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RIGID LID LIMIT IN SHALLOW WATER OVER A FLAT BOTTOM

BENJAMIN MELINAND

ABSTRACT. We perform the so-called rigid lid limit on different shallow water models such
as the abcd Bousssinesq systems or the Green-Naghdi equations. To do so we consider an
appropriate nondimensionalization of these models where two small parameters are involved:
the shallowness parameter p and a parameter € which can be interpreted as a Froude number.
When parameter ¢ tends to zero, the surface deformation formally goes to the rest state, hence
the name rigid lid limit. We carefully study this limit for different topologies. We also provide
rates of convergence with respect to € and a careful attention is given to the dependence on the
shallowness parameter p.

1. INTRODUCTION

We consider shallow water asymptotic models of the water wave equations that can be written
under the general form
e U+ L,U+¢Q,(U) =0.

Heret € R, 2z € Ror R? , U = (¢, V) € R? or R3, 1+&( is the nondimensionalized water depth,
V is the nondimensionalized horizontal velocity of the fluid, £, is a linear operator that tends to
the wave operator as ;4 — 0 and ), a nonlinear operator. The nondimensionalized parameter
1 measures the shallowness of the flow. The nondimensionalized parameter € compares the
amplitude of the water waves to the water depth and can also be seen as a comparison between
the typical horizontal velocity of the fluid and the typical velocity of the water waves. Note that
the nondimensionalized parameter ¢ appears in front of 0; since the characteristic time used to
nondimensionalize the time variable is the typical time scale of the fluid (and not the one of
water waves). We assume in the following that € and p both belong to (0, 1].

The goal of this paper is to perform the limit ¢ — 0 and understand how the parameter
1 interferes with this convergence. In our framework the velocity component V tends to a
solution of the incompressible Euler equations whereas the free surface ¢ tends to 0 thus the
terminology rigid lid limit. Actually the rigid lid approximation is a common assumption in the
oceanographical literature and can be interpreted as a low Froude number assumption (ocean
currents travel slower than water waves). We refer for instance to [BH89, [DT90, [ANH96] where
existence and stability of nearshore shear waves that are not gravity waves were discussed and
such assumption is used. In the same direction Camassa, Holm and Levermore [CHL96. [CHLI7]
derive from the free surface Euler equations two asymptotic models called nowadays the lake
equations and the great lake equations where again a rigid lid approximation is considered.
In our setting the lake equations are obtained by neglecting terms of order O(u) and then
performing the limit € — 0 whereas the great lake equations are derived by neglecting terms of
order O(u?) and then performing the limit ¢ — 0. A full justification of the lake equations was
obtained in [BM10] (see also [Oli97]). We emphasize that all the previous cited works consider
a non flat bathymetry. That is not the case in this paper where the seabed is assume to be flat.
Finally we also refer to [MG15] where a first study of the rigid lid limit on the full irrotational
water wave equations is performed. The proof is however based on weighted dispersive estimates
that are not well suited for the local wellposedness on large time and the rates of convergence
obtained are not optimal. Using the strategy provided in this paper one can improve [MG15] by
obtaining rates of convergence as those established for instance in Section [5| for the irrotational
Green-Naghdi equations.
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We carefully study if the convergence is strong, meaning in L>(0, T’; L?(R")) for some T > 0
independent of . If not, we provide the default of strong convergence, meaning a corrector
U. such that U — U, strongly converges. We also get convergence in L0, T; L*°(R™)) for
some g > 2 (weak convergence) and in L?(0,7; L2 (R™)) (convergence of the local energy)
All our convergence results are given with rates of convergence in terms of & that crucially
depends on the shallowness parameter p and the function space we consider. Our strategy is
the following. We assume bounds on appropriate H®-norms of U that are uniform with respect
to € on a existence tim that is independent of €. Using Duhamel’s formulation one can then
use Strichartz estimates to get L{LT bounds and Morawetz-type estimates to obtain LZLZ
controls.

Our problem shares some similarities with the incompressible limit (low Mach number limit)
of the compressible Euler equations defined in R™:

-1
58t0+€V-Vc+7T(1+5c)V-V:O,

—1
eV +e(V-V)V + VT(l +ec)Ve = 0.

In that case 1 + ec is the rescaled speed of the sound, V is the velocity of the fluid, v > 1 the
adiabatic exponent and € the Mach number. The limit € — 0 was studied by several authors and
we refer for instance to [Uka86), [MS01, [DHO04, [Gal05, [Ala08| HS14]. It is now well understood
that the acoustic component of (¢, V) is of dispersive type and weakly converges to 0 since its
propagation speed is of size % and, when the initial datum only contains incompressible terms,
the convergence is strong. Such phenomenon also appears for the rigid lid limit.

Finally we mention the following works [LPS12l [SX20, [SX21], [Tes24] where dispersive esti-
mates similar to ours are used to study the long time existence problem on Boussinesq and
Boussinesq-type systems.

We organize the paper as follows. Section [2] and Section [3| are devoted to the study of
the rigid lid limit on the classical Boussinesq system (also called Amick-Schonbek system in
the literature) respectively in 1d and 2d. We explain in details our strategy. In Section
we consider other Boussinesq systems. Finally in Section [5| we perform the rigid lid limit
on the Green-Naghdi equations. Appendix [A] recall some basic facts about Littlewood-Paley
decomposition and Appendix [B] gathers different useful Fourier multiplier estimates. Finally we
provide in Appendix [C] general dispersive estimates on linear dispersive equations with radial
nonhomogeneous phases.

Notations.
e If f is a Schwartz class function defined on R”, we define F f or f as the Fourier transform
1

of f by
£ — —ix-£
fO = G | e

If m is a smooth function that is at most polynomial at infinity, we define the Fourier
multiplier m(D) as, for any Schwartz class function f,

m(D)f = F~H(m(€)f()).
Note that the Laplace operator verifies A = —|D|?.

If f is function defined on R"™ we denote by || f||z» the LP(R™) norm of f.
If p € [1, 00], we denote p’ = p%l.
IfT>0and G: (t,z) € [0,T] x R" — G(t,z) € R, the norm ||G|| 3, corresponds to

the norm of the space L4((0,7"); L"(R™)).

(DNote that this kind of convergence was also obtained for the rigid lid limit of the shallow water equations
over a nonflat bottom in [BMI0] (without any rate of convergence), see Theorem 2.5 and Subsection 4.2.2 inside.

(2)Such bounds and existence time can be obtained from energy estimates when one prove the local wellposed-

ness, see for instance Subsections or below.
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e If S: F — F is a linear bounded operator with E, F' two Banach spaces, we denote by
S* its adjoint.

Acknowledgments. We deeply thank the anonymous referee for careful reading and for very
valuable comments on the manuscript. This work has been partially funded by the ANR project
CRISIS (ANR-20-CE40-0020-01).

2. THE CLASSICAL 1D BOUSSINESQ SYSTEM

In the one dimensional case the classical Boussinesq system reads as

€0+ 0, (1 +eC]V) =0,

1
(1) (1——82)8tV+8C+6V8V—0

Denoting by U = (¢, V)T € R?, we get the following system
(2) e, U+ A(0,)U = eF(U)

where

0 Oy 02(CV)
A(0z) = <(1 _ %ag)—lax O> and F(U) = — <;<1 _ ga2)16x(v2)> .

Note that

D : B 12 o D
@ eotA@)=| (tm> W <t\/ﬁ>
’ i . D D
V1+£D2? st (t‘/1+§D2> o8 (t 1+§D2)

We state the main result of this section.

Theorem 2.1. Let M >0, T >0, e € (0,1] and p € (0,1]. Let (¢,V) € C([0,T]; (H? x H?)(R))
a solution of with initial datum (o, Vo) such that

(¢, V)HLoc(o,T;H3(R)XH3(R)) <M.

There exists a constant C > 0 independent of M, T, € and p such that for any q,r > 2 with

1 1 1 ~ ~ . 1 1 1
a+?:Zand(m@/q,T22Uﬂth5+§:6

()~ ()
()~
)

sup
roER

NI
Q=

+
< (8) M2Tic,

LY(0.T; L5 (R)) H
§t:
) g = () i
Yo/ llcaomzmy — \ &

1 1
< <5>q M + M2T% <5>6 C,

LI(0,T;L% (R)) H H

()

Remark 2.2. Several remarks are in order. We first note that (¢, V) weakly converges to 0 as
e — 0. However (¢,V) does not strongly converge to 0, meaning in L°°(0,T; L?*(R)), except
if (o, Vo) = (0,0). The first two estimates provides the default of strong convergence. The
first three estimates are not uniform with respect to u — 0. The fourth estimate provides the
convergence to 0 in L?(0,T; Hy (R)) for any s € [0,3) and is uniform with respect to u — 0.
That corresponds to the decay to 0 of the local energy.

3
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Remark 2.3. Note that if € ~ p as in [BCS02, BCL05] or when p = O(e), the first two estimates
does not provide a convergence result as ¢ — 0. It is known in that case that nonlinear
terms must be taken into account and that asymptotic models like a system of decoupling KdV

equations or a system of decoupling BBM equations become relevant. A proof of such a result
can be adapted from [BCL05] or [Lani3l Section 7.1].

2.1. Local existence. In this section we provide a local wellposedness result of on an
existence time independent of e, u € (0,1]. We introduce the functional space

X3R) = {(¢,V) € (HP x HYR) , (¢, V)lxg := Ilms + 1Vl o + VElOV llga < 00}

Proposition 2.4. Let hg > 0, A > 0, ¢ € (0,1] and p € (0,1]. Let (o, Vo) € XS(]R) with
1+¢eCp > ho and ||(Co, VO)HXE < A. There exists a time T > 0 that only depends on A and hg

and a unique solution (¢, V) € C([0,T]; X;(R)) of with initial datum (o, Vo). Furthermore
there exists a constant M > 0 depending only on A and hg such that

1S V)l zoe 0,7 x3) < M.

The proof is similar to the proofs of [Mell8b, Proposition 2.15] or [Isr1l, Theorem 1]. The
key point is that System under the assumption that (1 4 &) > % has a symmetrizer

1 0
SO =0 (1400 80, (01 +00,9)
and corresponding energies
R U) = (S(U)a’;U, a’;U)2
that allow to control the X 3 (R)-norm.

r

2.2. Dispersive estimates. The phase g :=1r — is smooth and

() 2
g >0,¢" <0on RS, gir)—1 ~ —r—, g"(r) ~, T gr) ~ 3%7"_3, J"(r) ~ 33074,
Ty

r~0 2 re—+400 re—+00

2
1+5

Thanks to Appendix[C|one can prove several dispersive estimates. In the following x is a smooth
compactly supported function that is equal to 1 near 0.

Firstly using Lemma there exists a constant C' > 0 such that for any Schwartz class
function f, any t # 0, any p € (0,1] and any ¢ € (0, 1]

st 1 ¢ :
VIR (JaDl)sen(D)DI f §M<|t|> NP
L
+t :
¢ VIR (1 - x(JEIDI) f §5<|t|> (1 = X(AD) DDl
Lge

Then corresponding Strichartz estimates can be obtained: for any (¢, r) € {(4, ), (00,2)} and
any functions f and G smooth enough

t_ O 1el_
eig\/@af <<5>2(2
x ~
o

T () 11— x(VADD) (VEID)*E D8, 1] 12

S =

) 3 1
I1D13 "2 x (il D)) £l 2

LiLy

Glwith B=1,s = L, a = 4,1 = 2.



€ a(l—;
5@) D1 X (VDG

x

B0~ 1
" () I = X(VADD) (VD) D0,y

One can prove such bounds by applying a T*T argumen on the following operators that are
both defined from LY (R, L% (R)) to L(R)

S 8’1‘
Fe B Or
Top(F) = / e VISP (VaID]) 5 F(s)ds,

Df*

Tur(F)= [ ¢ VR LEAIDD £
(\f [DJ)
In a similar way one can also get from Lemma %)l together with Lemma that for any
functions f and F' smooth enough

t 81

4+t

C 3 5
< <‘ ‘) 11+ 1D flls

1
3

Lee

and corresponding Strichartz estimates can be obtained from a 771" argument: for any (q,7) €

{(6,00), (00,2)}

0 1,1 1
+1 e e 5(—%)
(6) VT < (2) Tyt
Lirt

toal=s) s &\ 3(1-%)
™) /e P pon| () |1+ uD?RA-D )

0 qrs LtsL%v

LyLy

2.3. Proof of Theorem |2 From Duhamel’s principle on

(é) (t) — o~ LA <€%) — /Ot exp(T=LA(0,)F <<XC/> (T)> dr.

Then from (3)) and since F' is a derivative we can use ([5)) so that for any (¢,7) € {(4, ), (00, 2)}

’ /0 exp(=LA(0,))F ((é) (T)) dr

e\t
S <M) (ALr + Anr)

L1(0,T;L%(R))

where
" |D|3t 3
=D @ g o | R
L{ (0,T3LY) 1+ £|DJ? .
K L{ (0T5LY)
D2t |D|2*r

+ (<cv) +

S e ol V2)
e mpp (
L+ 51DF L?(OT.Ll) tslpl L%(OTLl)

Bin the spirit of [GV92| Lemma 2.1].
Olwith 8 =1,5 =0,a = —4,1 = 3.




and

(1-1)
1 r
Anr =||(VEIDD27D0, (¢V)| i

Vi D 2
L% 0,T;LL) ax (V )
1+ £|DJ? 1
Ltg (OvaL;:)

WADD D I [l s

X 4, 1o Yz N
/1 L BIDI2 1+ E&|D|? 4
L+ 3 |D| %(0 T;iLL) 3| ’ L? (0,T;L3)
Lemmas and [B-4] provide
3
Arp + Apr S % % STiM2
vt A S WKVl g o+ VI g
We then get the first bound when (q,r) € {(4,00),(00,2)} and the other cases follow from
Holder’s inequality. The second bound follows the same way using instead @ and . Note
that since the initial datum is not necessary a derivative one can not use the homogeneous
version of , hence a weaker rate of converge in that case. Finally the third bound follows
from Morawetz-type estimates established in Proposition

_l’_

3. THE CLASSICAL 2D BOUSSINESQ SYSTEM

The two dimensional classical Boussinesq system reads as

e+ V- ([1+e(]V)=0,

® e (1 - %vv-) OV +VC+e(V V)V =

Taking the divergence of the second equation and denoting by U := ((, V- V)T € R2, we get
the following system
e U+ A(D)U =eF((, V)

where

40)= (o gayra o) M FEVI== (e (v o))

Note that
CcoS 157“3| VI+5IDP sin timl
1+ E[DJ? [D| V1+E[DJ2

__IDI g 1Dl 1Dl
WE=nEh <t\/1+3w> cos <t\/m
As in the 1d case we expect (¢, V - V) to weakly converge to 0. We however have no control

on the rotational component of V. Applying the operator V- to the second equation and
denoting by w := V-V we get the following equation

Ow+ (V-Vw+ (V- V)w=0.
Since V is a vector field on R? it has a Hodge-Weyl decomposition

exp(tA(D)) =

\Y% LVt
V=V—-.-V —
AVTVIR
Therefore we expect w to converge to @ as € — 0 where
VJ_
O + <vL @ - v)w:o.
A
The previous equation is the vorticity formulation of the incompressible Euler equation
(9) WV +(V-V)IV4+VP=0,V-V=0

with @ = V4 - V. One can now state the main results of this section.
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Theorem 3.1. Let M > 0, T > 0, ¢ € (0,1] and p € (0,1]. Let ((,V) € C([0,T); (H® x
HY)(R?)) be a solution of with initial datum (Co, Vo) and V € C([0, T]; L?(R?)) be a solution
of the incompressible Fuler equation @ with initial datum Vl% - Vg such that

(¢, V)l e 0,7 (m6 x 1) (R2)) + 1V |20 0,7:22(R2)) < M.

There exists a constant C > 0 independent of M, T, € and u such that for any q,r > 2 with

1,1 _1
atr T2

1 0
¢ 9 t Go € n 141 5 1
(VAV-V>_ 0 a exp(—2zA(D)) V.V, < \/ﬁln(1+€2T) 2t M2T35C
02 LI(0,T5L; (R2)
2
+ S MTC,

»

1>C

9 1 9
< —=In(1+ “T)) a (M + M? < In(1 + “T)T>
LE(O,T;L;(H@)) <\/ﬁ e \/ﬁ .

2
f(M+ M<“T)C,
1 1
J_VJ_ - 3 L 2 of € u 2 CMT,
v A V-V < ﬁln(1+€—2T) M+M ﬁln(l%—;T)T M~VTe C
L§°(0,T;L2(R2))
+ — + T Te .
jﬁ M M2 M CMT

Remark 3.2. (¢, %V - V) weakly converges to 0 as ¢ — 0 whereas %VL -V strongly converges
to a solution of the incompressible Euler equation. Therefore V strongly converges to a solution
of the incompressible Euler equation if and only if ((p,V - Vo) = (0,0). The default of strong
convergence is exhibited through the first bound of the theorem. Finally unlike the 1d case, if
e ~ u as in [BCS02, BCLO5], the theorem provides a convergence result as ¢ — 0.

The previous theorem does not provide uniform bounds with respect to u — 0. It is the
purpose of the following theorem.

Theorem 3.3. Let M > 0, T > 0, ¢ € (0,1] and p € (0,1]. Let ((,V) € C([0,T7; (H® x
HY)(R?)) be a solution of (8) with initial datum ((o, Vo) and V € C([0, T]; L?(R?)) be a solution
of the incompressible Fuler equation @ with initial datum Vl% - Vg such that

1S, V)l oo 0,7 (m6 x ) (r2)) + 1V | oo (0,702(R2)) < M.

There exists a constant C' > 0 independent of M, T, € and p such that for any q,r > 2 with
q + 2r 1

1 0
o iy it MeTe
<ZV'V> 0 2 exp(—zA <V Vo) <et"aMTaC,
0 A L¥(0,T;Lz(R2))
1 2 3 1
<v ) <eo (M4 MPTEE
A LY(0,T;L%(R2))
vt Vv v <eid (M+M2T%gi)MT%eCMTC,
A L$°(0,T;L2(R2))

<e2(M + MT)C.

L2(0,T;L2(R2))

sup
zo€R2

—(z—w0)? ¢
(o5 )
Remark 3.4. The last two estimates provide the convergence in LZ(0,T; L% (R?)). We then

get the convergence of the local energy to the local energy of the corresponding solution of the
7




incompressible Euler equation. If furthermore V € C([0, T]; H5(R?)) then the convergence is in
LZ(0,T; H (R?)) for any s € [0,6).

3.1. Local existence. In this section we provide a local wellposedness result of on an
existence time independent of €, u € (0,1]. Let k € N with k£ > 3. We introduce the functional
space

XER2) = {(¢V) € (H" x HY)Y®2) , (¢ V) g = 1< + 1Vl ggx + VAV - V] < 00}

Proposition 3.5. Let k € N, k > 3. Let hp > 0, A > 0, ¢ € (0,1] and p € (0,1]. Let
(Co, Vo) € X,’j(R2) with 14+ ¢ey > ho and H(CO,‘/O)HXﬁ < A. There exists a time T > 0 that only
depends on A and ho and a unique solution (¢,V') € C([0,T7; XS(RQ)) of with initial datum
(Co, Vo). Furthermore there exists a constant M > 0 depending only on A and hy such that

(¢, V)HL“’(QT;X&) < M.

The proof is similar to the proofs of [Lanl3, Proposition 6.7] or [Mell8al Proposition 2.7].
Again the key point is that System under the assumption that (1 + () > % has a sym-
metrizer and corresponding energies that allow to control the X ﬁ(RQ)—norm.

3.2. Dispersive estimates. From the properties () together with the fact |¢"(r)| < 75, and
thanks to Appendix [C|] one can prove several dispersive estimates.

Firstly, using Lemma together with Lemma for any m € N there exists a constant
C > 0 such that for any Schwartz class function f, any ¢ # 0, any u € (0, 1] and any ¢ € (0, 1]

we have
it |D]

- /irepz V" 14 ulD
< W fllze-
D[ N f,ﬂll( IDI*)? £ 1

Then corresponding Strichartz estimates can be obtained from a T*T argument: for any
q,7,q,7 > 2 such that %—l—% = 1, +% = 1 with r,7 < oo, any m € N, any ¢ € (0,1]
and any p € (0, 1]

S

o AAL 3 %_l (-1
v T 5 (5) ha o
< W DRG0
|D|™ s NG g
(10)
¢ ii(t;S) 1+HD2 vm e 1_%_% 2 2(1 1 1)
d < | — 1 D I |
[ YO N(ﬁ) (1 -+ 4 DP) s

tHz

It is well-known that the previous estimates do not work at the endpoints (¢q,7) = (2,00) or
(¢, 7) = (2,00). We can however prove a logarithmic estimate for functions whose Fourier
transform are well localized. Such type of estimates were performed for the wave equation
(JJMROQ] or [BCD11l, Theorem 8.30]) or the Schrodinger equation ([Tao06]). We provide in the
following a general result.

Proposition 3.6. Let x be a smooth compactly supported function, g a function defined on R*,
a € R and m € N. Assume there exists a constant Cy > 0 such that for any Schwartz class
function f and any t # 0

‘ ‘

O)with B=1, s = a = —4.

Co

iz‘tg(|D|)ﬂf | |
|t

PR 1L+ D)% £l -




Then there exists a constant C > 0 such that for any A > 0, any T > 0, any p > 0 and any

e > 0 we have
1
£ \? VH 2%
<o(2) \/ln (14 R0+ ulDP £l
L2(0,T;L°) VH ¢

and if we define the operator H as

t (t—s)
+1 D
H(F) ::/0 =2 g(yEID) YO0

m

+i—t=g(V/aID]) _ y—1
e vk X(A IDI)
| D|™

o e s

we have

[N

3
IHE goma < € (=)

1 o
N \/111 <1 + [A2T> I(1 + p|DJ?) 1 F | z20,m:L1)
€
HH(F)HLf(o,T;Lgo) <C ()

1w a
v \/m (14 T Y104 41D Pl

£ % a
HH(F)HL?(QT;L?) < Cﬁ In (1 + [)?T) (1 + p|DJ?)2 Fllr20:01)-

N

Proof. By assumption and change of variables we actually have for any p € (0,1] and any
€ (0,1]

< = 9 Co
VE It

We only prove the case m = 0 since the methodology is the same for the other cases. We

introduce the operator

5 - LOTIRY) 2(®)
T .
F - /eqtlex/ﬁg(‘/mD)(lJrMD\Q)4x()\1]D\)F(s)ds
0

Hemetvap) V™

- D

1L+ I D)% £l 1

For any f € L?(R?)

T Lt
* Fi=g(VulDl) 2\ -2 -1 )
15* Fl oy < sup { /0 (TP (1 4| DYy (A D) G )>Lng%dt}

1G] 2.1 <1
<|flee s Jg
HG”L?(O’T;L%)Sl
where
T _. N
Je ={‘ / Tt VIED (1 D) E (AT DG (2, )t }
0 L%
Then
i(t*S) a
< [ NI D) OTDNGE, )| 16, ssdtds
[0,T72 L :
=Kq
and using
€ 1
< ———— |G,
G s
N LRI

whereas from Bernstein’s Lemma [B2]

1@ [e}
Ko S| s WVHPD (1 4y DR)=5 (A1 DG (2, -)

L3

SA P OTHDDG( MG

Mz =
9



I dtds.

so that
2 A2
e G aall6ts,
0,772 1+)\2g|t—s| ’
The first bound follows from Schur’s test. Then for any (a,b), (a,b) € {(2,00), (00,2)}, we define

the operator R,
LY(R, LE(R?))

Raa @ LY(R,LY(R?)) —
1(t s o
F ~ / FEHIVIPD (1 | | D)% (A D] F (s, )ds.

We note that
| Roo,2(F )HLOOUTLQ)_ S[UPT}HS 0 F) HL2

so that the second bound follows by duality and the first bound. Furthermore, we notice that
= §*S where

R2 ,00 + Roo 2 T
L?(R?)

§ ¢ LI, TIZRM) —
T .,
F — /ejFlsﬁg(‘/mD)F(s)ds.

The third estimate follows from the first and second estimates together with the fact S is
bounded since S* is bounded. Finally denoting

t
/ sfg(f‘Dl)(1+ ’D| )
0

and proceeding similarly as for the bound on Kg we get

2xX(A\THD))E(s, -)ds
L2(0,T5L)

LF::‘

t 22
s [ . 4It_S|HF<S,.>HL;EdS .
t
SR\ /s 0 1+/\2f|t /tO/s 0 1—|—>\2f|t |”F(3")H%;d3dt
O

t€[0,T]
and the fourth bound follows.
Secondly, we get from Lemma (i together with Lemma that if y is a smooth

compactly supported that is equal to 1 near 0 and m € N

D) . _
S =+ [DP)fll

e Wy v
€ 1+§D2X(\/E\D’)Wf

Lge

and from Lemma (ii (®)| together with Lemma that

1

+il lDﬁll v 3 €2 3
e VISP - (\f|D!))‘D|m SMZWH(1+|D|2)5f||L1-
2
L

(Nwith 1 =2, n = L.
(®)with s = -3, a = —4.
10



One can then obtained corresponding Strichartz estimates from a 77T argument: for any (G, 7) €
{(4,00), (00,2)}, for any p € (0,1], any € € (0,1] and any m € N

e DL
. mg‘m <G|+ [DPR)EED f e,
ars
(12) L;L}
tiitgs% vm (1—1 203
e VD Lo F)s| S 0D DRIODE
0 D] - e
Lire

3.3. Proofs of Theorem and Theorem We begin with the proof of Theorem
Using Duhamel’s principle

1 0 /10
¢ Y_lo & exp(—tA(D)) G = 0 % | exp(Z=LA(D))F(¢(7), V(T))dr .
(XV-V) 0 & (V'VO) /0 0 & )

=1

Let % + % = % and x be a smooth compactly supported function that is equal to 1 near 0. By

Proposition and interpolation, for any j € {1,2}

|x(/z71o01)

+
In(1 + ;;T)> B;

Q=
[SIES

e

<
L0,y (R2)) ™ <\/ﬁ

where

(1+ u|D|?)20-7) (V- ¥)V)

_|_
2 .71
FOTiE) Vit 5|DI? L2(0,T;LY)
t [t e 4
(1+ D))

(1-1)
By = V- (CV) ||| @t sDE™ (V-V)V)

/14 D2 1+ £|DJ? '

Using Lemmas and we get

By = ||(1+ ul D200V - (¢V)

1
B+ Bz S Cllas I VIlmslzom + NV Iz 200 < T2 M2

Furthermore using Lemma

9
_ & ) < = 27
H(l Xl \/ﬁ|DD)IJHL2’°(O7T;L§-(R2)) ~ VR ] PR
g 2
< == (s IVl + 1V o o)
<7 M2
Vi

11



whereas from Sobolev inequalities, Lemma and with r =7 = %

L OTLCD(RZ
<T4 ]. 1/ |D| ‘

l
£

2(0,T;Wa " (R2))

< Ti v +VIZ )
< ﬁ<||ucuﬂ Vgl g o + VD 3
<ST-—M2.

N

The first bound follows by Holder’s inequality. One can similarly obtain the second bound.
Note that by differentiating one time we can also get a bound on ||V X -VHL%(QT;W;,OO(RQ)) which
will be useful in the following.

On the other hand, since V = Vl% -V,

VLE V

8t(vwg-V—V)+VLE-((V-V)(V—V))+ A (V=V)-V)V)=0

A
so that integrating by parts

1d

s (195 V- Vi) =~ /RQ((V VYV - V) (VIS V- V)

=1

- [V =¥ V) (V- ).

~~

=Jo

Then

h= [ ((VDFE V) (VEF V-Vt [ (V-9 (V- V)

Plq

so that integrating by parts in the first integral and using that V - V=0
A< IVVE - VgV IV 5 -V = Vi
whereas
T2l S [VV e IVE5 V= Vg + IV Vg VY2 [V 5V = Vs

which yields
d L ~ n - n -
S (195 V= V) < OMIV4 S -V = VI + MIVE - Vi[9 -V = V.

Bounds on VLVTL -V — V follow from Gronwall’s inequality and previous bounds obtained on
||V V||L2(0TW100)

Concerning Theorem H, one can use the previous strategy together with .@ The last
bound is a consequence of Morawetz-type estimates established in Proposition [C.4]

Ot is not necessary to split the low and the high frequencies in that case since we do not use Proposition

12



4. OTHER ABCD BOUSSINESQ SYSTEMS

In the previous two sections we chose to present the rigid lid limit on one specific Boussinesq
system (the case a =b=c=0and d = %) There are other abcd-Boussinesq systems

{5(1—,ubA)(‘)tCJrV-([1+5C]V)+,uaAV-V:0,

13

(13) e(1—=pdVV-)oV +V(+e(V-V)V + ucAV(¢ = 0.
In the following, we assume that

(14) b>0,d>0,a<0,c<0

in order to get the wellposedness of the system (see for instance [BCS02]).
We introduce

ey a0y
o= y\/ b1+ ) \/ T+ b)(0 )’

As before, in the 1d case if we denote by U = (¢, V)T we have the following system
e U+ A(0,)U =eF((,V)

where
- 0 (1 — pbd2)~ (1 + pad?)d,
A(0) = <(1 — pdd?) (1 + pcd?)o, 0 )
()0, (CV)
F(GV) = - <(1 _ udag)—lax(;v%) '
Note that

exp(tA(0,)) = < cos(ﬁg(\/ﬁD)) R(\/nD) sin(ﬁg(ﬂD))) |

A (VD)) cos(g(yAD)
In the 2d case if we denote by U = (¢, V - V)T we get the following system
e U+ A(D)U =¢cF(¢, V)

where
0 (1 — pubA) =M1 + pad)
AD) = <(1 = pdA) T (1 + peA)A T )
(1— ubA)"1V - (CV)
F((, V)=~ <(1 - MdK)‘lv (V- V)V)) .
Note that

exp(tA(D))=< cos( s (HIDI) R(@D')Sm%gwwl)))
Aty Sn(5o(VEID))  cos(Lg(EIDD) )

The strategy presented in the previous two sections together with ad hoc dispersive estimates
provide similar results for System , with a rate of convergence depending on how dispersive
System is. Existence of solutions of on an existence time independent of € uniformly
with respect to p € (0, 1] can easily be adapted from [SX12, [SWX17].

The phase g satisfies the following properties that are carefully studied in [Mel24l, Section
3.5]. Firstly ifa+b+c+d #0

1
~ 5 , g (r) ~ 3(a+b+c+d)r

Jg(r)—1 A S g"(r) ~, —10(a+b)(b+ c)r?’.
13



Secondly there exists a € [—6,1] N Z, £, A1, A2 € R such that
g(r)—1 > Lyt g (r) > (a4 1)y, g"(r) < Toret

The exact value of @ and ¢ (that depends on a, b, ¢,d) can be found in [Mel24, Table 1]. Finally
one can prove that |¢'| +|g”| + |¢"’| > 0 on RT (see [Mel24, Lemma 3.4]).
We can now state our results. We begin with the case n =1 in the case a +b+ c+d # 0.

Theorem 4.1. Letn = 1. Let a,b, c,d satisfying anda+b+c+d+#0. Let M >0, T >0,
e € (0,1] and p € (0,1]. Let (¢,V) € C([0,T); (H? x H3)(R)) a solution of with initial
datum (o, Vo) such that

1S V)l oo 0,713 () x 3 (R)) < M.

There exists p € N with p > > 3 and a constant C > 0 depending only on p and a,b,c,d such that
for any q,r > 2 with L + L =1L

2
< <
L{(0,T;L5(R)) H

6)-++(8)

14 Vo

(V= G (rr )
V) lsoroym) ® K

Furthermore if |g"| > 0 on RY., for any q,7 > 2 with % +9: =1
+

4
(6) - () =) " e
v Vo ll iz ) ®

Finally denoting po = 1 if |¢'| >0 on R, po =2 if |¢'| +|g”| > 0 on RT and po = 3 otherwise,

we have
o~ (@—x0)? <‘§>

If we denote by m the maximum among the multiplicities of positive zeros of ¢g” then one can
take p = max(m + 2,3). The proof of the previous theorem follows from dispersive estimates
based on Lemma and the properties of g. We only provide a proof of the last point.
Let x1 be a smooth bounded function supported on {|¢’| > 0} and y2 a smooth compactly
supported function supported on {|g”| + |¢"’| > 0} with 0 ¢ supp(x2). On one hand we get
from Proposition [C.4] that

sup

(i 2
e (z—x0) Xl(\/mD’) <‘§>
zo€ER
On the other hand using Lemma (ii) together with Bernstein’s Lemma we have

:tlt 1 M
H Jr9(VAIDD 2(\/ﬁ|D|))fHLOO < | ILy||D| 70 Xa(v/EI D)) fllz
tlPo

1

141
£ 2p ' ¢ 2 2p—1
= M*T ™% C,

PN
Q=

1
<%0 (M + M?T)C.
L3(0,T;L2(R))

sup
zo€ER

< e2(M + M?T)C.

L2(0T5L2(R))

so that from corresponding Strichartz estimates we obtain

D) (§)

1
< g2r0 (M + M*T 2%0 52;0> C.
L7 (0,T3L° (R)
The third point of the theorem follows from the fact that |¢’| + |¢"| + |¢”’| > 0 on R* and that
there exists 0 < yo < y; such that ¢’ > 0 on [0, yo] U [y1, ).

(10)with B=1s=0,l=pand f=1,s= %,l = 2 for the third estimate.
() with | = Ppo, a = 0.
14



Remark 4.2. As noted in Remark concerning Theorem in the case ¢ ~ p as in [BCS02,
BCLO05] or when p = O(e), the first estimate of Theoremdoes not provide a convergence
result as € — 0 so that nonlinear terms must be taken into account and that asymptotic models
like a system of decoupling KdV equations

at+b+c+d 3
Tai’gi + §5gi3x9i =0

becomes relevant. A proof of such a result can be adapted from for instance [Lanl3, Section
7.3.2] together with the symmetrizers and energy estimates from [SX12, [SWXT17].

€09+ £ 09+ £ 10

We now consider the case n = 1 in the case a + b+ ¢+ d = 0. We introduce the condition
(15) ((a+b)(a+d)(ct+b)(c+d)*+ (a+b+c+d)?
which avoids the situation where g(r) = r that provides a non dispersive system when n = 1.

Theorem 4.3. Let n = 1. Let a,b,c,d satisfying (14) with a + b+ c+d = 0. Let M > 0,
T >0,e€ (0,1 and u € (0,1]. Let ((, V) e c(]o, T] (H3 x H3)(R)) a solution of with
initial datum (Co, Vo) such that

(S, V)l Lo (0,713 () x HE3 (R)) < M.

If a,b,c,d satisfy (15| ., there exists p € N wz’th p > 5 and a constant C' > 0 depending only on
p and a,b,c,d such that for any q,r > 2 with * _,_7 L
<

L{OT;Ln®)  \H

2p
(7)o ()
(<G (o0 (2)°)
L(0,T;Lx (R)) H H

Furthermore if some | € {2,3 4} we ha,@e 22:2 \g(k)| > 0 on R% and if we denote by o =
min(2, 1), for any §,7 > 2 with ; + % = §

[OR (%)

Finally denoting po = 1 if |¢'| >0 on R, pg =2 if |¢'| + |¢”"| > 0 on RT and py = 3 otherwise,

we have
o (@—x0)? (é’)

If we denote by m the maximum among the multiplicities of positive zeros of g” then one can
take p = max(m + 2,5). Again one can obtain dispersive estimates thanks to Lemma
and the previous properties on the phase g. Note that the ratio % comes from low frequency
estimates: if y is a smooth compactly supported function whose support is small enough and

that is equal to 1 near 0 and ifa+b+c+d =0
1 2
g 5
S ) HfHLla
L=~ g3 <u2>

<M> 1l

(12)gith B=3,s=0,l=pand B =3,s =50 — 1 for the third estimate.
15

1,1
g 2p ' q 9 2p—1
= M?T % C,

e\t
5;<2> M2T*3°C.
o

LI(0,T;L7(R))

1
sup < g0 (M + M?T)C.

zo€ER

L{(0,T;L3(R))

+-it D
| (vl Do,

Heisi}g(\lel VD)) fH



Remark 4.4. When € ~ p as in [BCS02, BCL05] or when p = O(e), the first estimate of Theorem
does not provide a convergence result as ¢ — 0. Again nonlinear terms must be taken into
account. Note however that here one must consider a system of decoupling Burgers equations

3
€0ig+ £ O0pg+ £ 559:|:a:c9:t =0.

A proof of such a result can be adapted from for instance [Lanl3, Section 7.3.2] together with
the symmetrizers and energy estimates from [SX12) [SWX17].

We now consider the case n =2 witha+b+c+d # 0.

Theorem 4.5. Letn = 2. Let a,b, c,d satisfying with a+b+c+d#0. Let M >0,T >0,
e € (0,1] and p € (0,1]. Let (¢, V) € C([0,T]; (H® x H®)(R?)) be a solution of with initial
datum ((o, Vo), let V € C([0,T); L>(R?)) be a solution of the incompressible Buler equation ©
with initial datum VLVTL - Vo such that

1S, V)l oo (0.6 x sy e2)) + [V || oo 0,722 m2)) < M.

If ¢ and ¢g" do not vanish on R, (C V) satisfy the same estimates as in Theorem .
If ¢ does not vanish on R but ¢g" wvanishes on R* , there e:msts o€ (2 1) and a constant

C > 0 depending only on a,b,c,d such that for any q,r > 2 with 7 +72=3
]. £+l

¢ t Co € 274 o 2-0
(ZV-V — {0 exp(—zAD) | ¢ v, <(— M2T2"C,
0 L} (0,T;L; (R?))

DS ©

1 el
€ \«¢ gm2=e [ € 2
) 2 (e ()
( "Vl L30.7501 (®2)) Vi Vi
1 o o
vV v_v < <5> 2T (6> U MTECMT
L°(0,T;L2 (R2 K H
A ©0rsL2(R2)  \VH vz

Furthermore, let p = 2 if |¢'| + |¢"] > 0 on RT and p = 3 otherwise there exists a constant

C > 0 depending only on a,b,c,d such that for any §,7 > 2 with * + -1

T 2p
1 0
¢ _ 81 ot Co Lyloooo 2l
AVAYANE V4 0 9 exp( sA(D)) V-V, <ew iM T 2 C,
0 05 LI(0,T;L7 (R?))

(sv) o aer )
A
vJ_
Li
v A

L (o,T;L;aR?))

V-V < (M n MZT%sﬁ) MT 5 CMT

Lg°(0,T5L3 (R2))

Finally denoting po = 1 if |¢'| >0 on R, po =2 if |¢'| +|g”| > 0 on RT and py = 3 otherwise,

we have
—(z—x0)? < C >
€ \v
Vx-V

If we denote by m the maximum among the multiplicities of positive zeros of g” then one

can take o = 2";:14. Again the key point are dispersive estimates that can be obtained from

Lemmas [C.21%)] |C.3 and |C.4]
Finally a similar result can be obtained in the case n = 2 witha+b+c+d = 0.

1
< e (M + M?T)C.
L3(0,T;L2(R2))

sup
zo€R2

(B)with B=1,s=aiff=0and B =1, s = %52 if £ £0.
16



Theorem 4.6. Letn = 2. Let a,b, c,d satisfying with a+b+c+d=0. Let M >0,T >0,
e €(0,1] and p € (0,1]. Let (¢, V) € C([0,T]; (H® x H®)(R?)) be a solution of with initial
datum ({o, Vo), let V € C([0,T); L>(R?)) be a solution of the incompressible Buler equation ©
with initial datum VL% - Vo such that

1S, V) oo (0,716 x 11y 2)) + [V || 2o 0,7322(R2)) < M.
If a,b,c,d satisfies and g’ > 0 on R™, there exists o € (%, %] and C' > 0 depending only
on a,b,c,d, such that for any q,r > 2 with é +72=3

; 1 0 c S\t
— 10 2| exp(—tA(D ( 0 > <= M?>T=3°C,
<? X V> 0 é ( e ( )) vV - VO M%
A LI(0,T;L7 (R2))
1 o
q 2
<VVC V> S i?, M+ MZT%TU i?, Ca
A LI(0,T;L5(R2)) pA A
L1 ~ % —0 % —0
vV vV <[5 ) | mM+a2r™® [ 5] | M7 CMTC
A LEOTL2®E)  \pi pi

Furthermore, let p = 2 if |¢'| +|g”| > 0 on RT and p = 3 otherwise, there exists a constant

C > 0 depending only on a, b, c,d such that for any q,7 > 2 with % + pif =L

-4
( ¢ ) 0 2 ) e tA(D»( G > Ayt
AV - A | expl—¢ sewd > G,
T . V 0 é € V . VO ~ )
A L1(0,T;LE(R?))
¢ : 228t L
vV \V4 <ed M + M*“T 20 g2p C,
A LI(0,T;LE (R?))
\Vas . 1 -1 1 2p—1
Vi .v_vV < e (M+M2T % 52p)MT % CMT (.
A Leo(0,T5L2 (R?))

Finally denoting po = 1 if |¢'| >0 on R, po =2 if |¢'| +|g”| > 0 on RT and py = 3 otherwise,

we have c
7(17330)2
o (ogv)

If we denote by m the maximum among the multiplicities of positive zeros of g” then one

can take o = min(zTnJﬁ, %) Again the key point are dispersive estimates that can be obtained

from Lemmas C.%MSL m and m

5. THE GREEN-NAGHDI EQUATIONS

1
sup < e (M + M?T)C.

xo cR2

L{(0,T;L3(R?))

The Green-Naghdi equations read as

y ¢+ V- ([1+( V) =0,
10 (1 + HTTEC)OY + V¢ + (V- D)V + £pQleC] (V) = 0
where

TleCIW = —Mv (1+20)°V - W]

QUECI(V) = ~55 2V [+ (V- V)T - V) = (V- V)R]

(with 8=3, s =aif f=0and B =3, s = %51 if £ £0.
17



As before, in the 1d case if we denote by U = (¢, V)T we have the following system
ed U+ A(0,)U =eF((,V)
where
0 Oz
Al%:) = <(1 _zg2) o, o>
92(CV) >

FGVI=~ (1) (0,030 4 4G + Tlecny + bR0nY)
whereas in the 2d case if we denote by U = (¢, V - V)T we get
e U+ A(D)U =cF(¢, V)

where

A(D) = ((1 - gOA)—lA (1)>
V- (V) >'

F“W0:_<ugArW%«VHWV+MQMMV%HN%GQV+§A@V)

We refer to [Isr1ll, [DI18] (see also [Li06l [FT15]) for the existence of solutions of on an
existence time independent of ¢ that is uniform with respect to p € (0, 1].
We consider now the case n = 1.

Theorem 5.1. Let M >0, T >0, hg > 0, e € (0,1] and p € (0,1]. Let (¢,V) € C([0,T); (H? x
H%)(R)) a solution of with initial datum (o, Vo) such that

||(C7 v)||L°°(O,T;H5(]R)><H5(R)) < M and 1+ €C > ho on [O,T]
There exists a constant Cq > 0 polynomial in M and 1/hy such that for any q,r > 2 with

brd - |
_’_7
1) =2 )y = (2) i

L{OTLy(R)  \H
1 1
q 6
16 <(2) (et (3)) e
LY(0,T5L5(R)) K K
sup

—(z—m0)? ( ¢ >
€
zoER V

The proof follows from the same strategy as the proof of Theorem together with @ and
One must control two new terms. Standard product estimates provide

QI (V) llyzs < € (- Clms ) 1V s
n

|uTleciow + La2av | . S C (. Iclus) lendsonl s

and using for instance ideas from the proofs of [Isr11, Lemmas 1 and 2] and standard product

estimates we obtain
lendedVlias S 2C (5, 1<) IV +2(V - V)V + ep@leC) (V)] o

<C (& Iellms. VIs)

Remark 5.2. As noted in Remark concerning Theorem in the case p = O(¢) the first
estimate of Theorem [5.1| does not provide a convergence result as € — 0 so that nonlinear terms
must be taken into account and asymptotic models like a system of decoupling KdV equations
or decoupling BBM equations become relevant. We refer to [Lanl3, Chapter 7].

o=

<e2(14T)Cy
L2(0,T;L3(R))

(15)Note that the source term F' is not a derivative here so that one can not use .

18



We now consider the case n = 2. Applying the operator V*- to the second equation of
and denoting by w := V+ -V we get the following equation

epV et
3(1+¢e¢)?
Theorem 5.3. Let M >0, T >0, ho >0, € € (0,1] and p € (0,1]. Let (¢, V) € C([0, T]; (H? x
H?)(R?)) be a solution of with initial datum (o, Vo) and V€ C([0,T); L*>(R?)) be a
solution of the incompressible Euler equation @ with initial datum VL% - Vg such that

O+ (V-V)w+ (V- V)w+ VI[A+£)*(V-aV +(V-V)(V-V) = (V- V)?)] =0.

1S, V)l oo (0.1:mro s oy 2y + [V || o 0,122 (m2)) < M and 1+ ¢ > ho on [0, 7).

There ezists a constant Cyq > 0 polynomial in M and 1/hy and a universal constant C > 0 such
that for any q,r > 2 with % + % = %

10
¢ o ¢ g & oy S+l
(VI-V - 8 a | or=AD) (¢ Ty, = \/ﬁln(lﬂzT) 2Tz Cy

iy LI(0.T5LE(R2))

+ £TCy,
(VVC > < (5111(1 + “T)> . (1 + (5111(1 + “T)T> %> Cy
= &-2 52
oV L(0,T;L7 (R2)) Vi Vi
+ 51+ T)Ca,
vivl < ( * In(1+ “T))é 1+< * In(1+ “T)T)é VTe“MTC
’ - y— =2 = =2 d
A 20 (0,512 (R2)) \VH « Vi «

+ 1+ T)VTeCMT oy
and there exists a constant Cyq > 0 polynomial in M and 1/ho and a universal constant C>0

such that for any q,7 > 2 with % + 2%.; = i

¢ — (1) g exp(—LA(D)) S < €%+%T§ ~
A 0 5 E V-Vo /| = &
A L{(0,T;LE(R?))
1 1 3 ~
\VAV4 S 65 1 =+ <"5ZT‘Z Cd,
(55" %) i = 07517
J_ ~ = ~
vV v_ov i(1+54T4)T%eCMTCd,
A L°(0,T;L2(R2))
sup |[e~(@=%0)? <VVC V) %(1 +T)Cy.
zoER? A L?(0,T;L2 (R2))

The proof follows from the same strategy as the proofs of Theorems [3.1] and [3.3] One must
control two new terms. Standard product estimates provide

1QeCAV) s < C (3. IClae ) IV
1]
|50’ =¥V oy - 0 +?vey - av| L, 20 (5Kl ) [en0 - Ve
and using for instance [DI18] Lemmas 2.1 and 2.4] and standard product estimates we obtain
eV - Vo S C (5 1€l ) V€ + (V- V)V + epQleq)(V) s

S (5 UClme Vi) -
19



We note the strategy used in the proof of Theorems and also provides bounds on
V<l £2(0,7;150)- Secondly a new term also appears in the control of the rotational component.
We note that
LV LV 2

\% X-(;ﬂ’[e{]@tv + u9leC](V)) = —euV x (R [V -0V +(V-V)(V-V)=(V-V))] V()
and using previous bounds we get

vL

|75 TV + 0BV < (Kl IV ) 19T
L:L‘

so that the strategy used in the proof of Theorems [3.1]and [3.3]|to control the vorticity component
can easily be adapted.

APPENDIX A. LITTLEWOOD-PALEY DECOMPOSTION

In this section we introduce homogeneous and inhomogeneous Littlewood-Paley decomposi-
tions and provide basic properties. Let g be a smooth nonnegative even function supported
n [—1,1], that is equal to 1 in [—3, 3] and that is nonincreasing on R*. Then we define, for
any y € R and any j € Z the function Pj(y) := ¢o(279 7 y) — v0(277y). We note that P; is a
function supported in the annulus C(2/~%,2/*1) for any j € Z.

For any y € R

Pi(y) €10,1], wo(y) + > Pi(y) =1, 5 <@o(y)>+>_Ply) < 1.
JEN jEN

Then for any p € [1,00] and any Schwartz class function f

N
eo(IDNf + Y- B(DDS = f
j=0
since
10 = o D) flr — 0.

Such decomposition of the function f is called inhomogeneous Littlewood-Paley decomposition.
For any y € R*

1
Pi(y) €[0,1], D Pily)=1,5<) Py <L
JEL JEL
Then for any p € (1, 00] and any Schwartz class function f we have
P
> P(DNf ot
l7|<N
since

leo@¥ DD fllzr | = 0 and [[(1=@o2 ¥ D)) fllr = 0.
00 N—o00

Such decomposition of the function f is called homogeneous Littlewood-Paley decomposition.

APPENDIX B. FOURIER MULTIPLIERS ON LEBESGUE SPACES

In this section we gather useful estimates concerning Fourier multipliers on LP. The first
lemma is about Bessel potentials.

Lemma B.1. Let n =1 or 2. For any o > 0 there exists a constant C' > 0 such that for any
a>0, any p € [1,00] and any f € LP(R™)

| +alDP)~i )

Lo < Ol fllpe@nys

Ha%|D|O‘(1 + a|D’2)_%fHLP(R”) < Ol fll e ®n)-
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Furthermore for any o > 0 and any b > 0 there exists a constant C' > 0 such that for any a > 0,
any p € [1,00] and any f € LP(R™)

2\ & o2N— &
| +vaDPyE v aDP)y R < Ol

Finally, for any p € (1,00) there exists a constant C > 0 such that for any f € WIP(R")
IIDIfllzr < CIV £l

Proof. By homogeneity one can assume a = 1. As noted in [Ste70, V.3.1], F~1((1+4x2|¢[?)"2)
is in L'(R™) so that the first bound follows by Young’s convolution inequality. The second
bound is proved in [Ste70, V.3.2].

Concerning the third point, we note from [Ste70), V.3.2] that there exists two finite measures
v and p on R™ such that

(1+ba|DP)% (1 +a|DP*)"% f = v (L+a|DP*)"% f + px (ba) | D|*(1 + a|D]*) 7% f
so that the result follows from the first point.

Finally, since |D| = — Z?:l %&, the last point follows from the fact that the Riesz trans-
forms are bounded on LP for p € (1, 00). O

We then recall Bernstein’s Lemma.

Lemma B.2. Let n € N* and b > a > 0. Let ¢ a smooth function supported in [a,b] and x a
smooth function compactly supported. Then for any s € R and any k € N there exists a constant
C > 0 such that for any A > 0, any p,q € [1,00] with ¢ > p and any f € LP(R™)

krd(:

1
evew2n < T O TNDDA o ey

La(R)
1 _ s _
N 16O Doy < IDISATDII gy < O 6Dy -
Then we provide a high frequency result.

Lemma B.3. Let 8 > 0, n € N*. Let x be a smooth compactly supported function that is equal
to 1 near 0. There exists a constant C > 0 such that for any p € [1,00|, any Schwartz class
function f and any X\ >0

Hl — x(A[D])
(AlD])?

1= x(A\[D])

!/ 5
(1+X%DJ?)>

<C

Lp (Rn) Lp (Rn)

Proof. By homogeneity one can assume A = 1. Using [Ste70, V.3.2] there exists two finite
measures v and g on R™ such that

B
(Q+IDP)T1=x(D) , _, 1-x(D) 1 LoD
(1+|DP)z DI IDI7 (14 |DP2)2 (1+|DP2)z
Then we get
L L=xD) ) 1-x(DD
L+ 1022 | " la+DR)2" ||,

Furthermore, using a Littlewood-Paley decomposition as in Section [A] together with Bernstein’s
Lemma there exists an integer kg € Z such that for any Schwartz class function g

[ >t enns| < 3 [P AP re g
Lp

B 8
DI L2 ||izko Sl 1D Ly

S D27 R(IDNA = x(IPD)gl e S N = x(ID1)gll e

Jj=ko
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so that

— x(ID]) 1

U ok f
IDIP (14 |DJ2)5

—x(Dl) 1
DI (1+1DP)

o

L w1+ I[DP)

In the following we provide a boundedness result in L' when n = 1.
Lemma B.4. Let s € [0,1). There exists a constant Cs > 0 such that for any f € WHH(R)
D Fllpr ey < Csll Fllwrae)
and there exists a constant C' > 0 such that for any f € W21(R)

DIl pr gy < Cllfllw21 gy

Proof. Using an inhomogeneous Littlewood-Paley decomposition as in Section [A] we have

PP Sy < leo(IDDIDIE fll gy + D llsgn(@)IDP~ Pi(IDDof || 1)
jeN

Using Lemma Young’s convolution inequality and since & — ¢o(|€])(1 + |€]?)2 is a smooth
compactly supported function

leo(IDDIDI 1z S oD + DI

ey S 1l

Then we note that for any o € R, the map £ — sgn(§)|{|*Po(|¢]) is a smooth compactly
supported function so that
< 2%,

|7 Gen @ e P, = 27 | F M sen(@) gl Rl |, <
Therefore it follows from Young’s convolution inequality

PP Fllrmy S Nl prmy + ZQ(S_l)j 102 f 1l 11 (m)

jeN

and the first point follows. The second point follows the same way. O

A similar result can be obtained when n = 2.
Lemma B.5. Let s € [0,2]. There exists a constant C > 0 such that for any f € W>(R?)
DI fllLrmey < Cllfllw2age)-

APPENDIX C. DISPERSIVE ESTIMATES

In this section we gather different dispersive estimates that are useful through this work.
There are obtained from [Mel24]. We begin with the case n = 1.

Lemma C.1. Letn =1. Let A >0, a € R with o ¢ {-2,—1}, >0 andl € N with | > 2.
Assume that g is an odd C? function. Let y1 > yo > 0. Let x be a smooth even compactly
supported function whose support is a subset of [—yo, yo] and that is equal to 1 on [—%yo, %yo].

i) Let s € [0, g] Assume that |g"| > M\y® on [0,y0] and, if s = g, that |g' — g(0)| > \yP*!
on [0,yo]. There exists C' > 0 such that for any p > 0, any t € R*, any m € {0,1} and any
Schwartz class function f

m B C _(B+D)(s
)e VWD) (JaD) (sgn(D))" | DI° f Lo S !tl%ﬂ Crn HX(\/mDDfHLl-
T +
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l
ii) Assume that g is C'(R). Assume that Z 9P| > X on [2y0.2y1], that [¢"| > Ay
p=2
[y1,00) and, if | = 2, that %y‘“‘l > g’ — al > \y®t! on [y1,00) for some a € R. There eists
C > 0 such that for any p > 0, any t € R* and any Schwartz class function f

i D C 1
’ e VR (1 _ x(\/ﬁD))fHLoo < F’lu 2
x 1

Proof. We introduce an homogeneous Littlewood-Paley decomposition as in Section [A] There
exists kg € Z such that using Young’s convolution inequality and Bernstein’s Lemma

e VI (/D) (sen (D)

1—2—«

(Vi) = (1 -

= || VI p (/D) (sgn(D)) " DI X(VEID]) f

k<ko Lo

< | X F (VR by (D) (sn (D)™ DI | (VDD fl -

k<ko

Lge
The first inequality follows from [Mel24, Lemma 2.6].

Secondly if fis compactly supported there exists ko, k1 € Z such that using Young’s convo-
lution inequality

VI (1 S VRV B (JED)(1 — X(/iD))
ko>k>ki oo
_ j D s s
S| X Al YPIR(ED)DE) | DI = x(ED)
with s = —=2=2. The second inequality follows from [Mel24, Lemma 2.6 and Lemma 2.9] and
by density of F~1(C°(R)). O

Then we consider the case n = 2.

Lemma C.2. Letn=2. Let A\ >0, meN, §>1 and o € R with a ¢ {—2,—1}. Assume that
g is C3(R). Let yo > 0. Let x be a smooth even compactly supported function whose support is
a subset of [—yo,yo| and that is equal to 1 on [0, 3yo].

i) Assume that |g"| > M2, |¢' — ¢'(0)] > Myt and |g'| > X\ on [0,50]. There exists C > 0
such that for any > 0, any t € R* and any Schwartz class function f

e mmon (i) 7)< 5 (O

548
2(2+8)
) InaDD A
ii) Let s € R such that (s+2)(s — ) <0 ors=a. Assume that |g'| > M\y*t! and |g"| > \y®
on [L,00) and, if s = a, that |¢'| < Tyt [¢"] < y* and |¢"| < 3y*~! on [, 00). There
exists C' > 0 such that for any p > 0, any t € R* and any Schwartz class function f

N (o) (o) f

iii) Assume that a < —1. Let s € R such that (s +2)(s — 252) <0 or s = 251, Assume that

9/l > X and |g"] > \y* on [%,00) and, if s = °5F, that 1y"+1 > g —al > A on (%, 00)
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for some a € R*. There exists C > 0 such that for any p > 0, any t € R* and any Schwartz
class function f

Proof. We begin with the case m = 0. Point (i) follows directly from [Mel24, Lemma 2.12].
Concerning points (ii) and (iii), by introducing a Littlewood-Paley decomposition as in Sec-
tion [A] and proceeding as the previous lemma for high frequencies, Points (ii) and (iii) follow
respectively from Lemma [Mel24, Lemma 2.15] and [Mel24, Lemma 2.17].

We now consider the case m > 1. We claim that one can easily adapt the estimates in
[Mel24, Section 2.4] to our setting. Indeed in our case one must estimate integrals under

the form f]mefg(f) J(r|z|)x (y/pr)rdr or fR+efg (Vi) J(r|z|) P ( st dr where J(7) =
f027r e'75(0)4(9)df and u is a smooth periodic function (v = 1 in [Me1247 Section 2.4]). Similarly
as Jo(7) := fo% es0(0) dh, one can decompose J as J(7) = h_(7)el™ 4 hy (7)e'" where, for any
p €N, \ﬁg’;) (N <1+ ’T‘)_p_%. Then, one can adapt all the results of [Mel24, Section 2.4]
replacing Jo by J so that the strategy used to prove the case m = 0 also works.

2(s+2)

L C (\/ﬁ) DD = x(VEIDD) £ -

Le M 2]

S (o) () f

O

Lemma C.3. Let n = 2. Let A > 0, m € N. Assume that g is C>(R). Let y; > yo > 0.
Let x be a smooth even compactly supported function whose support is a subset of [—yo,yo] and
that is equal to 1 on [0, %yo] ¢ a smooth function supported in [2, 2] and X a smooth compactly
supported function whose support is a subset of [yo, y1]

i) Assume that |g'| > X\ and ¢ has a finite number of zeros on (0,yo]. There exists C > 0
such that for any u > 0, any t € R*, any l € N with | > 2, any k € Z and any Schwartz class

function f
C (2’6)
< —
L |t| VH

In particular, for any n > 0 there exists Cy, > 0 such that for any > 0, any t € R*, any l € N
with I > 2 and any Schwartz class function f

| o) () 1

l
(ii) Assume that g is C'(R), that Z 19P)| > X and ¢’ has a finite number of zeros on [yo, y1].
p=1
There exists C > 0 such that for any t € R* and any p >0

|ehe s () 1

Proof. The first inequality is an easy adaptation of [Mel24, Lemma 2.21(1)]. The second bound
is consequence of the first bound together with the use of a Littlewood-Paley decomposition,

Bernstein’s Lemma [B.2] and the fact that
2k>77 <2k>_77 <2k‘>_77
) <1, ) < ~ ) <
2; <¢ﬁ ! 2\ 2 \a) =
<V V<28 <20 V<2

The third inequality easy follows from [Mel24, Lemma 2.21(2)]. O

p(27"

N L e T o

& (oo, + o

Lge Itl

D>t

L |t

Finally we provide Morawetz-type estimates.
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Proposition C.4. Let n € N* and T > 0. Assume that g is C*(R%.). There exists C > 0
independent of T such that for any function f € L*(R™), any function F in L>(0,T; L*(R"™)),
any 1> 0, any € > 0, any a > 0 and any xo € R"”

a C
[ i mphite s o bl o < < i

nd
T t (t—s) 2
/ / ’/ ¢ (VED))|ze v VIV ps ds
0 Rn 0

Proof. After an appropriate change of variable in time we get from [Mel24, Proposition 2.28]

| D 2 _a z—x0l|2 C
L | (D eI ) e sleeo R dnar <

Then denoting by I the second quantity to bound and using Jensen’s inequality and the previous
estimate we obtain

o T R A

Ay ¢
e 2le 10|2dxdtSETzﬁuFH%?(OvT?L%)‘

2

C
ds S €T27HFH%2 0.7:1.2)"
L3(s,T5L3) Va O

O
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