUE∧
s1 ∈ neededServ[{c 7→ s}]

By instantiating (H1) with c, vm and s, then applying Modus-Ponens with
(H3), we obtain:

(∃c1, vm1. c1 7→ vm1 ∈ deployedOn∧
c1 7→ s1 ∈ mandProvSers ∪ optProvSers ∧

isActive(c1 7→ vm1 7→ s1) = TRUE)

Goal (G2) is discharged for the same values that verify this last hypothesis.

Let us note that our Event-B specification is generic and can thus be reused
as such for any particular application. The user has only to instantiate the struc-
tural aspect of the application (valuation of the different elements defined in the
Event-B contexts). Then, he/she can apply the different events of the formal
specification (the behavior part) to make the application evolve but without
redoing any proof. Indeed, the proofs have been discharged independently from
any particular application. In other words, what differs from one specific appli-
cation to another is the static part and all the Event-B models (machines and
refinement) can be reused as such without any modification.

8. Conclusion and future work

In this paper, we have presented an eventB-based approach for modelling
and verification of the deployment of component-based applications. The built
models consist of four levels; each of them stresses a specific aspect of the ap-
plication (VMs, Components, deployment, resources). The validation and the
verification of the Event-B models are carried out by animating the models us-
ing the ProB model checker/animator and also by discharging proof obligations
generated by the proof obligations generator (POG) of the Rodin platform. The
proposed approach has been illustrated through a case study.

From this experience, we drew the following lessons:

1. the Event-B refinement permits us to cope with the complexity of cloud
applications by incrementally introducing the different elements/constraints.
The considered aspects include the application architecture (components
dependencies and conflicting constraints), the deployment phases (instal-
lation, uninstalling), and elasticity strategies (Horizontal and vertical elas-
ticity);

2. defining several refinement levels makes the proof phase easier to deal with
a specific aspect at each level;

34

3. the degree of abstraction offered by Event-B makes it possible to build
generic models that do not depend on any specific case study. In other
words, what would differ from one case study to another is only the val-
uations of different constants defined in contexts. The other parts of the
Event-B specifications remain the same and thus are reused as such.

4. the validation and proof phases permit early error detection. Having sev-
eral abstraction levels facilitate modeling and also error detection.

It is noteworthy that the Event-B specifications obtained at the last re-
finement level are close enough to a programming language like JAVA. A non
Event-B expert can use plugins, like EventB2JAVA [35], to generate a correct
JAVA application that verifies the different requirements without any additional
verification or test.

Currently, we are working on the implementation of this approach that con-
sists in automatically generating the context C5 corresponding to a specific
application. Indeed, all the other models (Mi and Ci) are generic and can be
reused as such regardless of a specific application.

As a future work, we aim at enlarging this approach to take into account
the reconfiguration in a runtime environment and apply other elasticity strate-
gies (such as migration, load balancing, etc.). We also plan to consider security
issues by, for instance, formalizing and proving access control models defined in
[27, 34, 36]. Thanks to the refinement concept of Event-B, we think that on one
hand that such aspects can be integrated by refining the last refinement com-
ponent. On the other hand, we can prevent conflict and deployment problems
by verifying in advance deployment operations and configuration plans before
execution. In this case, we can have a recommendation of the best deployment
plans for such applications.

Appendix A. B symbols

Table A.5 gives the semantics of the different mathematical symbols used in
the paper where:

• A and B denote any sets of elements,

• If a and b are elements of A and B respectively, a 7→ b denotes the tuple
(a, b),

• A1 and B1 denote any subsets of A and B respectively,

• P denotes a predicate,

• S denotes any set expression.

35

C
o
n
ce
p
t

N
o
ta
ti
o
n

S
em

a
n
ti
cs

A
1
,
..
.,

A
n
is

a
p
a
rt
it
io
n
o
f
A

p
a
rt
it
io
n

A
i
⊆

A
∧
⋃ i

A
i
=

A
(A

,
A

1
,
..
.,

A
n
)

∀i
,j
.i
̸=

j
⇒

A
i
∩
A

j
=

∅
S
et

o
f
p
a
rt
ie
s
o
f
A

P1
(A

)
P1

(A
)
=

{A
1
·A

1
⊆

A
∧
A

1
̸=

∅
}

R
is

a
re
la
ti
o
n
fr
o
m

A
to

B
R

∈
A

↔
B

R
⊆

{a
7→

b·
a
∈
A
∧
b
∈
B
}

R
−
1
is

th
e
in
v
er
se

o
f
R

R
−
1

R
−
1
=

{b
7→

a
·a

7→
b
∈
R
}

D
iff
er
en

ce
R

1
\R

2
if
R

1
∈
A

↔
B

a
n
d
R

2
∈
A

↔
B

th
en

,
R

1
\R

2
=

{a
7→

b·
a
7→

b
∈
R

1
∧
a
7→

b
/∈
R

2
}

O
v
er
ri
d
e
o
f
R

1
b
y
R

2
R

1
◁−

R
2

if
R

1
∈
A

↔
B

a
n
d
R

2
∈
A

↔
B

th
en

,
R

1
◁−

R
2
=

{a
7→

b·
a
7→

b
∈
R

2
∨
(a

7→
b
∈
R

1
∧
a
/∈
d
om

(R
2
))
}

D
ir
ec
t
p
ro
d
u
ct

o
f
R

1
a
b
d
R

2
R

1
⊗

R
2

if
R

1
∈
A

↔
B

a
n
d
R

2
∈
A

↔
C

th
en

,
R

1
⊗

R
2
=

{a
7→

(b
7→

c)
·a

7→
b
∈
R

1
∧
a
7→

c
∈
R

2
}

Im
a
g
e
o
f
A

1
b
y
R

R
[A

1
]

R
[A

1
]
=

{b
1
·(
b 1

∈
B

∧
∃a

1
·(
a
1
∈
A

1
∧
a
1
7→

b 1
∈
R
))
}

D
o
m
a
in

o
f
R

d
om

(R
)

d
om

(R
)
=

{a
1
·(
a
1
∈
A
∧
∃b

1
·(
b 1

∈
B

∧
a
1
7→

b 1
∈
R
))
}

R
a
n
g
e
o
f
R

ra
n
(R

)
ra

n
(R

)
=

{b
1
·(
b 1

∈
B

∧
∃a

1
·(
a
1
∈
A
∧
a
1
7→

b 1
∈
R
))
}

D
o
m
a
in

su
b
tr
a
ct
io
n
o
f
R

A
1
◁−

R
A

1
◁−

R
=

{a
7→

b·
(a

7→
b
∈
R

∧
a
/∈
A

1
)}

P
a
rt
ia
l
fu
n
ct
io
n
f

f
∈
A

7→
B

f
∈
A

↔
B

∧
∀a

·(
a
∈
A

⇒
ca
rd

(f
[{
a
}]
)
≤

1
)

T
o
ta
l
fu
n
ct
io
n
f

f
∈
A
→

B
f
∈
A

7→
B

∧
d
om

(f
)
=

A

G
u
a
rd

o
f
a
n
ev
en

t
E

g
rd

(E
)

If
E
=
A
N
Y

X
W

H
E
R
E

G
T
H
E
N

S
th
en

,
g
rd

(E
)
=

G

T
a
b
le

A
.5
:
S
o
m
e
E
v
e
n
t
-B

sy
m
b
o
ls

a
n
d
th
ei
r
se
m
a
n
ti
cs

36

References

[1] Abbassi, I., Graiet, M., Jlassi, S., Elkhalfa, A., Sliman, L.: A Formal Ap-
proach for Correct Elastic Package-Based Free and Open Source Software
Composition in Cloud. In: On the Move to Meaningful Internet Systems.
pp. 732–750. Springer International Publishing (2017)

[2] Abrial, J.R.: The B-book: Assigning Programs to Meanings. Cambridge
University Press (1996)

[3] Abrial, J.R.: Modeling in Event-B - System and Software Engineering.
Cambridge University Press (2010)

[4] Abrial, J.R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin,
L.: Rodin: an Open Toolset for Modelling and Reasoning in Event-B.
International Journal on Software Tools for Technology Transfer 12(6),
447–466 (2010)

[5] Al-Dhuraibi, Y., Paraiso, F., Djarallah, N., Merle, P.: Elasticity in Cloud
Computing: State of the Art and Research Challenges. IEEE Transactions
on Services Computing 11, 430,447 (3 2018)

[6] Arshad, N., Heimbigner, D., Wolf, A.L.: Deployment and Dynamic Re-
configuration Planning for Distributed Software Systems. Software Quality
Journal 15(3), 265–281 (5 2007)

[7] Belguidoum, M.: Conception d’une infrastructure pour un déploiement
sûr et flexible des composants logiciels. Ph.D. thesis, Télécom Bretagne,
Télécom Bretagne (2008)

[8] Belguidoum, M., Dagnat, F.: Dependency Management in Software Com-
ponent Deployment. Electronic Notes in Theoretical Computer Science
182, 17–32 (2007)

[9] Ben Hafaiedh, I., Ben Hamouda, R., Robbana, R.: A model-based ap-
proach for formal verification and performance analysis of dynamic load-
balancing protocols in cloud environment. Cluster Computing 24(4), 2977–
2994 (2021)

[10] Bravetti, M., Giallorenzo, S., Mauro, J., Talevi, I., Zavattaro, G.: A Formal
Approach to Microservice Architecture Deployment, pp. 183–208. Springer
International Publishing, Cham (2020)

[11] Champelovier, D., Clerc, X., Garavel, H., Guerte, Y., McKinty, C.,
Powazny, V., Lang, F., Serwe, W., Smeding, G.: Reference Manual of
the LOTOS NT to LOTOS Translator – Version 5.4 (2011)

[12] Chardet, M., Coullon, H., Pertin, D., Pérez, C.: Madeus: A Formal De-
ployment Model. In: 5th International Symposium on Formal Approaches
to Parallel and Distributed Systems (hosted at HPCS 2018). pp. 1–8 (2018)

37

[13] Etchevers, X., Salaün, G., Boyer, F., Coupaye, T., De Palma, N.: Reliable
Self-deployment of Distributed Cloud Applications. Software: Practice and
Experience 47(1), 3–20 (2017)

[14] Fakhfakh, F., Kallel, S., Cheikhrouhou, S.: Formal verification of cloud
and fog systems: A review and research challenges. J. Univers. Comput.
Sci. 27(4), 341–363 (2021)

[15] Fox, A., Griffith, B., Joseph, A., Katz, R., Konwinski, A., Lee, G., Patter-
son, D., Rabkin, A., Stoica, I., et al.: Above the clouds: A berkeley view of
cloud computing. Dept. Electrical Eng. and Comput. Sciences, University
of California, Berkeley, Rep. UCB/EECS 28(13), 2009 (2009)

[16] Galante, G., de Bona, L.E.: A Survey on Cloud Computing Elasticity.
In: Utility and Cloud Computing (UCC), 2012 IEEE Fifth International
Conference on. pp. 263–270. IEEE (2012)

[17] Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2010: A Toolbox
for the Construction and Analysis of Distributed Processes. vol. 6605, pp.
372–387. Springer (2011)

[18] Graiet, M., Hamel, L., Mammar, A., Tata, S.: A Verification and Deploy-
ment Approach for Elastic Component-Based Applications. Formal Aspects
of Computing 29(6), 987–1011 (Nov 2017)

[19] Herbst, N.R., Kounev, S., Reussner, R.H.: Elasticity in Cloud Computing:
What It Is, and What It Is Not. In: ICAC. vol. 13, pp. 23–27 (2013)

[20] Jarraya, Y., Eghtesadi, A., Debbabi, M., Zhang, Y., Pourzandi, M.: Cloud
calculus: Security verification in elastic cloud computing platform. In: 2012
international conference on collaboration technologies and systems (CTS).
pp. 447–454 (2012)

[21] Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: Abs: A
core language for abstract behavioral specification. In: Aichernig, B.K.,
de Boer, F.S., Bonsangue, M.M. (eds.) Formal Methods for Components
and Objects. pp. 142–164. Springer Berlin Heidelberg, Berlin, Heidelberg
(2012)

[22] Kamel, O., Chaoui, A., Diaz, G., Gharzouli, M.: SLA-Driven modeling and
verifying cloud systems: A Bigraphical reactive systems-based approach.
Computer Standards & Interfaces 74, 103483 (2021)

[23] Karam, Y., Baker, T., Taleb-Bendiab, A.: Security support for inten-
tion driven elastic cloud computing. In: 2012 Sixth UKSim/AMSS Euro-
pean Symposium on Computer Modeling and Simulation. pp. 67–73. IEEE
(2012)

38

[24] Khebbeb, K., Hameurlain, N., Belala, F.: Formal modeling and verification
of cloud elasticity with maude and ltl. In: Attiogbé, C., Ferrarotti, F.,
Maabout, S. (eds.) New Trends in Model and Data Engineering. pp. 64–77.
Springer International Publishing, Cham (2019)

[25] Leuschel, M.: Available at https://prob.hhu.de/w/index.php?title=

Event-B_Theories (2021)

[26] Leuschel, M., Butler, M.: ProB: A Model Checker for B. In: Araki, K.,
Gnesi, S., Mandrioli, D. (eds.) FME 2003: Formal Methods. pp. 855–874.
Springer Berlin Heidelberg (2003)

[27] Li, Z., Wang, D.: Achieving one-round password-based authenticated key
exchange over lattices. IEEE Transactions on Services Computing pp. 1–1
(2019). https://doi.org/10.1109/TSC.2019.2939836

[28] Mammar, A., M. Belguidoum, S.H.H.: A Formal Approach for the Deploy-
ment Verification of Cloud Applications. Available at http://www-public.
imtbs-tsp.eu/~mammar_a/SCP/CBAWithEventB.html (July 2021)

[29] Mell, P.M., Grance, T.: The NIST Definition of Cloud Computing. Tech.
rep., Gaithersburg, MD, United States (2011)

[30] de Moura, L.M., Bjorner, N.: Z3: An Efficient SMT Solver. In: Ramakr-
ishnan, C.R., Rehof, J. (eds.) TACAS. Lecture Notes in Computer Science,
vol. 4963, pp. 337–340. Springer (2008)

[31] Muniasamy, K., Srinivasan, S., Vain, J., Sethumadhavan, M.: Formal meth-
ods based security for cloud-based manufacturing cyber physical system.
IFAC-PapersOnLine 52(13), 1198–1203 (2019)

[32] Naskos, A., Gounaris, A., Mouratidis, H., Katsaros, P.: Online analysis of
security risks in elastic cloud applications. IEEE Cloud Computing 3(5),
26–33 (2016)

[33] Nawaz, M.S., Sun, M.: Using PVS for Modeling and Verifying Cloud Ser-
vices and Their Composition. In: 2018 Sixth International Conference on
Advanced Cloud and Big Data (CBD). pp. 42–47 (2018)

[34] Qiu, S., Wang, D., Xu, G., Kumari, S.: Practical and provably secure
three-factor authentication protocol based on extended chaotic-maps for
mobile lightweight devices. IEEE Transactions on Dependable and Secure
Computing pp. 1–1 (2020)

[35] Rivera, V., Cataño, N., Wahls, T., Rueda, C.: Code Generation for Event-
B. International Journal on Software Tools for Technology Transfer 19(1),
31–52 (2017)

39

https://prob.hhu.de/w/index.php?title=Event-B_Theories
https://prob.hhu.de/w/index.php?title=Event-B_Theories
http://www-public.imtbs-tsp.eu/~mammar_a/SCP/CBAWithEventB.html
http://www-public.imtbs-tsp.eu/~mammar_a/SCP/CBAWithEventB.html

[36] Roy, S., Das, A.K., Chatterjee, S., Kumar, N., Chattopadhyay, S., Ro-
drigues, J.J.P.C.: Provably secure fine-grained data access control over
multiple cloud servers in mobile cloud computing based healthcare applica-
tions. IEEE Transactions on Industrial Informatics 15(1), 457–468 (2019)

[37] Sotiriadis, S., Bessis, N., Amza, C., Buyya, R.: Vertical and horizontal
elasticity for dynamic virtual machine reconfiguration. IEEE Transactions
on Services Computing PP, 1–1 (12 2016)

[38] Souri, A., Navimipour, N.J., Rahmani, A.M.: Formal verification ap-
proaches and standards in the cloud computing: a comprehensive and sys-
tematic review. Computer Standards & Interfaces 58, 1–22 (2018)

[39] Yadav, M.P., Pal, N., Yadav, D.K.: Verification of cloud system elasticity
using bigmc. International Journal of System Assurance Engineering and
Management 13(5), 2208–2220 (2022)

[40] Ye, L., Zhang, H., Shi, J., Du, X.: Verifying cloud service level agreement.
In: 2012 IEEE Global Communications Conference (GLOBECOM). pp.
777–782. IEEE (2012)

[41] Zhang, X., Sun, M.: SMT-Based Modeling and Verification of Cloud Ap-
plications. In: Xia, Y., Zhang, L.J. (eds.) Services 2019. pp. 1–15. Springer
International Publishing (2019)

40

	Introduction
	Context and motivation
	Our proposal
	Paper structure

	Related work
	Proof-based methods
	Model-checking-based methods
	Comparative Analysis Criteria

	Component-based applications characteristics
	Event-B method
	A motivating case study: Zimbra software
	Event-B specification of component-based applications
	Modelling component deployment

	CONTEXT C1
	
	MACHINE M1
	Modelling component services

	CONTEXT C2
	
	MACHINE M2
	Modelling service constraints

	CONTEXT C3
	
	MACHINE M3
	Modelling elasticity management

	CONTEXT C4
	
	MACHINE M4
	Verification and validation
	Model checking using ProB
	Validation using ProB
	Correctness Proofs

	Conclusion and future work
	B symbols

