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RIGID LID LIMIT IN SHALLOW WATER OVER A FLAT BOTTOM

BENJAMIN MELINAND

Abstract. We perform the so-called rigid lid limit on different shallow water models such
as the abcd Bousssinesq systems or the Green-Naghdi equations. To do so we consider an
appropriate nondimensionalization of these models where two small parameters are involved:
the shallowness parameter µ and a parameter ε which can be interpreted as a Froude number.
When parameter ε tends to zero, the surface deformation formally goes to the rest state, hence
the name rigid lid limit. We carefully study this limit for different topologies. We also provide
rates of convergence with respect to ε and a careful attention is given to the dependence on the
shallowness parameter µ.

1. Introduction

We consider shallow water asymptotic models of the water wave equations that can be written
under the general form

ε∂tU + LµU + εQµ(U) = 0.

Here t ∈ R+, x ∈ R or R2 , U = (ζ,V) ∈ R2 or R3, 1+εζ is the nondimensionalized water depth,
V is the nondimensionalized horizontal velocity of the fluid, Lµ is a linear operator that tends to
the wave operator as µ → 0 and Qµ a nonlinear operator. The nondimensionalized parameter
µ measures the shallowness of the flow. The nondimensionalized parameter ε compares the
amplitude of the water waves to the water depth and can also be seen as a comparison between
the typical horizontal velocity of the fluid and the typical velocity of the water waves. Note that
the nondimensionalized parameter ε appears in front of ∂t since the characteristic time used to
nondimensionalize the time variable is the typical time scale of the fluid (and not the one of
water waves). We assume in the following that ε and µ both belong to (0, 1].

The goal of this paper is to perform the limit ε → 0 and understand how the parameter
µ interferes with this convergence. In our framework the velocity component V tends to a
solution of the incompressible Euler equations whereas the free surface ζ tends to 0 thus the
terminology rigid lid limit. Actually the rigid lid approximation is a common assumption in the
oceanographical literature and can be interpreted as a low Froude number assumption (ocean
currents travel slower than water waves). We refer for instance to [BH89, DT90, ANH96] where
existence and stability of nearshore shear waves that are not gravity waves were discussed and
such assumption is used. In the same direction Camassa, Holm and Levermore [CHL96, CHL97]
derive from the free surface Euler equations two asymptotic models called nowadays the lake
equations and the great lake equations where again a rigid lid approximation is considered.
In our setting the lake equations are obtained by neglecting terms of order O(µ) and then
performing the limit ε→ 0 whereas the great lake equations are derived by neglecting terms of
order O(µ2) and then performing the limit ε→ 0. A full justification of the lake equations was
obtained in [BM10] (see also [Oli97]). We emphasize that all the previous cited works consider
a non flat bathymetry. That is not the case in this paper where the seabed is assume to be flat.
Finally we also refer to [MG15] where a first study of the rigid lid limit on the full irrotational
water wave equations is performed. The proof is however based on weighted dispersive estimates
that are not well suited for the local wellposedness on large time and the rates of convergence
obtained are not optimal. Using the strategy provided in this paper one can improve [MG15] by
obtaining rates of convergence as those established for instance in Section 5 for the irrotational
Green-Naghdi equations.
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We carefully study if the convergence is strong, meaning in L∞(0, T ;L2(Rn)) for some T > 0
independent of ε. If not, we provide the default of strong convergence, meaning a corrector
Ûε such that U − Ûε strongly converges. We also get convergence in Lq(0, T ;L∞(Rn)) for

some q ≥ 2 (weak convergence) and in L2(0, T ;L2
loc(Rn)) (convergence of the local energy)(1).

All our convergence results are given with rates of convergence in terms of ε that crucially
depends on the shallowness parameter µ and the function space we consider. Our strategy is
the following. We assume bounds on appropriate Hs-norms of U that are uniform with respect
to ε on a existence time(2) that is independent of ε. Using Duhamel’s formulation one can then
use Strichartz estimates to get LqtL

r
x bounds and Morawetz-type estimates to obtain L2

tL
2
loc

controls.
Our problem shares some similarities with the incompressible limit (low Mach number limit)

of the compressible Euler equations defined in Rn:
ε∂tc+ εV · ∇c+

γ − 1

2
(1 + εc)∇ ·V = 0,

ε∂tV + ε(V · ∇)V +
γ − 1

2
(1 + εc)∇c = 0.

In that case 1 + εc is the rescaled speed of the sound, V is the velocity of the fluid, γ > 1 the
adiabatic exponent and ε the Mach number. The limit ε→ 0 was studied by several authors and
we refer for instance to [Uka86, MS01, DH04, Gal05, Ala08, HS14]. It is now well understood
that the acoustic component of (c,V) is of dispersive type and weakly converges to 0 since its
propagation speed is of size 1

ε and, when the initial datum only contains incompressible terms,
the convergence is strong. Such phenomenon also appears for the rigid lid limit.

Finally we mention the following works [LPS12, SX20, SX21, Tes24] where dispersive esti-
mates similar to ours are used to study the long time existence problem on Boussinesq and
Boussinesq-type systems.

We organize the paper as follows. Section 2 and Section 3 are devoted to the study of
the rigid lid limit on the classical Boussinesq system (also called Amick-Schonbek system in
the literature) respectively in 1d and 2d. We explain in details our strategy. In Section 4
we consider other Boussinesq systems. Finally in Section 5 we perform the rigid lid limit
on the Green-Naghdi equations. Appendix A recall some basic facts about Littlewood-Paley
decomposition and Appendix B gathers different useful Fourier multiplier estimates. Finally we
provide in Appendix C general dispersive estimates on linear dispersive equations with radial
nonhomogeneous phases.

Notations.

• If f is a Schwartz class function defined on Rn, we define Ff or f̂ as the Fourier transform
of f by

f̂(ξ) =
1

(2π)
n
2

∫
Rn
e−ix·ξf(x)dx.

• If m is a smooth function that is at most polynomial at infinity, we define the Fourier
multiplier m(D) as, for any Schwartz class function f ,

m(D)f = F−1(m(ξ)f̂(ξ)).

Note that the Laplace operator verifies ∆ = −|D|2.
• If f is function defined on Rn we denote by ‖f‖Lp the Lp(Rn) norm of f .
• If p ∈ [1,∞], we denote p′ = p

p−1 .

• If T > 0 and G : (t, x) ∈ [0, T ] × Rn → G(t, x) ∈ R, the norm ‖G‖LqtLrx corresponds to

the norm of the space Lq((0, T );Lr(Rn)).

(1)Note that this kind of convergence was also obtained for the rigid lid limit of the shallow water equations
over a nonflat bottom in [BM10] (without any rate of convergence), see Theorem 2.5 and Subsection 4.2.2 inside.

(2)Such bounds and existence time can be obtained from energy estimates when one prove the local wellposed-
ness, see for instance Subsections 2.1 or 3.1 below.
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• If S : E → F is a linear bounded operator with E,F two Banach spaces, we denote by
S∗ its adjoint.

Acknowledgments. We deeply thank the anonymous referee for careful reading and for very
valuable comments on the manuscript. This work has been partially funded by the ANR project
CRISIS (ANR-20-CE40-0020-01).

2. The classical 1D Boussinesq system

In the one dimensional case the classical Boussinesq system reads as

(1)

ε∂tζ + ∂x ([1 + εζ]V ) = 0,

ε
(

1− µ

3
∂2
x

)
∂tV + ∂xζ + εV ∂xV = 0.

Denoting by U = (ζ, V )T ∈ R2, we get the following system

(2) ε∂tU +A(∂x)U = εF (U)

where

A(∂x) =

(
0 ∂x

(1− µ
3∂

2
x)−1∂x 0

)
and F (U) = −

(
∂x(ζV )

1
2(1− µ

3∂
2
x)−1∂x(V 2)

)
.

Note that

(3) exp(tA(∂x)) =

 cos

(
t D√

1+µ
3
D2

)
i
√

1 + µ
3D

2 sin

(
t D√

1+µ
3
D2

)
i√

1+µ
3
D2

sin

(
t D√

1+µ
3
D2

)
cos

(
t D√

1+µ
3
D2

)
 .

We state the main result of this section.

Theorem 2.1. Let M > 0, T > 0, ε ∈ (0, 1] and µ ∈ (0, 1]. Let (ζ, V ) ∈ C([0, T ]; (H3×H3)(R))
a solution of (1) with initial datum (ζ0, V0) such that

‖(ζ, V )‖L∞(0,T ;H3(R)×H3(R)) ≤M.

There exists a constant C > 0 independent of M , T , ε and µ such that for any q, r ≥ 2 with
1
q + 1

2r = 1
4 and any q̃, r̃ ≥ 2 with 1

q̃ + 1
3r̃ = 1

6∥∥∥∥( ζV
)
− e−

t
ε
A(∂x)

(
ζ0

V0

)∥∥∥∥
Lqt (0,T ;Lrx(R))

≤
(
ε

µ

) 1
4

+ 1
q

M2T
3
4C,

∥∥∥∥( ζV
)
− e−

t
ε
A(∂x)

(
ζ0

V0

)∥∥∥∥
Lq̃t (0,T ;Lr̃x(R))

≤
(
ε

µ

) 1
6

+ 1
q̃

M2T
5
6C,

∥∥∥∥( ζV
)∥∥∥∥

Lq̃t (0,T ;Lr̃x(R))

≤
(
ε

µ

) 1
q̃

(
M +M2T

5
6

(
ε

µ

) 1
6

)
C,

sup
x0∈R

∥∥∥∥e−(x−x0)2
(
ζ
V

)∥∥∥∥
L2
t (0,T ;L2

x(R))

≤ ε
1
2 (M +M2T )C.

Remark 2.2. Several remarks are in order. We first note that (ζ, V ) weakly converges to 0 as
ε → 0. However (ζ, V ) does not strongly converge to 0, meaning in L∞(0, T ;L2(R)), except
if (ζ0, V0) = (0, 0). The first two estimates provides the default of strong convergence. The
first three estimates are not uniform with respect to µ → 0. The fourth estimate provides the
convergence to 0 in L2

t (0, T ;Hs
loc(R)) for any s ∈ [0, 3) and is uniform with respect to µ → 0.

That corresponds to the decay to 0 of the local energy.
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Remark 2.3. Note that if ε ∼ µ as in [BCS02, BCL05] or when µ = O(ε), the first two estimates
does not provide a convergence result as ε → 0. It is known in that case that nonlinear
terms must be taken into account and that asymptotic models like a system of decoupling KdV
equations or a system of decoupling BBM equations become relevant. A proof of such a result
can be adapted from [BCL05] or [Lan13, Section 7.1].

2.1. Local existence. In this section we provide a local wellposedness result of (1) on an
existence time independent of ε, µ ∈ (0, 1]. We introduce the functional space

X3
µ(R) :=

{
(ζ, V ) ∈ (H3 ×H4)(R) , ‖(ζ, V )‖X3

µ
:= ‖ζ‖H3 + ‖V ‖H3 +

√
µ‖∂xV ‖H3 <∞

}
.

Proposition 2.4. Let h0 > 0, A > 0, ε ∈ (0, 1] and µ ∈ (0, 1]. Let (ζ0, V0) ∈ X3
µ(R) with

1 + εζ0 ≥ h0 and ‖(ζ0, V0)‖X3
µ
≤ A. There exists a time T > 0 that only depends on A and h0

and a unique solution (ζ, V ) ∈ C([0, T ];X3
µ(R)) of (1) with initial datum (ζ0, V0). Furthermore

there exists a constant M > 0 depending only on A and h0 such that

‖(ζ, V )‖L∞(0,T ;X3
µ) ≤M.

The proof is similar to the proofs of [Mel18b, Proposition 2.15] or [Isr11, Theorem 1]. The

key point is that System (1) under the assumption that (1 + εζ) ≥ h0
2 has a symmetrizer

S(U) =

(
1 0
0 (1 + εζ)− µ

3∂x ((1 + εζ)∂x·)

)
and corresponding energies

Ek(U) =
(
S(U)∂kxU, ∂

k
xU
)

2

that allow to control the X3
µ(R)-norm.

2.2. Dispersive estimates. The phase g := r 7→ r√
1+ r2

3

is smooth and

(4)

g′ > 0, g′′ < 0 on R+
∗ , g′(r)− 1 ∼

r∼0
−r

2

2
, g′′(r) ∼

r∼0
−r, g′(r) ∼

r∼+∞
3

3
2 r−3, g′′(r) ∼

r∼+∞
3

5
2 r−4.

Thanks to Appendix C one can prove several dispersive estimates. In the following χ is a smooth
compactly supported function that is equal to 1 near 0.

Firstly using Lemma C.1(3), there exists a constant C > 0 such that for any Schwartz class
function f , any t 6= 0, any µ ∈ (0, 1] and any ε ∈ (0, 1]∥∥∥∥∥e±

t
ε

∂x√
1+µ

3
D2
χ(
√
µ|D|)sgn(D)|D|

1
2 f

∥∥∥∥∥
L∞x

≤ C

µ
1
2

(
ε

|t|

) 1
2

‖χ(
√
µ|D|)f‖L1 ,∥∥∥∥∥e±

t
ε

∂x√
1+µ

3
D2

(1− χ(
√
µ|D|))f

∥∥∥∥∥
L∞x

≤ C

µ
1
2

(
ε

|t|

) 1
2

‖(1− χ(
√
µ|D|))(√µ|D|)2f‖L1 .

Then corresponding Strichartz estimates can be obtained: for any (q, r) ∈ {(4,∞), (∞, 2)} and
any functions f and G smooth enough∥∥∥∥∥e±

t
ε

∂x√
1+µ

3
D2
∂xf

∥∥∥∥∥
LqtL

r
x

.

(
ε

µ

) 1
2

( 1
2
− 1
r

)

‖|D|
3
4

+ 1
2rχ(
√
µ|D|)f‖L2

+

(
ε

µ

) 1
2

( 1
2
− 1
r

)

‖(1− χ(
√
µ|D|))(√µ|D|)2( 1

2
− 1
r

)∂xf‖L2

(3)with β = 1, s = 1
2
, α = −4, l = 2.
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(5)∥∥∥∥∥
∫ t

0
e
± (t−s)

ε

∂x√
1+µ

3
D2
∂xG(s)ds

∥∥∥∥∥
LqtL

r
x

.

(
ε

µ

) 1
2

(1− 1
r

)

‖|D|
1
2

+ 1
2rχ(
√
µ|D|)G‖

L
4
3
t L

1
x

+

(
ε

µ

) 1
2

(1− 1
r

)

‖(1− χ(
√
µ|D|))(√µ|D|)2(1− 1

r
)∂xG‖

L
4
3
t L

1
x

.

One can prove such bounds by applying a T ∗T argument(4) on the following operators that are

both defined from Lq
′

t (R, Lr′x (R)) to L2(R)

TLF (F ) =

∫
R
e
∓ s
ε

∂x√
1+µ

3
D2
χ(
√
µ|D|) ∂x

|D|
3
4

+ 1
2r

F (s)ds,

THF (F ) =

∫
R
e
∓ s
ε

∂x√
1+µ

3
D2 1− χ(

√
µ|D|)

(
√
µ|D|)1− 2

r

F (s)ds.

In a similar way one can also get from Lemma C.1(5) together with Lemma B.1 that for any
functions f and F smooth enough∥∥∥∥∥e±

t
ε

∂x√
1+µ

3
D2
f

∥∥∥∥∥
L∞

.
C

µ
1
3

(
ε

|t|

) 1
3

‖(1 + µD2)
5
6 f‖L1

and corresponding Strichartz estimates can be obtained from a T ∗T argument: for any (q̃, r̃) ∈
{(6,∞), (∞, 2)}

(6)

∥∥∥∥∥e±
t
ε

∂x√
1+µ

3
D2
f

∥∥∥∥∥
Lq̃tL

r̃
x

.

(
ε

µ

) 1
3

( 1
2
− 1
r̃

)

‖(1 + µD2)
5
6

( 1
2
− 1
r̃

)f‖L2

(7)

∥∥∥∥∥
∫ t

0
e
± (t−s)

ε

∂x√
1+µ

3
D2
F (s)ds

∥∥∥∥∥
Lq̃tL

r̃
x

.

(
ε

µ

) 1
3

(1− 1
r̃

)

‖(1 + µD2)
5
6

(1− 1
r̃

)F‖
L

6
5
t L

1
x

.

2.3. Proof of Theorem 2.1. From Duhamel’s principle on (2)(
ζ
V

)
(t)− e−

t
ε
A(∂x)

(
ζ0

V0

)
=

∫ t

0
exp( τ−tε A(∂x))F

((
ζ
V

)
(τ)

)
dτ.

Then from (3) and since F is a derivative we can use (5) so that for any (q, r) ∈ {(4,∞), (∞, 2)}∥∥∥∥∫ t

0
exp( τ−tε A(∂x))F

((
ζ
V

)
(τ)

)
dτ

∥∥∥∥
Lqt (0,T ;Lrx(R))

.

(
ε

µ

) 1
4

+ 1
q

(ALF +AHF )

where

ALF =
∥∥∥|D| 12+ 1

2r (ζV )
∥∥∥
L

4
3
t (0,T ;L1

x)
+

∥∥∥∥∥∥ |D|
1
2

+ 1
2r√

1 + µ
3 |D|2

(
V 2
)∥∥∥∥∥∥
L

4
3
t (0,T ;L1

x)

+

∥∥∥∥∥∥ |D|
1
2

+ 1
2r√

1 + µ
3 |D|2

(ζV )

∥∥∥∥∥∥
L

4
3
t (0,T ;L1

x)

+

∥∥∥∥∥ |D|
1
2

+ 1
2r

1 + µ
3 |D|2

(
V 2
)∥∥∥∥∥
L

4
3
t (0,T ;L1

x)

(4)in the spirit of [GV92, Lemma 2.1].
(5)with β = 1, s = 0, α = −4, l = 3.
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and

AHF =
∥∥∥(
√
µ|D|)2(1− 1

r
)∂x (ζV )

∥∥∥
L

4
3
t (0,T ;L1

x)
+

∥∥∥∥∥∥(
√
µ|D|)2(1− 1

r
)√

1 + µ
3 |D|2

∂x
(
V 2
)∥∥∥∥∥∥
L

4
3
t (0,T ;L1

x)

+

∥∥∥∥∥∥(
√
µ|D|)2(1− 1

r
)√

1 + µ
3 |D|2

∂x (ζV )

∥∥∥∥∥∥
L

4
3
t (0,T ;L1

x)

+

∥∥∥∥∥(
√
µ|D|)2(1− 1

r
)

1 + µ
3 |D|2

∂x
(
V 2
)∥∥∥∥∥
L

4
3
t (0,T ;L1

x)

.

Lemmas B.1 and B.4 provide

ALF +AHF . ‖‖ζ‖H3
x
‖V ‖H3

x
‖
L

4
3
t (0,T )

+ ‖‖V ‖2H3
x
‖
L

4
3
t (0,T )

. T
3
4M2.

We then get the first bound when (q, r) ∈ {(4,∞), (∞, 2)} and the other cases follow from
Hölder’s inequality. The second bound follows the same way using instead (6) and (7). Note
that since the initial datum is not necessary a derivative one can not use the homogeneous
version of (5), hence a weaker rate of converge in that case. Finally the third bound follows
from Morawetz-type estimates established in Proposition C.4.

3. The classical 2D Boussinesq system

The two dimensional classical Boussinesq system reads as

(8)

ε∂tζ +∇ · ([1 + εζ]V) = 0,

ε
(

1− µ

3
∇∇·

)
∂tV +∇ζ + ε(V · ∇)V = 0.

Taking the divergence of the second equation and denoting by U := (ζ,∇ ·V)T ∈ R2, we get
the following system

ε∂tU +A(D)U = εF (ζ,V)

where

A(D) =

(
0 1

(1− µ
3 ∆)−1∆ 0

)
and F (ζ,V) = −

(
∇ · (ζV)

(1− µ
3 ∆)−1∇ · ((V · ∇)V)

)
.

Note that

exp(tA(D)) =

 cos

(
t |D|√

1+µ
3
|D|2

) √
1+µ

3
|D|2

|D| sin

(
t |D|√

1+µ
3
|D|2

)
− |D|√

1+µ
3
|D|2

sin

(
t |D|√

1+µ
3
|D|2

)
cos

(
t |D|√

1+µ
3
|D|2

)
 .

As in the 1d case we expect (ζ,∇ ·V) to weakly converge to 0. We however have no control
on the rotational component of V. Applying the operator ∇⊥· to the second equation and
denoting by ω := ∇⊥ ·V we get the following equation

∂tω + (V · ∇)ω + (∇ ·V)ω = 0.

Since V is a vector field on R2 it has a Hodge-Weyl decomposition

V = ∇∇
∆
·V +∇⊥∇

⊥

∆
·V.

Therefore we expect ω to converge to ω̃ as ε→ 0 where

∂tω̃ +

(
∇⊥∇

⊥

∆
ω̃ · ∇

)
ω̃ = 0.

The previous equation is the vorticity formulation of the incompressible Euler equation

(9) ∂tṼ + (Ṽ · ∇)Ṽ +∇P = 0 , ∇ · Ṽ = 0

with ω̃ = ∇⊥ · Ṽ. One can now state the main results of this section.
6



Theorem 3.1. Let M > 0, T > 0, ε ∈ (0, 1] and µ ∈ (0, 1]. Let (ζ,V) ∈ C([0, T ]; (H6 ×
H6)(R2)) be a solution of (8) with initial datum (ζ0,V0) and Ṽ ∈ C([0, T ];L2(R2)) be a solution

of the incompressible Euler equation (9) with initial datum ∇⊥∇⊥∆ ·V0 such that

‖(ζ,V)‖L∞(0,T ;(H6×H6)(R2)) + ‖Ṽ‖L∞(0,T ;L2(R2)) ≤M.

There exists a constant C > 0 independent of M , T , ε and µ such that for any q, r ≥ 2 with
1
q + 1

r = 1
2∥∥∥∥∥∥

(
ζ

∇∇
∆ ·V

)
−

1 0

0 ∂1
∆

0 ∂2
∆

 exp(− t
εA(D))

(
ζ0

∇ ·V0

)∥∥∥∥∥∥
Lqt (0,T ;Lrx(R2))

≤
(

ε
√
µ

ln(1 + µ
ε2
T )

)
1
2

+ 1
qM2T

1
2C

+ ε√
µM

2TC,∥∥∥∥( ζ
∇∇
∆ ·V

)∥∥∥∥
Lqt (0,T ;Lrx(R2))

≤
(

ε
√
µ

ln(1 + µ
ε2
T )

)
1
q

(
M +M2

(
ε
√
µ

ln(1 + µ
ε2
T )T

)
1
2

)
C

+ ε√
µ(M +M2T )C,∥∥∥∥∇⊥∇⊥∆ ·V − Ṽ

∥∥∥∥
L∞t (0,T ;L2

x(R2))

≤
(

ε
√
µ

ln(1 + µ
ε2
T )

)1
2

(
M+M2

(
ε
√
µ

ln(1 + µ
ε2
T )T

)1
2

)
M
√
TeCMTC

+ ε√
µ(M +M2T )M

√
TeCMTC.

Remark 3.2. (ζ, ∇∆∇ ·V) weakly converges to 0 as ε→ 0 whereas ∇
⊥

∆ ∇
⊥ ·V strongly converges

to a solution of the incompressible Euler equation. Therefore V strongly converges to a solution
of the incompressible Euler equation if and only if (ζ0,∇ ·V0) = (0, 0). The default of strong
convergence is exhibited through the first bound of the theorem. Finally unlike the 1d case, if
ε ∼ µ as in [BCS02, BCL05], the theorem provides a convergence result as ε→ 0.

The previous theorem does not provide uniform bounds with respect to µ → 0. It is the
purpose of the following theorem.

Theorem 3.3. Let M > 0, T > 0, ε ∈ (0, 1] and µ ∈ (0, 1]. Let (ζ,V) ∈ C([0, T ]; (H6 ×
H6)(R2)) be a solution of (8) with initial datum (ζ0,V0) and Ṽ ∈ C([0, T ];L2(R2)) be a solution

of the incompressible Euler equation (9) with initial datum ∇⊥∇⊥∆ ·V0 such that

‖(ζ,V)‖L∞(0,T ;(H6×H6)(R2)) + ‖Ṽ‖L∞(0,T ;L2(R2)) ≤M.

There exists a constant C > 0 independent of M , T , ε and µ such that for any q, r ≥ 2 with
1
q + 1

2r = 1
4∥∥∥∥∥∥
(

ζ
∇∇
∆ ·V

)
−

1 0

0 ∂1
∆

0 ∂2
∆

 exp(− t
εA(D))

(
ζ0

∇ ·V0

)∥∥∥∥∥∥
Lqt (0,T ;Lrx(R2))

≤ ε
1
4

+ 1
qM2T

3
4C,

∥∥∥∥( ζ
∇∇
∆ ·V

)∥∥∥∥
Lqt (0,T ;Lrx(R2))

≤ ε
1
q

(
M +M2T

3
4 ε

1
4

)
C,∥∥∥∥∇⊥∇⊥∆ ·V − Ṽ

∥∥∥∥
L∞t (0,T ;L2

x(R2))

≤ ε
1
4

(
M +M2T

3
4 ε

1
4

)
MT

3
4 eCMTC,

sup
x0∈R2

∥∥∥∥e−(x−x0)2
(

ζ
∇∇∆ ·V

)∥∥∥∥
L2
t (0,T ;L2

x(R2))

≤ ε
1
2 (M +M2T )C.

Remark 3.4. The last two estimates provide the convergence in L2
t (0, T ;L2

loc(R2)). We then
get the convergence of the local energy to the local energy of the corresponding solution of the

7



incompressible Euler equation. If furthermore Ṽ ∈ C([0, T ];H6(R2)) then the convergence is in
L2
t (0, T ;Hs

loc(R2)) for any s ∈ [0, 6).

3.1. Local existence. In this section we provide a local wellposedness result of (8) on an
existence time independent of ε, µ ∈ (0, 1]. Let k ∈ N with k ≥ 3. We introduce the functional
space

Xk
µ(R2) :=

{
(ζ, V ) ∈ (Hk ×Hk)(R2) , ‖(ζ, V )‖Xk

µ
:= ‖ζ‖Hk + ‖V ‖Hk +

√
µ‖∇ · V ‖Hk <∞

}
.

Proposition 3.5. Let k ∈ N, k ≥ 3. Let h0 > 0, A > 0, ε ∈ (0, 1] and µ ∈ (0, 1]. Let
(ζ0, V0) ∈ Xk

µ(R2) with 1 + εζ0 ≥ h0 and ‖(ζ0, V0)‖Xk
µ
≤ A. There exists a time T > 0 that only

depends on A and h0 and a unique solution (ζ, V ) ∈ C([0, T ];Xk
µ(R2)) of (8) with initial datum

(ζ0, V0). Furthermore there exists a constant M > 0 depending only on A and h0 such that

‖(ζ, V )‖L∞(0,T ;Xk
µ) ≤M.

The proof is similar to the proofs of [Lan13, Proposition 6.7] or [Mel18a, Proposition 2.7].

Again the key point is that System (8) under the assumption that (1 + εζ) ≥ h0
2 has a sym-

metrizer and corresponding energies that allow to control the Xk
µ(R2)-norm.

3.2. Dispersive estimates. From the properties (4) together with the fact |g′′′(r)| . r−5, and
thanks to Appendix C one can prove several dispersive estimates.

Firstly, using Lemma C.2(6) together with Lemma B.1, for any m ∈ N there exists a constant
C > 0 such that for any Schwartz class function f , any t 6= 0, any µ ∈ (0, 1] and any ε ∈ (0, 1]
we have ∥∥∥∥∥∥e

±i t
ε

|D|√
1+µ

3
D2 ∇m

|D|m
f

∥∥∥∥∥∥
L∞x

≤ C
√
µ

ε

|t|
‖(1 + µ|D|2)2f‖L1 .

Then corresponding Strichartz estimates can be obtained from a T ∗T argument: for any
q, r, q̃, r̃ ≥ 2 such that 1

q + 1
r = 1

2 , 1
q̃ + 1

r̃ = 1
2 with r, r̃ < ∞, any m ∈ N, any ε ∈ (0, 1]

and any µ ∈ (0, 1]

(10)

∥∥∥∥∥∥e
±i t

ε

|D|√
1+µ

3
D2 ∇m

|D|m
f

∥∥∥∥∥∥
LqtL

r
x

.

(
ε
√
µ

) 1
2
− 1
r

‖(1 + µ|D|2)2( 1
2
− 1
r

)f‖L2

∥∥∥∥∥∥
∫ t

0
e
±i

(t−s)
ε

|D|√
1+µ

3
D2 ∇m

|D|m
F (s)ds

∥∥∥∥∥∥
LqtL

r
x

.

(
ε
√
µ

)1− 1
r̃
− 1
r

‖(1 + µ|D|2)2(1− 1
r̃
− 1
r

)F‖
Lq̃
′
t L

r̃′
x
.

It is well-known that the previous estimates do not work at the endpoints (q, r) = (2,∞) or
(q̃, r̃) = (2,∞). We can however prove a logarithmic estimate for functions whose Fourier
transform are well localized. Such type of estimates were performed for the wave equation
([JMR00] or [BCD11, Theorem 8.30]) or the Schrödinger equation ([Tao06]). We provide in the
following a general result.

Proposition 3.6. Let χ be a smooth compactly supported function, g a function defined on R∗+,
α ∈ R and m ∈ N. Assume there exists a constant C0 > 0 such that for any Schwartz class
function f and any t 6= 0∥∥∥∥e±itg(|D|) ∇m|D|m f

∥∥∥∥
L∞x

≤ C0

|t|
‖(1 + |D|2)

α
2 f‖L1 .

(6)with β = 1, s = α = −4.
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Then there exists a constant C > 0 such that for any λ > 0, any T > 0, any µ > 0 and any
ε > 0 we have∥∥∥∥e±i t

ε
√
µ
g(
√
µ|D|)

χ(λ−1|D|) ∇
m

|D|m
f

∥∥∥∥
L2
t (0,T ;L∞x )

≤ C
(

ε
√
µ

) 1
2

√
ln

(
1 +

√
µ

ε
λ2T

)
‖(1+µ|D|2)

α
4 f‖L2

and if we define the operator H as

H(F ) :=

∫ t

0
e
±i (t−s)

ε
√
µ
g(
√
µ|D|)

χ(λ−1|D|) ∇
m

|D|m
F (s, ·)ds

we have

‖H(F )‖L∞t (0,T ;L2
x) ≤ C

(
ε
√
µ

) 1
2

√
ln

(
1 +

√
µ

ε
λ2T

)
‖(1 + µ|D|2)

α
4 F‖L2

t (0,T ;L1
x),

‖H(F )‖L2
t (0,T ;L∞x ) ≤ C

(
ε
√
µ

) 1
2

√
ln

(
1 +

√
µ

ε
λ2T

)
‖(1 + µ|D|2)

α
4 F‖L1

t (0,T ;L2
x),

‖H(F )‖L2
t (0,T ;L∞x ) ≤ C

ε
√
µ

ln

(
1 +

√
µ

ε
λ2T

)
‖(1 + µ|D|2)

α
2 F‖L2

t (0,T ;L1
x).

Proof. By assumption and change of variables we actually have for any µ ∈ (0, 1] and any
ε ∈ (0, 1]

(11)

∥∥∥∥e±i t
ε
√
µ
g(
√
µ|D|) ∇m

|D|m
f

∥∥∥∥
L∞x

≤ ε
√
µ

C0

|t|
‖(1 + µ|D|2)

α
2 f‖L1 .

We only prove the case m = 0 since the methodology is the same for the other cases. We
introduce the operator

S : L2
t (0, T, L

1
x(Rn)) → L2(R2)

F 7→
∫ T

0
e
∓i s

ε
√
µ
g(
√
µ|D|)

(1 + µ|D|2)−
α
4 χ(λ−1|D|)F (s)ds.

For any f ∈ L2(R2)

‖S∗f‖L2
t (0,T ;L∞x ) ≤ sup

‖G‖
L2
t L

1
x
≤1

{∫ T

0

〈
e
∓i t

ε
√
µ
g(
√
µ|D|)

(1 + µ|D|2)−
α
4 χ(λ−1|D|)f,G(t, ·)

〉
L2
x×L2

x

dt

}
≤ ‖f‖L2 sup

‖G‖
L2
t (0,T ;L1

x)
≤1
JG

where

JG :=

{∥∥∥∥∫ T

0
e
∓i t

ε
√
µ
g(
√
µ|D|)

(1 + µ|D|2)−
α
4 χ(λ−1|D|)G(t, ·)dt

∥∥∥∥
L2
x

}
.

Then

J2
G ≤

∫
[0,T ]2

∥∥∥∥e∓i
(t−s)
ε
√
µ
g(
√
µ|D|)

(1 + µ|D|2)−
α
2 χ2(λ−1|D|)G(t, ·)

∥∥∥∥
L∞x︸ ︷︷ ︸

:=KG

‖G(s, ·)‖L1
x
dtds

and using (11)

KG .
ε
√
µ

1

|t− s|
‖G(t, ·)‖L1

x

whereas from Bernstein’s Lemma B.2

KG . λ

∥∥∥∥e∓i
(t−s)
ε
√
µ
g(
√
µ|D|)

(1 + µ|D|2)−
α
2 χ(λ−1|D|)G(t, ·)

∥∥∥∥
L2
x

. λ
∥∥χ2(λ−1|D|)G(t, ·)

∥∥
L2
x
. λ2 ‖G(t, ·)‖L1

x

9



so that

J2
G ≤

∫
[0,T ]2

λ2

1 + λ2
√
µ
ε |t− s|

‖G(t, ·)‖L1
x
‖G(s, ·)‖L1

x
dtds.

The first bound follows from Schur’s test. Then for any (a, b), (ã, b̃) ∈ {(2,∞), (∞, 2)}, we define
the operator Rã,a

Rã,a : Lb̃
′
t (R, Lã′x (R2)) → Lbt(R, Lax(R2))

F 7→
∫ t

0
e
±i

(t−s)
ε
√
µ
g(
√
µ|D|)

(1 + µ|D|2)−
α
4 χ(λ−1|D|)F (s, ·)ds.

We note that

‖R∞,2(F )‖L∞t (0,T ;L2
x) = sup

t∈[0,T ]

∥∥S(1(0,t)F )
∥∥
L2
x

so that the second bound follows by duality and the first bound. Furthermore, we notice that
R2,∞ +R∗∞,2 = S∗S̃ where

S̃ : L1
t (0, T, L

2
x(Rn)) → L2(R2)

F 7→
∫ T

0
e
∓i s

ε
√
µ
g(
√
µ|D|)

F (s)ds.

The third estimate follows from the first and second estimates together with the fact S̃ is
bounded since S̃∗ is bounded. Finally denoting

LF :=

∥∥∥∥∫ t

0
e
±i

(t−s)
ε
√
µ
g(
√
µ|D|)

(1 + µ|D|2)−
α
2 χ(λ−1|D|)F (s, ·)ds

∥∥∥∥
L2
t (0,T ;L∞x )

and proceeding similarly as for the bound on KG we get

LF .

∥∥∥∥∥
∫ t

s=0

λ2

1 + λ2
√
µ
ε |t− s|

‖F (s, ·)‖L1
x
ds

∥∥∥∥∥
L2
t (0,T )

.

√√√√ sup
t∈[0,T ]

∫ t

s=0

λ2

1 + λ2
√
µ
ε |t− s|

ds

√√√√∫ T

t=0

∫ t

s=0

λ2

1 + λ2
√
µ
ε |t− s|

‖F (s, ·)‖2
L1
x
dsdt

and the fourth bound follows. �

Secondly, we get from Lemma C.3(i)(7) together with Lemma B.1 that if χ is a smooth
compactly supported that is equal to 1 near 0 and m ∈ N∥∥∥∥∥∥e

±i t
ε

|D|√
1+µ

3
D2
χ(
√
µ|D|) ∇

m

|D|m
f

∥∥∥∥∥∥
L∞x

.
ε

1
2

|t|
1
2

‖(1 + |D|2)f‖L1

and from Lemma C.2(ii)(8) together with Lemma B.1 that∥∥∥∥∥∥e
±i t

ε

|D|√
1+µ

3
D2

(1− χ(
√
µ|D|)) ∇

m

|D|m
f

∥∥∥∥∥∥
L∞x

. µ
3
4
ε

1
2

|t|
1
2

‖(1 + |D|2)
3
2 f‖L1 .

(7)with l = 2, η = 1
2
.

(8)with s = −3, α = −4.
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One can then obtained corresponding Strichartz estimates from a T ∗T argument: for any (q̃, r̃) ∈
{(4,∞), (∞, 2)}, for any µ ∈ (0, 1], any ε ∈ (0, 1] and any m ∈ N

(12)

∥∥∥∥∥∥e
±i t

ε

|D|√
1+µ

3
D2 ∇m

|D|m
f

∥∥∥∥∥∥
Lq̃tL

r̃
x

. ε
1
2

( 1
2
− 1
r̃

)‖(1 + |D|2)
3
2

( 1
2
− 1
r̃

)f‖L2 ,

∥∥∥∥∥∥
∫ t

0
e
±i t−s

ε

|D|√
1+µ

3
D2 ∇m

|D|m
F (s)ds

∥∥∥∥∥∥
Lq̃tL

r̃
x

. ε
1
2

(1− 1
r̃

)‖(1 + |D|2)
3
2

(1− 1
r̃

)F‖
L

4
3
t L

1
x

.

3.3. Proofs of Theorem 3.1 and Theorem 3.3. We begin with the proof of Theorem 3.1.
Using Duhamel’s principle

(
ζ

∇
∆∇ ·V

)
−

1 0

0 ∂1
∆

0 ∂2
∆

 exp(−tA(D))

(
ζ0

∇ ·V0

)
=

∫ t

0

1 0

0 ∂1
∆

0 ∂2
∆

 exp( τ−tε A(D))F (ζ(τ),V(τ))dτ

︸ ︷︷ ︸
:=I

.

Let 1
q + 1

r = 1
2 and χ be a smooth compactly supported function that is equal to 1 near 0. By

Proposition 3.6 and interpolation, for any j ∈ {1, 2}

∥∥∥χ(
√

ε√
µ |D|)Ij

∥∥∥
Lqt (0,T ;Lrx(R2))

.

(
ε
√
µ

ln(1 + µ
ε2
T )

) 1
q

+ 1
2

Bj

where

B1 :=
∥∥∥(1 + µ|D|2)2(1− 1

r
)∇ · (ζV)

∥∥∥
L2
t (0,T ;L1

x)
+

∥∥∥∥∥∥(1 + µ|D|2)2(1− 1
r

)√
1 + µ

3 |D|2
((V · ∇)V)

∥∥∥∥∥∥
L2
t (0,T ;L1

x)

B2 :=

∥∥∥∥∥∥(1 + µ|D|2)2(1− 1
r

)√
1 + µ

3 |D|2
∇ · (ζV)

∥∥∥∥∥∥
L2
t (0,T ;L1

x)

+

∥∥∥∥∥(1 + µ|D|2)2(1− 1
r

)

1 + µ
3 |D|2

((V · ∇)V)

∥∥∥∥∥
L2
t (0,T ;L1

x)

.

Using Lemmas B.1 and B.5 we get

B1 +B2 . ‖‖ζ‖H5
x
‖V‖H5

x
‖L2

t (0,T ) + ‖‖V‖2H5
x
‖L2

t (0,T ) . T
1
2M2.

Furthermore using Lemma B.3

∥∥∥(1− χ(
√

ε√
µ |D|))Ij

∥∥∥
L∞t (0,T ;L2

x(R2))
.

ε
√
µ

∥∥|D|2Ij∥∥L∞t (0,T ;L2
x(R2))

.
ε
√
µ

(
‖‖ζ‖H3

x
‖V‖H3

x
‖L1

t (0,T ) + ‖‖V‖2H3
x
‖L1

t (0,T )

)
. T

ε
√
µ
M2
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whereas from Sobolev inequalities, Lemma B.3 and (10) with r = r̃ = 1
4∥∥∥(1− χ(

√
ε√
µ |D|))Ij

∥∥∥
L2
t (0,T ;L∞x (R2))

.
∥∥∥(1− χ(

√
ε√
µ |D|))Ij

∥∥∥
L2
t (0,T ;W 1,4

x (R2))

. T
1
4

∥∥∥(1− χ(
√

ε√
µ |D|))Ij

∥∥∥
L4
t (0,T ;W 1,4

x (R2))

. T
1
4

(
ε
√
µ

) 1
2

‖Ij‖L4
t (0,T ;W 2,4

x (R2))

. T
1
4
ε
√
µ

(
‖‖ζ‖H5

x
‖V‖H5

x
‖
L

4
3
t (0,T )

+ ‖‖V‖2H5
x
‖
L

4
3
t (0,T )

)
. T

ε
√
µ
M2.

The first bound follows by Hölder’s inequality. One can similarly obtain the second bound.
Note that by differentiating one time we can also get a bound on ‖∇∇∆ ·V‖L2

t (0,T ;W 1,∞
x (R2))

which

will be useful in the following.

On the other hand, since Ṽ = ∇⊥∇⊥∆ · Ṽ,

∂t(∇⊥∇
⊥

∆ ·V − Ṽ) +∇⊥∇
⊥

∆
· ((Ṽ · ∇)(V − Ṽ)) +∇⊥∇

⊥

∆
· ((V − Ṽ) · ∇)V) = 0

so that integrating by parts

1

2

d

dt

(
‖∇⊥∇⊥∆ ·V − Ṽ‖2L2

x

)
=−

∫
R2

((Ṽ · ∇)(V − Ṽ)) · (∇⊥∇⊥∆ ·V − Ṽ)︸ ︷︷ ︸
:=J1

−
∫
R2

(((V − Ṽ) · ∇)V) · (∇⊥∇⊥∆ ·V − Ṽ)︸ ︷︷ ︸
:=J2

.

Then

J1 =

∫
R2

((Ṽ · ∇)(∇⊥∇⊥∆ ·V− Ṽ)) · (∇⊥∇⊥∆ ·V− Ṽ) +

∫
R2

((Ṽ · ∇)∇∇∆ ·V) · (∇⊥∇⊥∆ ·V− Ṽ)

so that integrating by parts in the first integral and using that ∇ · Ṽ = 0

|J1| ≤ ‖∇∇∇∆ ·V‖L∞x ‖Ṽ‖L2
x
‖∇⊥∇⊥∆ ·V − Ṽ‖L2

x

whereas

|J2| ≤ ‖∇V‖L∞x ‖∇
⊥∇⊥

∆ ·V − Ṽ‖2L2
x

+ ‖∇∇∆ ·V‖L∞x ‖∇V‖L2
x
‖∇⊥∇⊥∆ ·V − Ṽ‖L2

x

which yields

d

dt

(
‖∇⊥∇⊥∆ ·V − Ṽ‖2L2

x

)
≤ CM‖∇⊥∇⊥∆ ·V − Ṽ‖2L2

x
+M‖∇∇∆ ·V‖W 1,∞

x
‖∇⊥∇⊥∆ ·V − Ṽ‖L2

x
.

Bounds on ∇⊥∇⊥∆ ·V − Ṽ follow from Grönwall’s inequality and previous bounds obtained on

‖∇∇∆ ·V‖L2
t (0,T ;W 1,∞

x )
.

Concerning Theorem 3.3, one can use the previous strategy together with (12)(9). The last
bound is a consequence of Morawetz-type estimates established in Proposition C.4.

(9)It is not necessary to split the low and the high frequencies in that case since we do not use Proposition
3.6.
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4. Other abcd Boussinesq systems

In the previous two sections we chose to present the rigid lid limit on one specific Boussinesq
system (the case a = b = c = 0 and d = 1

3). There are other abcd-Boussinesq systems

(13)

{
ε (1− µb∆) ∂tζ +∇ · ([1 + εζ]V) + µa∆∇ ·V = 0,

ε (1− µd∇∇·) ∂tV +∇ζ + ε(V · ∇)V + µc∆∇ζ = 0.

In the following, we assume that

(14) b ≥ 0 , d ≥ 0 , a ≤ 0 , c ≤ 0

in order to get the wellposedness of the system (see for instance [BCS02]).
We introduce

g(y) = y

√
(1− ay2)(1− cy2)

(1 + by2)(1 + dy2)
and R(y) =

√
(1− ay2)(1 + dy2)

(1 + by2)(1− cy2)
.

As before, in the 1d case if we denote by U = (ζ, V )T we have the following system

ε∂tU +A(∂x)U = εF (ζ, V )

where

A(∂x) =

(
0 (1− µb∂2

x)−1(1 + µa∂2
x)∂x

(1− µd∂2
x)−1(1 + µc∂2

x)∂x 0

)
F (ζ, V ) = −

(
(1− µb∂2

x)−1∂x(ζV )
(1− µd∂2

x)−1∂x(1
2V

2)

)
.

Note that

exp(tA(∂x)) =

(
cos( t√

µg(
√
µD)) R(

√
µD) sin( t√

µg(
√
µD))

1
R(
√
µD) sin( t√

µg(
√
µD)) cos( t√

µg(
√
µD))

)
.

In the 2d case if we denote by U = (ζ,∇ ·V)T , we get the following system

ε∂tU +A(D)U = εF (ζ,V)

where

A(D) =

(
0 (1− µb∆)−1(1 + µa∆)

(1− µd∆)−1(1 + µc∆)∆ 0

)
F (ζ,V) = −

(
(1− µb∆)−1∇ · (ζV)

(1− µd∆)−1∇ · ((V · ∇)V)

)
.

Note that

exp(tA(D)) =

(
cos( t√

µg(
√
µ|D|)) R(

√
µ|D|)
|D| sin( t√

µg(
√
µ|D|))

|D|
R(|D|) sin( t√

µg(
√
µ|D|)) cos( t√

µg(
√
µ|D|))

)
.

The strategy presented in the previous two sections together with ad hoc dispersive estimates
provide similar results for System (13), with a rate of convergence depending on how dispersive
System (13) is. Existence of solutions of (13) on an existence time independent of ε uniformly
with respect to µ ∈ (0, 1] can easily be adapted from [SX12, SWX17].

The phase g satisfies the following properties that are carefully studied in [Mel24, Section
3.5]. Firstly if a+ b+ c+ d 6= 0

g′(r)− 1 ∼
r∼0
−3(a+ b+ c+ d)

2
r2 , g′′(r) ∼

r∼0
−3(a+ b+ c+ d)r

whereas if a+ b+ c+ d = 0

g′(r)− 1 ∼
r∼0
−5(a+ b)(b+ c)

2
r4 , g′′(r) ∼

r∼0
−10(a+ b)(b+ c)r3.
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Secondly there exists α ∈ [−6, 1] ∩ Z, `,Λ1,Λ2 ∈ R such that

g′(r)− ` ∼
∞

Γ1r
α+1 , g′′(r) ∼

∞
(α+ 1)Γ1r

α , g′′′(r) ≤ Γ2r
α−1.

The exact value of α and ` (that depends on a, b, c, d) can be found in [Mel24, Table 1]. Finally
one can prove that |g′|+ |g′′|+ |g′′′| > 0 on R+ (see [Mel24, Lemma 3.4]).

We can now state our results. We begin with the case n = 1 in the case a+ b+ c+ d 6= 0.

Theorem 4.1. Let n = 1. Let a, b, c, d satisfying (14) and a+ b+ c+d 6= 0. Let M > 0, T > 0,
ε ∈ (0, 1] and µ ∈ (0, 1]. Let (ζ, V ) ∈ C([0, T ]; (H3 × H3)(R)) a solution of (13) with initial
datum (ζ0, V0) such that

‖(ζ, V )‖L∞(0,T ;H3(R)×H3(R)) ≤M.

There exists p ∈ N with p ≥ 3 and a constant C > 0 depending only on p and a, b, c, d such that
for any q, r ≥ 2 with 1

q + 1
pr = 1

2p∥∥∥∥( ζV
)
− e−

t
ε
A(∂x)

(
ζ0

V0

)∥∥∥∥
Lqt (0,T ;Lrx(R))

≤
(
ε

µ

) 1
2p

+ 1
q

M2T
2p−1
2p C,

∥∥∥∥( ζV
)∥∥∥∥

Lqt (0,T ;Lrx(R))

≤
(
ε

µ

) 1
q

(
M +M2T

2p−1
2p

(
ε

µ

) 1
2p

)
C.

Furthermore if |g′′| > 0 on R∗+, for any q̃, r̃ ≥ 2 with 1
q̃ + 1

2r̃ = 1
4∥∥∥∥( ζV

)
− e−

t
ε
A(∂x)

(
ζ0

V0

)∥∥∥∥
Lq̃t (0,T ;Lr̃x(R))

≤
(
ε

µ

) 1
4

+ 1
q̃

M2T
3
4C.

Finally denoting p0 = 1 if |g′| > 0 on R+, p0 = 2 if |g′|+ |g′′| > 0 on R+ and p0 = 3 otherwise,
we have

sup
x0∈R

∥∥∥∥e−(x−x0)2
(
ζ
V

)∥∥∥∥
L2
t (0,T ;L2

x(R))

≤ ε
1

2p0 (M +M2T )C.

If we denote by m the maximum among the multiplicities of positive zeros of g′′ then one can
take p = max(m + 2, 3). The proof of the previous theorem follows from dispersive estimates

based on Lemma C.1(10) and the properties of g. We only provide a proof of the last point.
Let χ1 be a smooth bounded function supported on {|g′| > 0} and χ2 a smooth compactly
supported function supported on {|g′′| + |g′′′| > 0} with 0 /∈ supp(χ2). On one hand we get
from Proposition C.4 that

sup
x0∈R

∥∥∥∥e−(x−x0)2χ1(
√
µ|D|)

(
ζ
V

)∥∥∥∥
L2
t (0,T ;L2

x(R))

≤ ε
1
2 (M +M2T )C.

On the other hand using Lemma C.1(ii)(11) together with Bernstein’s Lemma B.2 we have∥∥∥e± it√
µ
g(
√
µ|D|)

χ2(
√
µ|D|))f

∥∥∥
L∞
.

1

|t|
1
p0

‖|D|
p0−1
p0 χ2(

√
µ|D|))f‖L1

so that from corresponding Strichartz estimates we obtain∥∥∥∥χ2(
√
µ|D|))

(
ζ
V

)∥∥∥∥
L
2p0
t (0,T ;L∞x (R))

≤ ε
1

2p0

(
M +M2T

2p0−1
2p0 ε

1
2p0

)
C.

The third point of the theorem follows from the fact that |g′|+ |g′′|+ |g′′′| > 0 on R+ and that
there exists 0 < y0 ≤ y1 such that g′ > 0 on [0, y0] ∪ [y1,∞).

(10)with β = 1, s = 0, l = p and β = 1, s = 1
2
, l = 2 for the third estimate.

(11)with l = p0, α = 0.
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Remark 4.2. As noted in Remark 2.3 concerning Theorem 2.1, in the case ε ∼ µ as in [BCS02,
BCL05] or when µ = O(ε), the first estimate of Theorem 4.1 does not provide a convergence
result as ε→ 0 so that nonlinear terms must be taken into account and that asymptotic models
like a system of decoupling KdV equations

ε∂tg± ± ∂xg± ± µ
a+ b+ c+ d

6
∂3
xg± ±

3

2
εg±∂xg± = 0

becomes relevant. A proof of such a result can be adapted from for instance [Lan13, Section
7.3.2] together with the symmetrizers and energy estimates from [SX12, SWX17].

We now consider the case n = 1 in the case a+ b+ c+ d = 0. We introduce the condition

(15) ((a+ b)(a+ d)(c+ b)(c+ d))2 + (a+ b+ c+ d)2 > 0

which avoids the situation where g(r) ≡ r that provides a non dispersive system when n = 1.

Theorem 4.3. Let n = 1. Let a, b, c, d satisfying (14) with a + b + c + d = 0. Let M > 0,
T > 0, ε ∈ (0, 1] and µ ∈ (0, 1]. Let (ζ, V ) ∈ C([0, T ]; (H3 × H3)(R)) a solution of (13) with
initial datum (ζ0, V0) such that

‖(ζ, V )‖L∞(0,T ;H3(R)×H3(R)) ≤M.

If a, b, c, d satisfy (15), there exists p ∈ N with p ≥ 5 and a constant C > 0 depending only on
p and a, b, c, d such that for any q, r ≥ 2 with 1

q + 1
pr = 1

2p∥∥∥∥( ζV
)
− e−

t
ε
A(∂x)

(
ζ0

V0

)∥∥∥∥
Lqt (0,T ;Lrx(R))

≤
(
ε

µ2

) 1
2p

+ 1
q

M2T
2p−1
2p C,

∥∥∥∥( ζV
)∥∥∥∥

Lqt (0,T ;Lrx(R))

≤
(
ε

µ2

) 1
q

(
M +M2T

2p−1
2p

(
ε

µ2

) 1
2p

)
C.

Furthermore if some l ∈ {2, 3, 4} we have
∑l

k=2 |g(k)| > 0 on R∗+ and if we denote by σ =

min(2
5 ,

1
l ), for any q̃, r̃ ≥ 2 with 1

q̃ + σ
r̃ = σ

2∥∥∥∥( ζV
)
− e−

t
ε
A(∂x)

(
ζ0

V0

)∥∥∥∥
Lq̃t (0,T ;Lr̃x(R))

≤
(
ε

µ2

)σ
2

+ 1
q̃

M2T
2−σ
2 C.

Finally denoting p0 = 1 if |g′| > 0 on R+, p0 = 2 if |g′|+ |g′′| > 0 on R+ and p0 = 3 otherwise,
we have

sup
x0∈R

∥∥∥∥e−(x−x0)2
(
ζ
V

)∥∥∥∥
L2
t (0,T ;L2

x(R))

≤ ε
1

2p0 (M +M2T )C.

If we denote by m the maximum among the multiplicities of positive zeros of g′′ then one can
take p = max(m + 2, 5). Again one can obtain dispersive estimates thanks to Lemma C.1(12)

and the previous properties on the phase g. Note that the ratio ε
µ2

comes from low frequency

estimates: if χ is a smooth compactly supported function whose support is small enough and
that is equal to 1 near 0 and if a+ b+ c+ d = 0∥∥∥e± it

ε
√
µ
g(
√
µ|D|)

χ(
√
µ|D|)∂xf

∥∥∥
L∞
.

1

|t|
2
5

(
ε

µ2

) 2
5

‖f‖L1 ,

∥∥∥e± it
ε
√
µ
g(
√
µ|D|)

χ(
√
µ|D|)f

∥∥∥
L∞
.

1

|t|
1
5

(
ε

µ2

) 1
5

‖f‖L1 .

(12)with β = 3, s = 0, l = p and β = 3, s = 5σ − 1 for the third estimate.
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Remark 4.4. When ε ∼ µ as in [BCS02, BCL05] or when µ = O(ε), the first estimate of Theorem
4.1 does not provide a convergence result as ε→ 0. Again nonlinear terms must be taken into
account. Note however that here one must consider a system of decoupling Burgers equations

ε∂tg± ± ∂xg± ±
3

2
εg±∂xg± = 0.

A proof of such a result can be adapted from for instance [Lan13, Section 7.3.2] together with
the symmetrizers and energy estimates from [SX12, SWX17].

We now consider the case n = 2 with a+ b+ c+ d 6= 0.

Theorem 4.5. Let n = 2. Let a, b, c, d satisfying (14) with a+b+c+d 6= 0. Let M > 0, T > 0,
ε ∈ (0, 1] and µ ∈ (0, 1]. Let (ζ,V) ∈ C([0, T ]; (H6 ×H6)(R2)) be a solution of (13) with initial

datum (ζ0,V0), let Ṽ ∈ C([0, T ];L2(R2)) be a solution of the incompressible Euler equation (9)

with initial datum ∇⊥∇⊥∆ ·V0 such that

‖(ζ,V)‖L∞(0,T ;(H6×H6)(R2)) + ‖Ṽ‖L∞(0,T ;L2(R2)) ≤M.

If g′ and g′′ do not vanish on R∗+, (ζ,V) satisfy the same estimates as in Theorem 3.1.

If g′ does not vanish on R+ but g′′ vanishes on R∗+, there exists σ ∈ (1
2 , 1) and a constant

C > 0 depending only on a, b, c, d such that for any q, r ≥ 2 with 1
q + σ

r = σ
2∥∥∥∥∥∥

(
ζ

∇∇
∆ ·V

)
−

1 0

0 ∂1
∆

0 ∂2
∆

 exp(− t
εA(D))

(
ζ0

∇ ·V0

)∥∥∥∥∥∥
Lqt (0,T ;Lrx(R2))

≤
(

ε
√
µ

)σ
2

+ 1
q

M2T
2−σ
2 C,

∥∥∥∥( ζ
∇∇
∆ ·V

)∥∥∥∥
Lqt (0,T ;Lrx(R2))

≤
(

ε
√
µ

) 1
q

(
M +M2T

2−σ
2

(
ε
√
µ

)σ
2

)
C,

∥∥∥∥∇⊥∇⊥∆ ·V − Ṽ

∥∥∥∥
L∞t (0,T ;L2

x(R2))

≤
(

ε
√
µ

)σ
2

(
M +M2T

2−σ
σ

(
ε
√
µ

)σ
2

)
MT

2−σ
2 eCMTC.

Furthermore, let p = 2 if |g′| + |g′′| > 0 on R+ and p = 3 otherwise, there exists a constant
C > 0 depending only on a, b, c, d such that for any q̃, r̃ ≥ 2 with 1

q̃ + 1
pr̃ = 1

2p∥∥∥∥∥∥
(

ζ
∇∇
∆ ·V

)
−

1 0

0 ∂1
∆

0 ∂2
∆

 exp(− t
εA(D))

(
ζ0

∇ ·V0

)∥∥∥∥∥∥
Lq̃t (0,T ;Lr̃x(R2))

≤ ε
1
2p

+ 1
q̃M2T

2p−1
2p C,

∥∥∥∥( ζ
∇∇
∆ ·V

)∥∥∥∥
Lq̃t (0,T ;Lr̃x(R2))

≤ ε
1
q̃

(
M +M2T

2p−1
2p ε

1
2p

)
C,∥∥∥∥∇⊥∇⊥∆ ·V − Ṽ

∥∥∥∥
L∞t (0,T ;L2

x(R2))

≤ ε
1
2p

(
M +M2T

2p−1
2p ε

1
2p

)
MT

2p−1
2p eCMTC.

Finally denoting p0 = 1 if |g′| > 0 on R+, p0 = 2 if |g′|+ |g′′| > 0 on R+ and p0 = 3 otherwise,
we have

sup
x0∈R2

∥∥∥∥e−(x−x0)2
(

ζ
∇∇∆ ·V

)∥∥∥∥
L2
t (0,T ;L2

x(R2))

≤ ε
1

2p0 (M +M2T )C.

If we denote by m the maximum among the multiplicities of positive zeros of g′′ then one
can take σ = m+4

2m+4 . Again the key point are dispersive estimates that can be obtained from

Lemmas C.2(13), C.3 and C.4.
Finally a similar result can be obtained in the case n = 2 with a+ b+ c+ d = 0.

(13)with β = 1, s = α if ` = 0 and β = 1, s = α−1
2

if ` 6= 0.
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Theorem 4.6. Let n = 2. Let a, b, c, d satisfying (14) with a+b+c+d = 0. Let M > 0, T > 0,
ε ∈ (0, 1] and µ ∈ (0, 1]. Let (ζ,V) ∈ C([0, T ]; (H6 ×H6)(R2)) be a solution of (13) with initial

datum (ζ0,V0), let Ṽ ∈ C([0, T ];L2(R2)) be a solution of the incompressible Euler equation (9)

with initial datum ∇⊥∇⊥∆ ·V0 such that

‖(ζ,V)‖L∞(0,T ;(H6×H6)(R2)) + ‖Ṽ‖L∞(0,T ;L2(R2)) ≤M.

If a, b, c, d satisfies (15) and g′ > 0 on R+, there exists σ ∈ (1
2 ,

4
5 ] and C > 0 depending only

on a, b, c, d, such that for any q, r ≥ 2 with 1
q + σ

r = σ
2∥∥∥∥∥∥

(
ζ

∇∇
∆ ·V

)
−

1 0

0 ∂1
∆

0 ∂2
∆

 exp(− t
εA(D))

(
ζ0

∇ ·V0

)∥∥∥∥∥∥
Lqt (0,T ;Lrx(R2))

≤

(
ε

µ
3
4

)σ
2

+ 1
q

M2T
2−σ
2 C,

∥∥∥∥( ζ
∇∇
∆ ·V

)∥∥∥∥
Lqt (0,T ;Lrx(R2))

≤

(
ε

µ
3
4

) 1
q

M +M2T
2−σ
2

(
ε

µ
3
4

)σ
2

C,

∥∥∥∥∇⊥∇⊥∆ ·V − Ṽ

∥∥∥∥
L∞t (0,T ;L2

x(R2))

≤

(
ε

µ
3
4

)σ
2

M +M2T
2−σ
2

(
ε

µ
3
4

)σ
2

MT
2−σ
2 eCMTC.

Furthermore, let p = 2 if |g′| + |g′′| > 0 on R+ and p = 3 otherwise, there exists a constant
C > 0 depending only on a, b, c, d such that for any q̃, r̃ ≥ 2 with 1

q̃ + 1
pr̃ = 1

2p∥∥∥∥∥∥
(

ζ
∇∇
∆ ·V

)
−

1 0

0 ∂1
∆

0 ∂2
∆

 exp(− t
εA(D))

(
ζ0

∇ ·V0

)∥∥∥∥∥∥
Lq̃t (0,T ;Lr̃x(R2))

≤ ε
1
2p

+ 1
q̃M2T

2p−1
2p C,

∥∥∥∥( ζ
∇∇
∆ ·V

)∥∥∥∥
Lq̃t (0,T ;Lr̃x(R2))

≤ ε
1
q̃

(
M +M2T

2p−1
2p ε

1
2p

)
C,∥∥∥∥∇⊥∇⊥∆ ·V − Ṽ

∥∥∥∥
L∞t (0,T ;L2

x(R2))

≤ ε
1
2p

(
M +M2T

2p−1
2p ε

1
2p

)
MT

2p−1
2p eCMTC.

Finally denoting p0 = 1 if |g′| > 0 on R+, p0 = 2 if |g′|+ |g′′| > 0 on R+ and p0 = 3 otherwise,
we have

sup
x0∈R2

∥∥∥∥e−(x−x0)2
(

ζ
∇∇∆ ·V

)∥∥∥∥
L2
t (0,T ;L2

x(R2))

≤ ε
1

2p0 (M +M2T )C.

If we denote by m the maximum among the multiplicities of positive zeros of g′′ then one
can take σ = min( m+4

2m+4 ,
4
5). Again the key point are dispersive estimates that can be obtained

from Lemmas C.2(14), C.3 and C.4.

5. The Green-Naghdi equations

The Green-Naghdi equations read as

(16)

{
ε∂tζ +∇ · ([1 + εζ]V) = 0,

ε(1 + µT [εζ])∂tV +∇ζ + ε(V · ∇)V + εµQ[εζ](V) = 0

where

T [εζ]W = − 1

3(1 + εζ)
∇
[
(1 + εζ)3∇ ·W

]
Q[εζ](V) = − 1

3(1 + εζ)
∇
[
(1 + εζ)3((V · ∇)(∇ ·V)− (∇ ·V)2)

]
.

(14)with β = 3, s = α if ` = 0 and β = 3, s = α−1
2

if ` 6= 0.
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As before, in the 1d case if we denote by U = (ζ, V )T we have the following system

ε∂tU +A(∂x)U = εF (ζ, V )

where

A(∂x) =

(
0 ∂x

(1− µ
3∂

2
x)−1∂x 0

)
F (ζ, V ) = −

(
∂x(ζV )

(1− µ
3∂

2
x)−1

(
∂x(1

2V
2) + µQ[εζ](V ) + µT [εζ]∂tV + µ

3∂
2
x∂tV

)) ,
whereas in the 2d case if we denote by U = (ζ,∇ ·V)T , we get

ε∂tU +A(D)U = εF (ζ,V)

where

A(D) =

(
0 1

(1− µ
3 ∆)−1∆ 0

)
F (ζ,V) = −

(
∇ · (ζV)

(1− µ
3 ∆)−1∇ ·

(
(V · ∇)V + µQ[εζ](V) + µT [εζ]∂tV + µ

3 ∆∂tV
)) .

We refer to [Isr11, DI18] (see also [Li06, FI15]) for the existence of solutions of (16) on an
existence time independent of ε that is uniform with respect to µ ∈ (0, 1].

We consider now the case n = 1.

Theorem 5.1. Let M > 0, T > 0, h0 > 0, ε ∈ (0, 1] and µ ∈ (0, 1]. Let (ζ, V ) ∈ C([0, T ]; (H5×
H5)(R)) a solution of (16) with initial datum (ζ0, V0) such that

‖(ζ, V )‖L∞(0,T ;H5(R)×H5(R)) ≤M and 1 + εζ ≥ h0 on [0, T ].

There exists a constant Cd > 0 polynomial in M and 1/h0 such that for any q, r ≥ 2 with
1
q + 1

2r = 1
6 ∥∥∥∥( ζV

)
− e−

t
ε
A(∂x)

(
ζ0

V0

)∥∥∥∥
Lqt (0,T ;Lrx(R))

≤
(
ε

µ

) 1
6

+ 1
q

T
5
6Cd,∥∥∥∥( ζV

)∥∥∥∥
Lqt (0,T ;Lrx(R))

≤
(
ε

µ

) 1
q

(
1 + T

5
6

(
ε

µ

) 1
6

)
Cd,

sup
x0∈R

∥∥∥∥e−(x−x0)2
(
ζ
V

)∥∥∥∥
L2
t (0,T ;L2

x(R))

≤ ε
1
2 (1 + T )Cd.

The proof follows from the same strategy as the proof of Theorem 2.1 together with (6) and

(7)(15). One must control two new terms. Standard product estimates provide

‖Q[εζ](V)‖
W 2,1
x
. C

(
1
h0
, ‖ζ‖H3

)
‖V ‖2H5∥∥∥µT [εζ]∂tV +

µ

3
∂2
x∂tV

∥∥∥
W 2,1
x

. C
(

1
h0
, ‖ζ‖H3

)
‖εµ∂x∂tV ‖H3

and using for instance ideas from the proofs of [Isr11, Lemmas 1 and 2] and standard product
estimates we obtain

‖εµ∂x∂tV ‖H3 . εC
(

1
h0
, ‖ζ‖H3

)
‖∇ζ + ε(V · ∇)V + εµQ[εζ](V )‖H2

. C
(

1
h0
, ‖ζ‖H3 , ‖V ‖H5

)
.

Remark 5.2. As noted in Remark 2.3 concerning Theorem 2.1, in the case µ = O(ε) the first
estimate of Theorem 5.1 does not provide a convergence result as ε→ 0 so that nonlinear terms
must be taken into account and asymptotic models like a system of decoupling KdV equations
or decoupling BBM equations become relevant. We refer to [Lan13, Chapter 7].

(15)Note that the source term F is not a derivative here so that one can not use (5).
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We now consider the case n = 2. Applying the operator ∇⊥· to the second equation of (16)
and denoting by ω := ∇⊥ ·V we get the following equation

∂tω+(V ·∇)ω+(∇·V)ω+
εµ∇ζ⊥

3(1 + εζ)2
·∇
[
(1 + εζ)3

(
∇ · ∂tV + (V · ∇)(∇ ·V)− (∇ ·V)2

)]
= 0.

Theorem 5.3. Let M > 0, T > 0, h0 > 0, ε ∈ (0, 1] and µ ∈ (0, 1]. Let (ζ,V) ∈ C([0, T ]; (H9×
H9)(R2)) be a solution of (16) with initial datum (ζ0,V0) and Ṽ ∈ C([0, T ];L2(R2)) be a

solution of the incompressible Euler equation (9) with initial datum ∇⊥∇⊥∆ ·V0 such that

‖(ζ,V)‖L∞(0,T ;(H9×H9)(R2)) + ‖Ṽ‖L∞(0,T ;L2(R2)) ≤M and 1 + εζ ≥ h0 on [0, T ].

There exists a constant Cd > 0 polynomial in M and 1/h0 and a universal constant C > 0 such
that for any q, r ≥ 2 with 1

q + 1
r = 1

2∥∥∥∥∥∥
(

ζ
∇∇
∆ ·V

)
−

1 0

0 ∂1
∆

0 ∂2
∆

 exp(− t
εA(D))

(
ζ0

∇ ·V0

)∥∥∥∥∥∥
Lqt (0,T ;Lrx(R2))

≤
(

ε
√
µ

ln(1 + µ
ε2
T )

)
1
2

+ 1
q T

1
2Cd

+ ε√
µTCd,∥∥∥∥( ζ

∇∇
∆ ·V

)∥∥∥∥
Lqt (0,T ;Lrx(R2))

≤
(

ε
√
µ

ln(1 + µ
ε2
T )

)
1
q

(
1 +

(
ε
√
µ

ln(1 + µ
ε2
T )T

)
1
2

)
Cd

+ ε√
µ(1 + T )Cd,∥∥∥∥∇⊥∇⊥∆ ·V − Ṽ

∥∥∥∥
L∞t (0,T ;L2

x(R2))

≤
(

ε
√
µ

ln(1 + µ
ε2
T )

) 1
2

(
1 +

(
ε
√
µ

ln(1 + µ
ε2
T )T

) 1
2

)
√
TeCMTCd

+ ε√
µ(1 + T )

√
TeCMTCd

and there exists a constant C̃d > 0 polynomial in M and 1/h0 and a universal constant C̃ > 0
such that for any q̃, r̃ ≥ 2 with 1

q̃ + 1
2r̃ = 1

4∥∥∥∥∥∥
(

ζ
∇∇
∆ ·V

)
−

1 0

0 ∂1
∆

0 ∂2
∆

 exp(− t
εA(D))

(
ζ0

∇ ·V0

)∥∥∥∥∥∥
Lq̃t (0,T ;Lr̃x(R2))

≤ ε
1
4

+ 1
q̃ T

3
4 C̃d,

∥∥∥∥( ζ
∇∇
∆ ·V

)∥∥∥∥
Lq̃t (0,T ;Lr̃x(R2))

≤ ε
1
q̃

(
1 + ε

1
4T

3
4

)
C̃d,∥∥∥∥∇⊥∇⊥∆ ·V − Ṽ

∥∥∥∥
L∞t (0,T ;L2

x(R2))

≤ ε
1
4

(
1 + ε

1
4T

3
4

)
T

3
4 eC̃MT C̃d,

sup
x0∈R2

∥∥∥∥e−(x−x0)2
(

ζ
∇∇∆ ·V

)∥∥∥∥
L2
t (0,T ;L2

x(R2))

≤ ε
1
2 (1 + T )C̃d.

The proof follows from the same strategy as the proofs of Theorems 3.1 and 3.3. One must
control two new terms. Standard product estimates provide

‖Q[εζ](V)‖
W 4,1
x
. C

(
1
h0
, ‖ζ‖H5

)
‖V‖2H7∥∥∥−µ

3
((1 + εζ)2 − 1)∇∇ · ∂tV −

εµ

3
(1 + εζ)2∇ζ∇ · ∂tV

∥∥∥
W 4,1
x

. C
(

1
h0
, ‖ζ‖H5

)
‖εµ∂t∇ ·V‖H6

and using for instance [DI18, Lemmas 2.1 and 2.4] and standard product estimates we obtain

‖εµ∂t∇ ·V‖H6 . C
(

1
h0
, ‖ζ‖H6

)
‖∇ζ + ε(V · ∇)V + εµQ[εζ](V)‖H5

. C
(

1
h0
, ‖ζ‖H6 , ‖V‖H8

)
.
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We note the strategy used in the proof of Theorems 3.1 and 3.3 also provides bounds on
‖∇ζ‖L2

t (0,T ;L∞x ). Secondly a new term also appears in the control of the rotational component.

We note that

∇⊥∇
⊥

∆
·(µT [εζ]∂tV + µQ[εζ](V)) = −εµ∇⊥∇

⊥

∆
·
(
h
[
∇ · ∂tV + (V · ∇)(∇ ·V)− (∇ ·V)2

]
∇ζ
)

and using previous bounds we get∥∥∥∥∇⊥∇⊥∆ · (µT [εζ]∂tV + µQ[εζ](V))

∥∥∥∥
L2
x

≤ C
(

1
h0
, ‖ζ‖H2 , ‖V‖H3

)
‖∇ζ‖L∞x

so that the strategy used in the proof of Theorems 3.1 and 3.3 to control the vorticity component
can easily be adapted.

Appendix A. Littlewood-Paley decompostion

In this section we introduce homogeneous and inhomogeneous Littlewood-Paley decomposi-
tions and provide basic properties. Let ϕ0 be a smooth nonnegative even function supported
in [−1, 1], that is equal to 1 in [−1

2 ,
1
2 ] and that is nonincreasing on R+. Then we define, for

any y ∈ R and any j ∈ Z the function Pj(y) := ϕ0(2−j−1y) − ϕ0(2−jy). We note that Pj is a
function supported in the annulus C(2j−1, 2j+1) for any j ∈ Z.

For any y ∈ R

Pj(y) ∈ [0, 1] , ϕ0(y) +
∑
j∈N

Pj(y) = 1 ,
1

2
≤ ϕ0(y)2 +

∑
j∈N

P 2
j (y) ≤ 1.

Then for any p ∈ [1,∞] and any Schwartz class function f

ϕ0(|D|)f +
N∑
j=0

Pj(|D|)f
Lp�

N→∞
f

since
‖(1− ϕ0(2−N−1|D|))f‖Lp →

N→∞
0.

Such decomposition of the function f is called inhomogeneous Littlewood-Paley decomposition.
For any y ∈ R∗

Pj(y) ∈ [0, 1] ,
∑
j∈Z

Pj(y) = 1 ,
1

2
≤
∑
j∈Z

P 2
j (y) ≤ 1.

Then for any p ∈ (1,∞] and any Schwartz class function f we have∑
|j|≤N

Pj(|D|)f
Lp�

N→∞
f

since
‖ϕ0(2N |D|)f‖Lp →

N→∞
0 and ‖(1− ϕ0(2−N−1|D|))f‖Lp →

N→∞
0.

Such decomposition of the function f is called homogeneous Littlewood-Paley decomposition.

Appendix B. Fourier Multipliers on Lebesgue spaces

In this section we gather useful estimates concerning Fourier multipliers on Lp. The first
lemma is about Bessel potentials.

Lemma B.1. Let n = 1 or 2. For any α ≥ 0 there exists a constant C > 0 such that for any
a ≥ 0, any p ∈ [1,∞] and any f ∈ Lp(Rn)∥∥∥(1 + a|D|2)−

α
2 f
∥∥∥
Lp(Rn)

≤ C‖f‖Lp(Rn),∥∥∥aα2 |D|α(1 + a|D|2)−
α
2 f
∥∥∥
Lp(Rn)

≤ C‖f‖Lp(Rn).
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Furthermore for any α ≥ 0 and any b > 0 there exists a constant C > 0 such that for any a ≥ 0,
any p ∈ [1,∞] and any f ∈ Lp(Rn)∥∥∥(1 + ba|D|2)

α
2 (1 + a|D|2)−

α
2 f
∥∥∥
Lp(Rn)

≤ C‖f‖Lp(Rn).

Finally, for any p ∈ (1,∞) there exists a constant C > 0 such that for any f ∈W 1,p(Rn)

‖|D|f‖Lp ≤ C‖∇f‖Lp .

Proof. By homogeneity one can assume a = 1. As noted in [Ste70, V.3.1], F−1((1+4π2|ξ|2)−
α
2 )

is in L1(Rn) so that the first bound follows by Young’s convolution inequality. The second
bound is proved in [Ste70, V.3.2].

Concerning the third point, we note from [Ste70, V.3.2] that there exists two finite measures
ν and µ on Rn such that

(1 + ba|D|2)
α
2 (1 + a|D|2)−

α
2 f = ν ∗ (1 + a|D|2)−

α
2 f + µ ∗ (ba)

α
2 |D|α(1 + a|D|2)−

α
2 f

so that the result follows from the first point.
Finally, since |D| = −

∑n
j=1

∂i
|D|∂i, the last point follows from the fact that the Riesz trans-

forms are bounded on Lp for p ∈ (1,∞). �

We then recall Bernstein’s Lemma.

Lemma B.2. Let n ∈ N∗ and b > a > 0. Let φ a smooth function supported in [a, b] and χ a
smooth function compactly supported. Then for any s ∈ R and any k ∈ N there exists a constant
C > 0 such that for any λ > 0, any p, q ∈ [1,∞] with q ≥ p and any f ∈ Lp(Rn)∥∥∥∇kχ(λ−1|D|)f

∥∥∥
Lq(Rn)

≤ Cλk+d(
1
p−

1
q ) ∥∥χ(λ−1|D|)f

∥∥
Lp(Rn)

,

1

C
λs
∥∥φ(λ−1|D|)f

∥∥
Lp(Rn)

≤
∥∥|D|sφ(λ−1|D|)f

∥∥
Lp(Rn)

≤ Cλs
∥∥φ(λ−1|D|)f

∥∥
Lp(Rn)

.

Then we provide a high frequency result.

Lemma B.3. Let β > 0, n ∈ N∗. Let χ be a smooth compactly supported function that is equal
to 1 near 0. There exists a constant C > 0 such that for any p ∈ [1,∞], any Schwartz class
function f and any λ > 0∥∥∥∥1− χ(λ|D|)

(λ|D|)β
f

∥∥∥∥
Lp(Rn)

≤ C

∥∥∥∥∥ 1− χ(λ|D|)
(1 + λ2|D|2)

β
2

f

∥∥∥∥∥
Lp(Rn)

.

Proof. By homogeneity one can assume λ = 1. Using [Ste70, V.3.2] there exists two finite
measures ν and µ on Rn such that

(1 + |D|2)
β
2

(1 + |D|2)
β
2

1− χ(|D|)
|D|β

f = ν ∗ 1− χ(|D|)
|D|β

1

(1 + |D|2)
β
2

f + µ ∗ 1− χ(|D|)
(1 + |D|2)

β
2

f.

Then we get ∥∥∥∥∥µ ∗ 1− χ(|D|)
(1 + |D|2)

β
2

f

∥∥∥∥∥
Lp

.

∥∥∥∥∥ 1− χ(|D|)
(1 + |D|2)

β
2

f

∥∥∥∥∥
Lp

.

Furthermore, using a Littlewood-Paley decomposition as in Section A together with Bernstein’s
Lemma B.2, there exists an integer k0 ∈ Z such that for any Schwartz class function g∥∥∥∥1− χ(|D|)

|D|β
g

∥∥∥∥
Lp

=

∥∥∥∥∥∥
∑
j≥k0

1− χ(|D|)
|D|β

Pj(|D|)g

∥∥∥∥∥∥
Lp

≤
∑
j≥k0

∥∥∥∥1− χ(|D|)
|D|β

P0(2−j |D|)g
∥∥∥∥
Lp

.
∑
j≥k0

2−βj ‖P0(|D|)(1− χ(|D|))g‖Lp . ‖(1− χ(|D|))g‖Lp
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so that∥∥∥∥∥ν ∗ 1− χ(|D|)
|D|β

1

(1 + |D|2)
β
2

f

∥∥∥∥∥
Lp

.

∥∥∥∥∥1− χ(|D|)
|D|β

1

(1 + |D|2)
β
2

f

∥∥∥∥∥
Lp

.

∥∥∥∥∥ 1− χ(|D|)
(1 + |D|2)

β
2

f

∥∥∥∥∥
Lp

.

�

In the following we provide a boundedness result in L1 when n = 1.

Lemma B.4. Let s ∈ [0, 1). There exists a constant Cs > 0 such that for any f ∈W 1,1(R)

‖|D|sf‖L1(R) ≤ Cs‖f‖W 1,1(R)

and there exists a constant C > 0 such that for any f ∈W 2,1(R)

‖|D|f‖L1(R) ≤ C‖f‖W 2,1(R).

Proof. Using an inhomogeneous Littlewood-Paley decomposition as in Section A, we have

‖|D|sf‖L1(R) ≤ ‖ϕ0(|D|)|D|sf‖L1(R) +
∑
j∈N

∥∥sgn(D)|D|s−1Pj(|D|)∂xf
∥∥
L1(R)

.

Using Lemma B.1, Young’s convolution inequality and since ξ 7→ ϕ0(|ξ|)(1 + |ξ|2)
s
2 is a smooth

compactly supported function

‖ϕ0(|D|)|D|sf‖L1(R) .
∥∥∥ϕ0(|D|)(1 + |D|2)

s
2 f
∥∥∥
L1(R)

. ‖f‖L1(R) .

Then we note that for any α ∈ R, the map ξ 7→ sgn(ξ)|ξ|αP0(|ξ|) is a smooth compactly
supported function so that∥∥∥F−1(sgn(ξ)k|ξ|αPj(|ξ|))

∥∥∥
L1

= 2αj
∥∥∥F−1(sgn(ξ)k|ξ|αP0(|ξ|))

∥∥∥
L1
. 2αj .

Therefore it follows from Young’s convolution inequality

‖|D|sf‖L1(R) . ‖f‖L1(R) +
∑
j∈N

2(s−1)j ‖∂xf‖L1(R)

and the first point follows. The second point follows the same way. �

A similar result can be obtained when n = 2.

Lemma B.5. Let s ∈ [0, 2]. There exists a constant C > 0 such that for any f ∈W 2,1(R2)

‖|D|sf‖L1(R2) ≤ C‖f‖W 2,1(R2).

Appendix C. Dispersive estimates

In this section we gather different dispersive estimates that are useful through this work.
There are obtained from [Mel24]. We begin with the case n = 1.

Lemma C.1. Let n = 1. Let λ > 0, α ∈ R with α /∈ {−2,−1}, β ≥ 0 and l ∈ N with l ≥ 2.
Assume that g is an odd C2 function. Let y1 > y0 > 0. Let χ be a smooth even compactly
supported function whose support is a subset of [−y0, y0] and that is equal to 1 on [−1

2y0,
1
2y0].

i) Let s ∈ [0, β2 ]. Assume that |g′′| ≥ λyβ on [0, y0] and, if s = β
2 , that |g′ − g(0)| ≥ λyβ+1

on [0, y0]. There exists C > 0 such that for any µ > 0, any t ∈ R∗, any m ∈ {0, 1} and any
Schwartz class function f∥∥∥ei t√

µ
g(
√
µD)

χ(
√
µD)(sgn(D))m|D|sf

∥∥∥
L∞x
≤ C

|t|
s+1
2+β

µ
− (β+1)(s+1)

2(2+β) ‖χ(
√
µ|D|)f‖ L1 .
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ii) Assume that g is Cl(R). Assume that
l∑

p=2

|g(p)| ≥ λ on [1
2y0, 2y1], that |g′′| ≥ λyα on

[y1,∞) and, if l = 2, that 1
λy

α+1 ≥ |g′ − a| ≥ λyα+1 on [y1,∞) for some a ∈ R. There exists
C > 0 such that for any µ > 0, any t ∈ R∗ and any Schwartz class function f∥∥∥ei t√

µ
g(
√
µD)

(1− χ(
√
µD))f

∥∥∥
L∞x
≤ C

|t|
1
l

µ
1−l
2l

∥∥∥(
√
µ|D|)

l−2−α
l (1− χ(

√
µD))f

∥∥∥
L1
.

Proof. We introduce an homogeneous Littlewood-Paley decomposition as in Section A. There
exists k0 ∈ Z such that using Young’s convolution inequality and Bernstein’s Lemma B.2∥∥∥ei t√

µ
g(
√
µD)

χ(
√
µD)(sgn(D))m|D|sf

∥∥∥
L∞x

=

∥∥∥∥∥∥
∑
k≤k0

e
i t√
µ
g(
√
µD)

Pk(
√
µD)(sgn(D))m|D|sχ(

√
µ|D|)f

∥∥∥∥∥∥
L∞x

.

∥∥∥∥∥∥
∑
k≤k0

F−1
(
e

i t√
µ
g(
√
µD)

Pk(
√
µD)(sgn(D))m|D|s

)∥∥∥∥∥∥
L∞x

‖χ(
√
µ|D|)f‖L1 .

The first inequality follows from [Mel24, Lemma 2.6].

Secondly if f̂ is compactly supported there exists k2, k1 ∈ Z such that using Young’s convo-
lution inequality∥∥∥ei t√

µ
g(
√
µD)

(1− χ(
√
µD))f

∥∥∥
L∞x

=

∥∥∥∥∥∥
∑

k2≥k≥k1

e
i t√
µ
g(
√
µD)

Pk(
√
µD)(1− χ(

√
µD))f

∥∥∥∥∥∥
L∞x

.

∥∥∥∥∥∥
∑

k2≥k≥k1

F−1
(
e

i t√
µ
g(
√
µD)

Pk(
√
µD)|D|s

)∥∥∥∥∥∥
L∞x

‖|D|−s(1− χ(
√
µD))f‖L1

with s = − l−2−α
l . The second inequality follows from [Mel24, Lemma 2.6 and Lemma 2.9] and

by density of F−1(C∞c (R)). �

Then we consider the case n = 2.

Lemma C.2. Let n = 2. Let λ > 0, m ∈ N, β ≥ 1 and α ∈ R with α /∈ {−2,−1}. Assume that
g is C3(R). Let y0 > 0. Let χ be a smooth even compactly supported function whose support is
a subset of [−y0, y0] and that is equal to 1 on [0, 1

2y0].

i) Assume that |g′′| ≥ λyβ, |g′ − g′(0)| ≥ λyβ+1 and |g′| ≥ λ on [0, y0]. There exists C > 0
such that for any µ > 0, any t ∈ R∗ and any Schwartz class function f∥∥∥∥ei t√

µ
g(
√
µ|D|)

χ(
√
µ|D|)

(
∇
|D|

)m
f

∥∥∥∥
L∞x

≤ C

µ

(√
µ

|t|

) 5+β
2(2+β)

‖χ(
√
µ|D|)f‖ L1 .

ii) Let s ∈ R such that (s+ 2)(s−α) < 0 or s = α. Assume that |g′| ≥ λyα+1 and |g′′| ≥ λyα
on [y02 ,∞) and, if s = α, that |g′| ≤ 1

λy
α+1, |g′′| ≤ 1

λy
α and |g′′′| ≤ 1

λy
α−1 on [y02 ,∞). There

exists C > 0 such that for any µ > 0, any t ∈ R∗ and any Schwartz class function f∥∥∥∥ei t√
µ
g(
√
µ|D|)

(1− χ(
√
µ|D|))

(
∇
|D|

)m
f

∥∥∥∥
L∞x

≤ C

µ

(√
µ

|t|

) s+2
2+α ∥∥(

√
µ|D|)−s(1− χ(

√
µ|D|))f

∥∥
L1 .

iii) Assume that α < −1. Let s ∈ R such that (s+ 2)(s− α−1
2 ) < 0 or s = α−1

2 . Assume that

|g′| ≥ λ and |g′′| ≥ λyα on [y02 ,∞) and, if s = α−1
2 , that 1

λy
α+1 ≥ |g′ − a| ≥ λyα+1 on [y02 ,∞)
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for some a ∈ R∗. There exists C > 0 such that for any µ > 0, any t ∈ R∗ and any Schwartz
class function f∥∥∥∥ei t√

µ
g(
√
µ|D|)

(1− χ(
√
µ|D|))

(
∇
|D|

)m
f

∥∥∥∥
L∞x

≤ C

µ

(√
µ

|t|

) 2(s+2)
3+α ∥∥(

√
µ|D|)−s(1− χ(

√
µ|D|))f

∥∥
L1 .

Proof. We begin with the case m = 0. Point (i) follows directly from [Mel24, Lemma 2.12].
Concerning points (ii) and (iii), by introducing a Littlewood-Paley decomposition as in Sec-
tion A and proceeding as the previous lemma for high frequencies, Points (ii) and (iii) follow
respectively from Lemma [Mel24, Lemma 2.15] and [Mel24, Lemma 2.17].

We now consider the case m ≥ 1. We claim that one can easily adapt the estimates in
[Mel24, Section 2.4] to our setting. Indeed in our case one must estimate integrals under

the form
∫
R+ e

i
t√
µg(
√
µr)
J̃(r|x|)χ(

√
µr)rdr or

∫
R+ e

i
t√
µg(
√
µr)
J̃(r|x|)P (

√
µr

2k
)rs+1dr where J̃(τ) =∫ 2π

0 eiτ sin(θ)u(θ)dθ and u is a smooth periodic function (u ≡ 1 in [Mel24, Section 2.4]). Similarly

as J0(τ) :=
∫ 2π

0 eiτ sin(θ)dθ, one can decompose J̃ as J̃(τ) = h̃−(τ)eiτ + h̃+(τ)e−iτ where, for any

p ∈ N, |h̃(p)
± (τ)| . (1 + |τ |)−p−

1
2 . Then, one can adapt all the results of [Mel24, Section 2.4]

replacing J0 by J̃ so that the strategy used to prove the case m = 0 also works.
�

Lemma C.3. Let n = 2. Let λ > 0, m ∈ N. Assume that g is C2(R). Let y1 > y0 > 0.
Let χ be a smooth even compactly supported function whose support is a subset of [−y0, y0] and
that is equal to 1 on [0, 1

2y0], φ a smooth function supported in [1
2 , 2] and χ̃ a smooth compactly

supported function whose support is a subset of [y0, y1]
i) Assume that |g′| ≥ λ and g′′ has a finite number of zeros on (0, y0]. There exists C > 0

such that for any µ > 0, any t ∈ R∗, any l ∈ N with l ≥ 2, any k ∈ Z and any Schwartz class
function f∥∥∥∥ei t√

µ
g(
√
µ|D|)

χ(
√
µ|D|)φ(2−k

√
µ|D|)

(
∇
|D|

)m
f

∥∥∥∥
L∞x

≤ C

|t|
1
l

(
2k
√
µ

)2− 1
l ∥∥∥φ(2−k

√
µ|D|)f

∥∥∥
L1
.

In particular, for any η > 0 there exists Cη > 0 such that for any µ > 0, any t ∈ R∗, any l ∈ N
with l ≥ 2 and any Schwartz class function f∥∥∥∥ei t√

µ
g(
√
µ|D|)

χ(
√
µ|D|)

(
∇
|D|

)m
f

∥∥∥∥
L∞x

≤ Cη

|t|
1
l

(∥∥∥|D|2− 1
l
−ηf

∥∥∥
L1

+
∥∥∥|D|2− 1

l
+ηf

∥∥∥
L1

)
.

(ii) Assume that g is Cl(R), that
l∑

p=1

|g(p)| ≥ λ and g′′ has a finite number of zeros on [y0, y1].

There exists C > 0 such that for any t ∈ R∗ and any µ > 0∥∥∥∥ei t√
µ
g(
√
µ|D|)

χ̃(
√
µ|D|)

(
∇
|D|

)m
f

∥∥∥∥
L∞x

≤ C

|t|
1
l

∥∥∥|D|2− 1
l f
∥∥∥
L1
.

Proof. The first inequality is an easy adaptation of [Mel24, Lemma 2.21(1)]. The second bound
is consequence of the first bound together with the use of a Littlewood-Paley decomposition,
Bernstein’s Lemma B.2 and the fact that∑

2k≤√µ

(
2k
√
µ

)η
.η 1 ,

∑
√
µ≤2k≤2y0

(
2k
√
µ

)−η
≤

∑
√
µ≤2k

(
2k
√
µ

)−η
.η 1.

The third inequality easy follows from [Mel24, Lemma 2.21(2)]. �

Finally we provide Morawetz-type estimates.
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Proposition C.4. Let n ∈ N∗ and T > 0. Assume that g is C1(R∗+). There exists C > 0
independent of T such that for any function f ∈ L2(Rn), any function F in L∞(0, T ;L2(Rn)),
any µ > 0, any ε > 0, any a > 0 and any x0 ∈ Rn∫ T

0

∫
Rn

∣∣∣|g′(√µ|D|)| 12 ei t
ε
√
µ
g(
√
µ|D|)

f
∣∣∣2 e−a2 |x−x0|2dxdt ≤ ε C√

a
‖f‖2L2

x
.

and∫ T

0

∫
Rn

∣∣∣∣∫ t

0
|g′(√µ|D|)|

1
2 e

i
(t−s)
ε
√
µ
g(
√
µ|D|)

F (s, ·)ds
∣∣∣∣2 e−a2 |x−x0|2dxdt ≤ εT 2 C√

a
‖F‖2L2

s(0,T ;L2
x).

Proof. After an appropriate change of variable in time we get from [Mel24, Proposition 2.28]∫
R

∫
Rn

∣∣∣(|g′(√µ|D|)| 12 ei t
ε
√
µ
g(
√
µ|D|)

f)(x)
∣∣∣2 e−a2 |x−x0|2dxdt ≤ ε C√

a
‖f‖2L2 .

Then denoting by I the second quantity to bound and using Jensen’s inequality and the previous
estimate we obtain

I ≤
∫ T

0
T

∥∥∥∥(|g′(√µ|D|)|
1
2 e

i
(t−s)
ε
√
µ
g(
√
µ|D|)

F (s, ·))e−
a
4
|x−x0|2

∥∥∥∥2

L2
t (s,T ;L2

x)

ds ≤ εT 2 C√
a
‖F‖2L2

s(0,T ;L2
x).

�
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