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AN INVITATION TO INTRINSIC COMPOSITIONAL DATA ANALYSIS

USING PROJECTIVE GEOMETRY AND HILBERT’S METRIC

BY OLIVIER P. FAUGERAS1,a,
1Toulouse School of Economics,

University of Toulouse Capitole, France , aolivier.faugeras@tse-fr.eu

We propose to study Compositional Data (CoDa) from the projective
geometry viewpoint. Indeed, CoDa, as equivalence classes of proportional
vectors, corresponds to projective points in a projective space, and thus can
be studied using the tools, language and framework of projective geometry.
Combined with the partial order structure induced by the non-negativity of
CoDa, the projective viewpoint highlights the inherent geometrical and struc-
tural properties CoDa, irrespective of a particular representation and an arbi-
trarily chosen coordinate system. This intrinsic approach helps to clarify the
relationships and offers much needed geometric insight between other com-
peting coordinate-based approaches, such as Aitchison’s log-ratio, Watson’s
spherical, or plain affine representations in the simplex. Our first objective is
thus to give a tutorial on projective geometry geared towards compositional
data analysis.

In addition, owing to the projective or ordering structures of CoDa, the
positive CoDa space can be endowed with an intrinsic metric, Hilbert’s pro-
jective metric, which is independent of any metrization of any ambient space.
Such non-smooth metric is well-suited with the principles of compositional
analysis (in particular, subcompositional coherence) and is compatible with
both Aitchison’s vector space geometry in log coordinates and the straight
affine geometry of the simplex. In view of statistical applications, a smooth
and strictly convex approximation of Hilbert’s metric is constructed and is
shown to share most properties of the original metric.

Our second objective is then to establish the firsts steps of such an intrin-
sic statistical analysis of CoDa, based on Hilbert’s metric and the projective
viewpoint. To that regards, we show how Hilbert metric and its smooth sur-
rogate allow to build extrinsic and intrinsic measures of location and spread,
in particular Fréchet means and variance, how to construct analogues of the
Gaussian/Laplace distribution and how to perform nonparametric regression.
All three examples are supplemented by numerical simulations. We close by
drawing some perspectives for further research, inviting for new directions
for CoDa analysis based on the intrinsic projective viewpoint.
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1. Introduction.

1.1. Aitchison’s classical approach to Compositional Data. Compositional data (CoDa)
analysis deals with statistical analysis of multivariate data x= (x0, x1, . . . , xd) ∈Rd+1 where
each xi describe the amount of the ith component of a composition. It is understood that the
magnitude of any component does not have any significance in itself, but only in its propor-
tion relative to other components. Thus, CoDa is traditionally represented mathematically by
requiring that x be i) non-negative, x≥ 0 (as each component represent a physical amount)
and ii) that x be subject to a constraint on the sum of its components

∑d
i=0 xi = κ, where

the sum κ is irrelevant for the analysis, so that only relative amounts matters. For κ= 1, this
amounts to consider x as an element of the unit simplex

(1) ∆d
+ := {x= (x0, . . . , xd) ∈Rd+1 : xi ≥ 0,

d∑

i=0

xi = 1}.

Aitchison’s geometry, pioneered by [2], [3], only considers positive CoDa elements, i.e. x in
the positive simplex

(2) ∆d
++ := {x= (x0, . . . , xd) ∈Rd+1 : xi > 0,

d∑

i=0

xi = 1},

so that they can be studied through a variety of log-ratio transforms. These include:

• The additive log-ratio transform alr :Rd+1
++ →Rd, defined by

alr(x) = (ln(x1/x0), . . . , ln(xd/x0)) =: alr0(x),

where the latter notation is used when one wants to specify w.r.t. which base coordinate x0
the log-ratio is computed.

• The centered log-ratio transform clr :Rd+1
++ →Rd+1, defined by

clr(x) = (ln(x0/g(x)), . . . , ln(xd/g(x))),

where g(x) = (x0x1 . . . xd)
1/(d+1)) is the geometric mean of x.

• The isometric log-ratio transform ilr : Rd+1
++ → Rd, which is constructed by taking

an orthonormal basis (1/||1||,v1, . . . ,vd) of Rd+1, where 1 = (1, . . . ,1), and project-
ing the clr(x) transformed vector onto the subspace spanned by (v1, . . . ,vd). Setting
V = (v1 . . .vd) ∈ R(d+1)×d the so-called contrast matrix, ilr writes ilrV (x) = V T lnx =
V T clr(x), with x viewed as a column vector. The choice of V is left to the user and can be
made using “balances” or “pivots” and a sequential binary partition methodology, which
is deemed useful for interpretation.
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These transforms allow to reduce the non-vectorial CoDa into log-coordinates representatives
sitting in the usual Euclidean vector space (Rd,+, ., 〈.|.〉).1 By pulling back this structure to
the original positive simplex ∆d

++, positive CoDa are endowed with a global Euclidean space
structure (∆d

++,⊕,⊙, 〈.|.〉A), where perturbation ⊕ and powering ⊙ are the vector space
operations, and 〈.|.〉A is Aitchison’s scalar product, see Sections 2.4 and 3 for more details.
In addition to [3], book references include [44], [61], [46], [25].

1.2. Motivation. In spite of its successes, Aitchison’s log-ratio Euclidean approach has
some drawbacks. First, it can be confusing for the practitioner, which transform and frame-
work is best suited for the data and analysis at hand. alr is sensitive to which part is taken
in the denominator and is thus not permutation invariant. clr maps ∆d

++ to a hyperplane of
Rd+1, and leads to singular variance matrices. ilr is a family of transforms, which depends
on an arbitrary choice of an orthonormal basis. Selection of a basis following the “balance
tree” methodology, with its specific terminology and methods, is somehow complicated for
the newcomer in the field.

Second, there exists alternatives approaches to CoDa: [60] and [61] mention four distinct
frameworks (rplus, aplus, rcomp, acomp) to analyse compositional data. In particular, the
raw or “do nothing"" approach, which simply considers CoDa points as simple vectors of
Rd+1 measuring absolute magnitudes is sometimes advocated for e.g. in archaeometry or
geology (see [8], [7], [9], [10]). Notably, [59] points that, for some datasets, the empirical
mean based on Aitchison’s distance may lie outside the bulk of the dataset, and thus may be
inappropriate. Another popular approach is based on spherical coordinates [63] via square
root transforms, and more generally powering and Box-Cox transforms [57], [59]. These
coordinate representations allow to deal with CoDa having zeros in their components, which
is sometimes crucial in some applications. This has lead to debate on what is the “right”
approach to compositional data analysis, with contradicting views on the matter, see e.g.
[51], and more confusion for an outsider applied data scientist.

In both Aitchison’s approach and its alternatives, the analysis is extrinsic as it is based on a
special choice of representation and coordinates: the analysis hinges on the fact that the sam-
ple space can be embedded into an auxiliary ambient space (usually Rd or Rd+1), endowed
with a particular metric (usually the Euclidean distance).2 For example, in the simplex repre-
sentation, Aitchison’s distance is the Euclidean distance of the clr or ilr coordinates (see e.g.
[25] Chapter 3). Yet, for an appropriate statistical analysis it is essential to consider the in-
herent geometrical properties of the sample space of observations. This calls for an intrinsic

approach to CoDa analysis based on the underlying structural properties of the observation
space, irrespective of a particular representation and an arbitrarily chosen coordinate system.

Due to the scale-invariance requirement, it is now increasingly recognised ([4], [46], [25])
that the sample space of CoDa is made of equivalence classes of proportional vectors. Such
equivalence classes are known in the geometry literature as projective points of the projec-
tive space Pd = P(Rd+1), see the forthcoming Section 2 and Appendix A. Projective points
[x] can be thought of, geometrically, as lines through the origin, or, algebraically, as one-
dimensional sub-spaces of Rd+1. Combined with the non-negativity/positivity requirement,
this calls for a redefinition of CoDa points [x]+ as projective points in the non-negative or-
thant cone Rd+1

+ . Thus, CoDa are defined as elements of a new space Pd
+ (to be defined

precisely thereafter), represented geometrically as rays (i.e. directed half-lines) through the
origin in the non-negative orthant cone. Hence, the simplex, resp. the non-negative sphere, is
just one possible model/representation of these non-negative projective points.

1or Rd+1 for the clr coordinates.
2with the chordal or spherical distance in the spherical representation.
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1.3. Purpose. It is surprising that projective geometry has been largely ignored in
the CoDa literature. A possible explanation is that projective geometry is not as well
known/taught as classical vector geometry in the applied mathematics and statistics curricu-
lum. Another possible reason is the multiplicity of approaches, models and representations
used in projective geometry, some of which are sketched in Appendix A. We believe that
such a projective geometry framework gives a natural setting3 for studying CoDa as equiva-
lence classes, as it leads to an intrinsic, coordinate-free approach. This often gives a simpler
description of CoDa constructs and geometric insight, which is often obscured in algebraic
approaches based on coordinates. Moreover, it is possible to define intrinsically a notion of
distance, called Hilbert’s projective distance, which will be shown to be well-suited for CoDa
and its statistical analysis.

The goal of this paper is to bring this intrinsic projective geometry viewpoint into the sta-
tistical analysis of CoDa. Specifically our objectives are two-folds: i) we aim at bridging the
gap between abstract projective geometry concepts and applied statistical analysis of CoDa.
Therefore, some parts of the paper are expository, intended to explain the basics of projective
geometry and Hilbert’s metric to a non-specialist audience. We intent to show how it gives a
simpler and advantageous description of CoDa and its structure. To ease understanding, we
link those concepts to the ones familiar with CoDa, in particular with Aitchison’s log-ratio
analysis. ii) we also aim at establishing the first steps of such an intrinsic statistical analysis
approach of positive CoDa, based on Hilbert’s metric and the projective viewpoint. In par-
ticular, we show how statistical descriptive statistics; like mean, variance; distributions, like
the Laplace/Gaussian; and estimation techniques like nonparametric regression can be built
from such an intrinsic projective viewpoint with Hilbert’s metric.

1.4. Outline. The detailed outline of the paper is as follows: In Section 2, we describe the
projective and order/convex cone structure of CoDa. This leads to a redefinition of CoDa as
“non-negative equivalence classes”, i.e. as projective points in the non-negative orthant cone.
We contrast such an unnormalised view of CoDa, as a full equivalence class, with classical
normalised approaches, where a CoDa point is seen through its vector/affine coordinates in a
special reference frame. The intrinsic projective approach allows to give a simple description
of compositional maps on CoDa spaces, obtained from quotienting non-negative and non
singular linear maps on vector spaces. In the case of positive CoDa elements, we show how
the vector space structure and linear maps can be defined directly in an intrinsic manner,
without reference to special vector coordinates or choice of a vector basis.

Section 3 deepens the intrinsic study of Aitchison’s log (ratio) geometry on positive CoDa
from the projective viewpoint, as initiated in the previous section. It shows how the ln
map transforms isomorphically equivalence classes of positive CoDa vectors [x]+ into other
equivalence classes [lnx]∼, which can be interpreted as parallel lines. This allows to give
a much needed geometric description and insight of how the alr, clr, ilr coordinates are ob-
tained.

In Section 4, we show how the positive CoDa space can be endowed with Hilbert’s pro-
jective metric, based on the cross-ratio, in such way that it is compatible with this ordering
and projective structure. We explain how such a metric can also be constructed from an order
theory point of view, as pioneered by [12], which gives a simple explicit formula for Hilbert’s
distance. The important point is the intrinsic character of such a metric, as it only depends
on the order structure of the CoDa space, and not on a metrization (e.g. in Euclidean dis-
tance) of an auxiliary ambient space. In Section 5 we study properties of this metric. It is
shown that Hilbert’s metric is compatible with Aitchison’s vector space structure, is scale

3Information geometry is also another interesting viewpoint, see [24].
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and permutation invariant, and is subcompositionally coherent, thus satisfy all principles
of CoDa analysis. We derive alternative expressions w.r.t to some (pseudo)-metrics in real
vector spaces, establishing some isometric embeddings/isomorphisms between the positive
CoDa space with Hilbert’s metric and real normed vector spaces, endowed with suitable met-
rics. This also shed a new light on the ln transforms of Aitchison’s classical log-coordinates
approach.

Being endowed with such a metric structure, one can propose statistical applications based
on comparisons of CoDa points w.r.t. Hilbert metric. As those applications are often for-
mulated as optimization problems, we first study the directional differentiability of Hilbert
metric for CoDa and propose a smooth proxy whose properties are investigated. At last,
Statistical applications per se are eventually studied in Section 7. We explain the difference
between intrinsic and extrinsic descriptive statistics and propose to define as intrinsic mea-
sures of location and scatter Fréchet means/median and variance w.r.t. Hilbert’s metric. We
also introduce a Hilbert metric analogue of the Gaussian/Laplace distribution. In addition,
Nadaraya-Watson type estimators based on Hilbert metric are also introduced to perform
nonparametric regression with CoDa covariate and/or output variables. These applications
are illustrated by numerical applications. We conclude in Section 8 and draw some perspec-
tives for further research. Proofs are relegated to Appendix B.

1.5. Author’s contributions and related works. In view of our first objective to provide a
tutorial on metric projective geometry applied to CoDa, the manuscript gathers and synthe-
sises from the projective CoDa viewpoint numerous results of various authors. In addition,
the manuscript provides original contributions, which are summarised below:
• the formal redefinition of CoDa points (Definition 2.1) as non-negative projective points,

combining the order and projective structures;
• the notion of compositional morphisms and compositional groups (Lemma 2.2);
• the intrinsic definition of linear compositional mappings on (Pd

++,⊕,⊙) (Definition 2.3);

• the formal definition of the vector space (Rd+1/ ∼,
∼
+,

∼. ) and the isomorphism with
(Pd

++,⊕,⊙) (Proposition 3.2);
• the geometrical interpretation of the alr, clr, ilr transforms (Sections 3.2, 3.3, 3.4);
• the normed vector space properties of Hilbert’s metric (Propositions 5.1 and 5.2);
• the directional differentiability of Hilbert’s metric w.r.t. to the m and e linear structures

(Proposition 6.1 and 6.2);
• the properties of the smooth approximate Hilbert distance (Proposition 6.5);
• the definition and existence of the intrinsic Fréchet mean/median/variance (Definition 7.1,

Lemma 7.2, Theorem 7.3;
• the use of Hilbert’s smooth metric as a practical surrogate to compute the mean (as in

Example 2);
• the generalised Hilbert Gaussian/Laplace distributions (Definition 7.4);
• the use of Hilbert’s smooth metric in nonparametric Coda Regression (Example 3 in Sec-

tion 7.3).
The application of Hilbert’s cross-ratio distance for clustering on the simplex was proposed

by [40]. Towards the end of completing our manuscript, we became aware of [41]. [41] also
offers a nice overview of Hilbert’s metric. Their objective is different (the study of non-linear
embeddings), while we focus more on the projective/CoDa aspects. Also, we had the same
idea as the authors of [41] of approximating Hilbert’s distance with the well-known log-sum-
exp trick, and so we were quite disappointed to not be able to include Definition 6.3, which
we had developed independently, as an original contribution. We acknowledge their priority
and improved our work using theirs (in particular, regarding strict convexity of the smooth
Hilbert metric).
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Notations. The following notations will be introduced throughout the text and are col-
lected here for convenience of the reader.
• (Column) vectors in Rd+1 are written in bold letters, x = (x0, x1, . . . , xd) ∈ Rd+1, and

operations on vector are interpreted component wise, i.e. lnx= (lnx0, . . . , lnxd).
• ||.|| = ||.||2 denotes the usual norm (Euclidean/L2), ||x||1 =

∑d
i=0 |xi| the L1 norm, and

||x||∞ =maxi |xi| the L∞ norm.
• R+ = {x ∈R, x≥ 0} stands for the non-negative part of R, R++ = {x ∈R, x > 0} for the

positive part.
• ∆d

+ the d-dimensional (unit or probability) simplex of Rd+1, ∆d
++ = ∆̊d

+ the positive
simplex.

• Pd real projective space of dimension d induced by Rd+1, Pd
+ non-negative unnormalised

CoDa vectors, Pd
++ positive unnormalised CoDa vectors.

• [x] ∈ Pd, [x]+ ∈ Pd
+ are projective, resp. CoDa, equivalence classes of x.

• [x]1 = C(x) rescaled-to-unit-sum representative of [x]+.
• δ(., .) Hilbert’s projective metric, dH(., .) Birkhoff’s version of Hilbert metric.

2. The intrinsic projective nature of CoDa. In this section, we argue that CoDa should
be considered as elements of a projective space, i.e. as an equivalence class, in order to en-
code the scale invariance of CoDa. This “unnormalised” intrinsic view is in contrast with the
definitions traditionally encountered in the literature: in these “normalised” views, CoDa are
given particular, extrinsic, coordinates representations as vectors in a subset of an Euclidean
space.

2.1. The ordering and projective structure of CoDa . As explained in the introduction, a
CoDa element, construed for the moment as a vector x= (x0, . . . , xd) ∈Rd+1

+ \ {0}, has two
main features: i) it has non-negative coordinates, i.e.

(3) x≥ 0 ⇐⇒ xi ≥ 0, i= 0, . . . , d,

and ii) x only carries relative information on the composition: if one defines the (collinearity/
scaling invariance) equivalence relation ≡ as

(4) x≡ y⇐⇒∃λ ∈R∗ s.t. x= λy,

two equivalent vectors, x≡ y, carries the same compositional information and are thus iden-
tified. There are thus two fundamental structures underlying each CoDa element:

i) the partial order structure ≤ on Rd+1, induced by the positive orthant convex cone Rd+1
+ ,

viz.

x≤ y⇐⇒ y− x ∈Rd+1
+ ,

in the sense that (3) only allows non-negative components;
ii) the real projective space structure of Pd, obtained by quotienting Rd+1 \{0} by the equiv-

alence relation ≡, i.e.

Pd := (Rd+1 \ {0})
�≡=

Rd+1 \ {0}
R \ {0} .

Indeed, by denoting [x], the equivalence class of x for (4), viz.

(5) [x] := {λx, λ ∈R∗}
it is readily seen that condition (4) mandates CoDa elements to be regarded as equiv-
alence classes (restricted to the positive orthant by condition (3)). From the geometri-
cal viewpoint, [x] is a line in Rd+1 through the origin 0, viz. the undirected direction
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span(x). From the projective geometry viewpoint, [x] is a projective point and the set
{(λx0, . . . , λxd), λ ∈ R∗} are its homogeneous coordinates. See Appendix A for a de-
scription of projective spaces and their main representations.

Combining both structures, we thus define the set of CoDa elements as the “non-negative
part”4 of the projective space Pd, hence the formal definition:

DEFINITION 2.1. A CoDa point is an equivalence class [x]+ of the quotient space,

Pd
+ :=

Rd+1
+ \ {0}
R++

,

that is to say, a CoDa point is defined as the set

(6) [x]+ := {λx, λ > 0,},
for some x≥ 0. x ∈Rd+1 is a called a representative5 of [x]+ ∈ Pd

+.

REMARK 1. [x]+ is also the equivalence class for the positive scaling relation ≡+, de-
fined on Rd+1 by

x≡+ y⇐⇒∃λ > 0 s.t. x= λy.

So that one can also define Pd
+ as the punctured non-negative orthant Rd+1

+ \ {0}, quotiented
by such positive scaling relation, viz.

Pd
+ =

Rd+1
+ \ {0}
≡+

= {[x]+ : x ∈Rd+1
+ \ {0}}.

Geometrically speaking, a CoDa point [x]+ is thus interpreted as a non-negative direction,
viz. a ray in the positive orthant cone, emanating through the origin, or equivalently, as the
intersection of a line through the origin with the positive orthant Rd+1

+ . The set of positive

CoDa points (i.e. with positive components) is defined similarly as

Pd
++ :=

Rd+1
++ \ {0}
R++

= {[x]+ : x ∈Rd+1
++ \ {0}}.

2.2. Affine representations in Rd+1 of projective/CoDa points by normalised vectors. We
have thus considered the space of CoDa elements as the set of equivalence classes [x]+ in the
non-negative orthant, i.e. a CoDa element is in fact the whole set [x]+ of unnormalised vec-
tors x satisfying (6). It is essential, in order to avoid confusion, to clearly distinguish between
a CoDa element [x]+ ∈ Pd

+, thought as an equivalence class, and its (many) vector represen-

tative x ∈Rd+1
+ : a CoDa element has homogeneous coordinates [x0 : x1 : . . . : xd]+, whereas

(one of) its vector representative has (classical) vector coordinates (x0, . . . , xd), representing
the absolute/raw size of the components of the composition. The (surjective) quotient map,

[.]+ :Rd+1
+ \ {0}→ Pd

+

x 7→ [x]+,

4or, following Appendix A, as the projectivization of the non-negative orthant cone.
5Pd+ has dimension d, hence the notation. Note, however, that the representatives x lie in Rd+1

+ , a space of
dimension d+ 1.
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associates to an absolute vector x its compositional/homogeneous part [x]+. In particular, as
will be clear below, the representation of [x]+ by a vector x constrained in the simplex, is
merely one, among many possible representations.

Indeed, equivalence classes, whether they are projective points [x] of (5), or CoDa point
[x]+ of (6), being scalar multiples of a vector representative, admits several distinguished
representations as a single point/vector in the Euclidean space Rd+1. We will call these stan-
dardised representations normalised projective (resp. CoDa) points.

i) For projective points [x] which are not orthogonal to 1 = (1, . . . ,1), i.e. such that there
exists a vector representative x with

∑d
i=0 xi 6= 0, one can standardise the latter by the sum

of its components: define the rescaled-to-unit-sum representative [x]1 ∈Rd+1 of [x] ∈ Pd

by

(7) [x]1 :=
x

〈1|x〉 =
x

∑d
i=0 xi

.

Correspondingly, for CoDa elements [x]+, the conditions x 6= 0 and x≥ 0 guarantee
that

∑d
i=0 xi 6= 0, so that one can always represent a CoDa point by such a rescaled-sum

representative. Note that since x≥ 0, (7) also writes as

[x]1 =
x

||x||1
= C(x),

where ||.||1 is the L1-norm, and C is the closure operation of the CoDa literature. This
yields an interpretation of the simplex representation (7) as the directional part in the
polar decomposition x 7→ (||x||1, [x]1) w.r.t. the L1 norm of a vector x into a magnitude
||x||1 and a direction/composition [x]1.6

Geometrically, let Hsum = {x ∈ Rd+1 :
∑d

i=0 xi = 1} be the affine hyperplane in
the Euclidean space Rd+1, with normal vector 1 = (1, . . . ,1) and passing through, say,
(1,0, . . . ,0). Then, a projective point [x] ∈ Pd, (resp. a CoDa point [x]+ ∈ Pd

+), is repre-
sented in the Euclidean space Rd+1 by the corresponding point on Hsum, intersected by
the line [x], (resp. by the ray [x]+, see Figure 1. In other words, for CoDa [x]+ ∈ Pd

+, [x]1
corresponds to the traditional representation of CoDa as a vector element constrained in
the simplex ∆d

+ of (1), and (7) is the radial projection on it.
ii) The classical approach in projective geometry is to standardise by a ratio w.r.t. a com-

ponent. For x = (x0, . . . , xd), if x0 6= 0, one can represent the projective point [x] ∈ Pd

(resp. [x]+ ∈ Pd
+) by the point

(8) π0(x) := x/x0 = (1, x1/x0, . . . , xd/x0)

of the Euclidean space Rd+1. Geometrically, the Euclidean representative x/x0 is located
on the affine hyperplane

(9) H0 := {x ∈Rd+1 : x0 = 1}
and corresponds to the point of intersection of the line [x] (resp. of the ray [x]+) with
H0, see Figure 2. Forgetting the first constant 1 coordinate, one can identify π0(x) with a
point of Rd. If x0 = 0, then one can no longer divide by x0. Nonetheless, the projective
point [x], (resp. [x]+) can be interpreted as a point at infinity in the direction of the vec-
tor (0, x1, . . . , xd). This leads to the synthetic view of projective geometry, where Pd is
envisioned as Rd, “completed” with a set of points “at infinity”, see Appendix A.

6This shows the ubiquity of CoDa for (non-negative) multivariate vectors.
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FIG 1. Rescaled-to-sum representation of Pd+ in Rd+1. Given an unnormalised vector x ∈Rd+1 (black arrow),

the CoDa [x]+ (black dashed ray) intersects the (light blue) hyperplane Hsum at a (blue) point [x]1, located on

the simplex ∆d
+ (light blue triangle). Red, blue, green arrows: coordinate unit vectors of Rd+1, (here, R3).

Correspondingly, for CoDa elements [x]+, i.e. with the added constraint x ≥ 0, the
CoDa elements s.t. x0 6= 0 can be represented by a point π0(x) ∈ H0 ∩ Rd+1

+ . π0(x)
somehow corresponds to the alr0 coordinate, but without the log part of the transform.
See also Section 3 for a more elaborate study of Aitchison’s log-ratio transforms from the
projective viewpoint.
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FIG 2. Ratio representation of Pd+ in Rd+1. The CoDa point [x]+ (black dashed half-line) is represented by the

(red) point π0(x) on the affine hyperplane H0 = {x : x0 = 1} (light red). The previous normalised representative

[x]1 ∈∆d
+ on the simplex is shown as the blue point.

iii) Other models of projective points and their CoDa analogues can be envisioned. Appendix
A gives a short review of the most frequent occurring representations of projective points
encountered in the literature. This review gives insight on the geometric nature of projec-
tive points and adds perspective on the recurring debate (see e.g. [51]) on the pros and
cons of the possible approaches for dealing with CoDa: from the projective viewpoint, all
these approaches are based on extrinsic representations, which are particular models of
the same space Pd

+, endowed with these two fundamental structures of a projective space
and a partial order induced by a convex cone.

Figure 3 illustrates and summarizes the distinction between the unnormalised and nor-
malised view of CoDa based on the two main representations i) and ii): CoDa elements
[x]+ ∈ Pd

+, seen as equivalence classes, possibly obtained by quotienting a raw/absolute vec-
tor x ∈ Rd+1

+ , can be identified with a single vector/affine point [x]1 or π0(x). The maps
[x]+→ [x]1 and [x]+→ π0(x) are bijective on the appropriate7 domains.

7For π0, one must restrict [x]+ to be s.t. x0 6= 0.



12

∆d
+ =Hsum ∩Rd+1

+
[x]1

Rd+1
+
x

Pd+
[x]+

H0 ∩Rd+1
+

π0(x)

Raw/absolute:
many vectors

Unnormalized:
equivalence class

Normalised: single
vector/affine representative

[.]
+

unit sum

ratio

FIG 3. Unnormalised (Projective) and Normalised representation (rescaled to unit sum and ratio) of CoDa.

Let us make a few comments about the affine representations i) and ii) above. First, they
both represent CoDa elements [x]+ by a normalised vector whose coordinates are ratios of
the coordinates of vector representative x of [x]+. In particular, there is no need to take the
log of these ratio coordinates to achieve such a representation of the whole [x]+ by a single
normalised vector. The ln transform is only mandatory if one wants to give a global vector
space structure to CoDa, as will be explained in Section 3, at the price of necessarily restrict-
ing the analysis to positive CoDa elements in Pd

++. The use of log-free affine representations
to deal with CoDa elements with possible zeros in their components, will be explored in a
separate paper.

Second, it is clear that these affine representations are not canonical, in the sense that they
depend on the choice of a particular hyperplane (H0 or Hsum). Surely, the choice of Hsum

may appear more convenient, as it is more symmetric, and a single chart [.]1 works for all
CoDa elements. Yet, it remains a convention, viz. a choice among all possible hyperplanes.
From the theoretical standpoint, one can consider the CoDa space as a manifold with its atlas
composed of all its affine charts π0, π1, . . . , πd, where πi is the ratio transform (8), but w.r.t.
base component xi.

In addition, such extrinsic view of CoDa, by identifying [x]+ with a vector/affine repre-
sentative in the ambient space Rd+1, construe CoDa as a d+ 1 dimensional object, whereas
the true dimension of Pd

+ is d. Surely, both [x]1 and π0(x) live on hyperplanes of dimension
d, so in particular, if one forgets the first 1 coordinate in π0(x), one can simply identify such
ratio representation with a vector of Rd. But, for [x]1, the criticism is valid, even though
[x]1 can in turn be identified with a d-dimensional coordinate representation by a change of
basis to an orthonormal basis having 1 as element, and dropping the corresponding constant
coordinate, as in the ilr transform.

Consequently, it appears that CoDa analysis based on the normalised vector/affine rep-
resentatives i) and ii) or their log-transformed analogues do not seem ideal. It would thus
be desirable to have a more intrinsic approach based on direct analysis at the level of the
equivalence class [x]+.

2.3. Compositional morphisms. The intrinsic projective approach allows to give a simple
description of the analogue of projective maps8 for CoDa in Pd

+, resp. Pd
++, which we call

8also known as homographies.
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compositional morphisms. The importance of such transformations stems from the fact that
the main CoDa operations, like taking a subcomposition, amalgamation, permutation, can be
described by such compositional morphisms. See Section 5.2 for more details.

From the discussion in Appendix A, a bijective linear endomorphism (viz. an automor-
phism) A ∈ GL(Rd+1) maps one-dimensional subspaces into one-dimensional subspaces
and thus induces, by projectivization, a map, denoted9 by [A] : Pd→ Pd, defined by setting

[A]([x]) = [A(x)],

where the right-hand side is the equivalence class (5) of A(x). Equivalently, [A] can be
viewed as the equivalence class [A] = {λA,λ ∈ R∗} of non-zero scalar multiples of A. In
other words, the quotient map x→ [x], can be extended to a (covariant) functor, sending in-
vertible linear maps A :Rd+1→Rd+1 into projective maps [A] : Pd→ Pd, in a way compat-
ible with the composition of maps. That is to say, [AB] = [A][B], which can be equivalently
illustrated by the following commutative diagram:

x Ax BAx

[

x
] [

Ax
] [

BAx
]

A

[.]

B

[.] [.]

[A] [B]

FIG 4. The quotient map as a functor from linear spaces to projective spaces.

Taking into account the non-negatitivity, resp. positivity of Pd
+, resp. Pd

++, one readily sees
that the linear map A must also send the non-negative cone Rd+1

+ , resp. positive cone Rd+1
++ ,

into itself, in order to induce a mapping [A]+ of Pd
+, resp. Pd

++. This translates in matrix
terms, identifying A with its matrix (aij)0≤i,j≤d, by requiring that aij ≥ 0, resp. aij ≥ 0 and∑

j aij > 0, 0≤ i, j ≤ d, (the latter condition means that A has no rows full of zeros), as one
readily checks that

A(Rd
+)⊂Rd

+⇔ aij ≥ 0,

A(Rd
++)⊂Rd

++⇔ aij ≥ 0, and
d∑

j=0

aij > 0.

As for projective spaces, one can thus extend the CoDa quotient map x→ [x]+ in a functorial
way, sending non-negative, resp. positive, bijective map to their positive scalar multiples:

A→ [A]+ := {λA,λ > 0}.
This leads to the definition of the natural analogue of the projective group for CoDa ele-

ments: set

PGLd
+ := {[A]+,A ∈GL(Rd+1),A≥ 0},

PGLd
++ := {[A]+,A ∈GL(Rd+1),A≥ 0,A1> 0}.

Then,

LEMMA 2.2. PGLd
+, resp. PGLd

++, is a group for the composition, acting on Pd
+, resp.

Pd
++, which we call the CoDa projective group, resp. positive CoDa projective group.

9[A] was denoted by P(A) in the Appendix.
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For a general linear map A :Rd+1→Rk+1, one can obtain similar results, under the pro-
viso on ker(A) mentioned in Appendix A. This leads to a general definition of CoDa maps
as non-negative (resp. positive) equivalence classes [A]+ : Pd

+→ Pk
+, via projectivization of

the (restriction to Rd+1 \ ker(A)) of non-negative (resp. positive) invertible linear operators.
We omit the details.

2.4. Intrinsic vector space structure of positive CoDa points Pd
++ at the level of equiv-

alence classes. In the traditional simplex approach, positive CoDa elements, seen as ele-
ments of the positive simplex ∆d

++, can be endowed with a global vector space structure:
for x,y ∈∆d

++, [45] define the vector addition ⊕ (perturbation) and scalar multiplication ⊙
(powering) as (see p.12):

x⊕ y := C(x× y) = [x× y]1,(10)

λ⊙ x := C(xλ) = [xλ]1,(11)

where x× y = (x0y0, . . . , xdyd) is the coordinate-wise multiplication. These operations are
based on the isomorphism of the exp : (R,+, .)→ (R++,×, )̂:

ea+b = ea × eb, eλa = (ea)λ.

These operations are thus the pull-back of the usual vector space operations +, ., for elements
of ∆d

++ expressed in log-coordinates: for x,y ∈∆d
++,

x⊕ y := [exp(lnx+ lny)]1,

λ⊙ x := [exp(λ. lnx)]1.

This definition is extrinsic, as it is based on the simplex representation [.]1. Note that the
rescaling/closure operation (7) is needed after each operation to get back to an element of
∆d

++.
It is noteworthy to remark that this vector space structure of positive CoDa elements does

not depend on the representation [.]1 chosen. Indeed, from the projective viewpoint, the op-
erations ⊕,⊙ can be directly expressed as operations on equivalence classes: for any repre-
sentative x > 0 and y > 0 of [x]+, [y]+ ∈ Pd

++ and λ ∈R, define,

[x]+ ⊕ [y]+ := [x× y]+,(12)

λ⊙ [x]+ := [xλ]+.(13)

It is readily checked that these operations are well defined and do not depend on the choice
of the representative x in the equivalence class [x]+: for ν,µ > 0, µx ∈ [x]+, νy ∈ [y]+, and

(µx)× (νy) = µν.(x× y) ∈ [x× y]+,

(µx)λ = µλ.xλ ∈ [xλ]+.

So in particular, using the ratio standardisation (8), one also has that, for x0, y0 6= 0,

[x]+ ⊕ [y]+ := [π0(x)× π0(y)]+,

λ⊙ [x]+ := [π0(x)
λ]+

In other words, the ratio representative (8) of [x]+ ⊕ [y]+ is simply

π0([x]+ ⊕ [y]+) = π0(x)× π0(y),

and similarly for⊙. This confirms the intrinsic character of the⊕,⊙ operations, as one could
have defined them using ratio representatives instead of simplex ones (provided x0, y0 6= 0 of
course).
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Summarizing, the ⊕ and ⊙ operations, originally defined in the literature for unit-sum
simplex representatives, can be lifted to the full equivalence class (6), and are intrinsic to
Pd
++. Here, no closure operation (7) is needed at such equivalence class level. A more detailed

study of (Pd
++,⊕,⊙) will be given in Section 3

2.5. Linear compositional mappings for positive CoDa in (Pd
++,⊕,⊙). In the literature,

linear applications on the positive CoDa space (Pd
++,⊕,⊙) are defined extrinsically, via

vector log coordinates of simplex representatives: given a contrast matrix V ∈R(d+1)×d, and
A : Rd→ Rd an endomorphism of Rd, the action of A on x ∈∆d

++ is given by defining an
endomorphism ψA : ∆d

++→∆d
++ as

ψA(x) := ilr−1
V (A ilrV (x)) = C(exp(V AV T lnx)).

Setting A∆ := V AV T , the action of A on on x ∈∆d
++ is often noted using the · symbol, as

A∆ · x := ψA(x) . It is then shown that A∆ · x does not depend on the (sub)-basis matrix
V and can be written as A∆ · x = clr−1(A∆clr(x)). The (d+ 1)× (d+ 1) matrix A∆ is
called the matrix of the endomorphism ψA, and it is shown that A∆ satisfy the “zero-sum
property”, viz. A∆1 = (A∆)T1 = 0. For a general linear map A : Rℓ→ Rd, the associated
map ψA : ∆ℓ

++→∆d
++ is defined similarly as ψA(x) = ilr−1

Vd
(A ilrVℓ

(x)), where Vd, resp. Vℓ
are contrast matrices of Rd, resp. Rℓ.

As in Section 2.4, we show below that linear applications on (Pd
++,⊕,⊙) can be defined

intrinsically, directly at the level of equivalence classes, without reference to special coordi-
nates or basis. Given a linear application A : Rd+1 → Rd+1, simply set A+ : Pd

++ → Pd
++

as

(14) A+([x]+) := [exp(A lnx)]+.

In other words, one follows the path illustrated in Figure 5, where ι denotes the selection
operation of a vector representative (a reciprocal of the quotient map x→ [x]+).

[

x
]

+ ∈ Pd++ x ∈Rd+1
++ lnx ∈Rd+1

A+(
[

x
]

+) exp(A lnx) A lnx

ι ln

A

[.]+ exp

FIG 5. Linear compositional applications on (Pd++,⊕,⊙).

In order to be well-defined, A+ must be independent of the selection operation ι: if y =
λx, λ > 0, is another vector representative of [x]+, then by definition (14) and linearity of A,

A+([y]+) = [exp(A lny)]+ = [exp(A(lnx+ (lnλ)1))]+

= [exp(A(lnx) + (lnλ)A(1))]+

= [eA(lnx) × e(lnλ)A(1)]+

The latter is equal to [eA(lnx)]+ if and only if the component-wise product eA(lnx) ×

e(lnλ)A(1) of two vectors reduces to a product of a vector by a scalar, for all λ > 0 . This
is the case iff the vector e(lnλ)A(1)) has identical coordinates, viz. is a scalar multiple of
1, which happens iff 1 is an eigenvector of A. One must then restrict the set of possible
A : Rd+1→ Rd+1 to those s.t. A1= α1, for some α ∈ R. The latter property interprets as a
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constant row sum property on the matrix representation of A. It is also easy to check that A+

is indeed linear on (Pd
++,⊕,⊙).

Next, we enquire which endomorphisms A : Rd+1→ Rd+1 s.t. A1 = α1, for some α ∈
R, give rise to the same A+ : Pd

++→ Pd
++. Decompose Rd+1 into the direct sum Rd+1 =

span(1) + V , so that any z ∈Rd+1 writes z= ζ01+ v, with unique ζ0 ∈R,v ∈ V . Thus,

Az= ζ0A1+A(v) = ζ0α1+A(v)

In turn, A(v) writes A(v) = a01+ v′, for some unique a0 ∈R,v′ ∈ V . Thus,

eAz = e(ζ0α+a0)1+v′

= e(ζ0α+a0)1 × ev
′

= e(ζ0α+a0).ev
′

,

where the last operation . is multiplication of the vector ev
′

by a scalar. By quotienting,
[eAz]+ = [ev

′

]+ and it is seen that the part a01 of A(v) in span(1) does not influence
the value of [eAz]+, i.e. leads to the same A+([x]+), for z = lnx. In other words, only
endomorphisms such that V is stable by A, i.e. s.t. A(V) ⊂ V , will lead to a differing
A+ : Pd

++ → Pd
++. In projective language, any linear A : Rd+1 → Rd+1 which maps the

projective point [1] and the projective hyperplane [V ] to themselves, gives rise to a unique
linear map on Pd

++. In matrix terms, if (1,v1, . . . ,vd) is a basis of Rd+1 = span(1) + V , the
matrix of A writes in such a basis

A=

(
α 0T

0 Ã

)
,

where 0= (0, . . . ,0) ∈ Rd and Ã : Rd→ Rd. Any two such matrices A ∈ R(d+1)×(d+1), i.e.
with the same Ã, but differing only by α, gives rise to the same linear compositional mapping
on Pd

++. One recovers the result that any endomorphism (noted here Ã) of Rd induces a
unique linear compositional mapping A+ on Pd

++. One thus obtains the following definition:

DEFINITION 2.3. Any linear application A :Rd+1→Rd+1, s.t. 1 is an eigenvector of A,
induces a linear application A+ on (Pd

++,⊕,⊙). Conversely, the set of linear applications on
(Pd

++,⊕,⊙) is isomorphic to the set of linear applications Ã :Rd→Rd.

REMARK 2. i) There is a slight difference in our approach to defining A+, as it is based
on a A : Rd+1→ Rd+1, compared to the classical CoDa literature where A∆ is directly
defined from an application A : Rd→ Rd. Confusingly, the literature often notes A∗ for
A and A for our A∆. Note also that in the equivalence class viewpoint, there is no need to
introduce the extra cumbersome notation · .

ii) We used a different notation to distinguish between A+ and the compositional morphism
[A]+ introduced in Section 2.3: [A]+ is defined on the larger Pd

+ space whereas A+ only
acts on the positive Pd

++, A+ is linear whereas [A]+ is not, and the conditions on A to
construct A+ and [A]+ are different.

iii) Similar constructions at the equivalence class level can be obtained for a linear map A
between spaces of different dimension. We omit the details.

3. Log coordinates on Pd
++ at the level of equivalence classes and connections with

Aitchison’s geometry. On the simplex representation ∆d
++ of Pd

++, Aitchison’s log-ratio
analysis is based on the set of log-coordinates introduced in Section 1. In this section, we
deepen the intrinsic approach, begun in Sections 2.4 and 2.5, of studying Pd

++ directly at the
level of equivalence classes.
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3.1. Isomorphism of vector spaces. The ln map acts on equivalence classes of positive
CoDa vectors [x]+ ∈ Pd

++ as follows: for x,y ∈Rd+1
++ ,

[x]+ = [y]+⇔∃λ > 0 s.t. x= λy

⇔∃λ > 0 s.t. lnx= lny+ lnλ1,

where 1= (1, . . . ,1) ∈ Rd+1. This suggest to consider the following equivalence relation ∼
on Rd+1: for z1,z2 ∈Rd+1,

z1 ∼ z2⇔∃µ ∈R s.t. z1 = z2 + µ1,

which means that two vectors of Rd+1 whose coordinates only differ by a common constant
are identified. Set Rd+1/∼ the corresponding quotient space, and denote by

(15) [z]∼ = {z+ µ1, µ ∈R}
the equivalence classes of Rd+1/ ∼. In other words, the ln map can be lifted to an opera-
tion on equivalence classes, transforming positive CoDa elements [x]+ ∈ Pd

++, viewed geo-
metrically as rays in Rd+1

++ , to elements [lnx]∼ of the quotient space Rd+1/ ∼, interpreted
geometrically as parallel lines in Rd+1 along the direction 1,

(16) ln([x]+) = [lnx]∼, exp([z]∼) = [ez]+.

In addition, this ln transform is bijective, as shown in the next lemma:

LEMMA 3.1. ln : Pd
++→Rd+1/∼ is bijective.

Moreover, since each representative z + µ1 of the line [z]∼ is a vector of the ambient
vector space (Rd+1,+, .), the equivalence classes of Rd+1/ ∼ inherit from the latter space
its vector space structure by pulling back its vector space operations. Indeed, let us define the

vector space operations
∼
+,

∼. on the quotient space Rd+1/∼, by

[z1]∼
∼
+ [z2]∼ := [z1 + z2]∼, z1,z2 ∈Rd+1

λ
∼. [z]∼ := [λz]∼, z ∈Rd+1, λ ∈R.(17)

(One readily checks that these operations are well defined, i.e. do not depend on the vector

representative). In turn, (Rd+1/∼,
∼
+,

∼. ) can be pull-backed to Pd
++ by the exp map to obtain

(Pd
++,⊕,⊙): in view of (16),

exp([z1]∼
∼
+ [z2]∼) = exp([z1 + z2]∼)

= [ez1+z2 ]+ = [ez1 × ez2 ]+

= [ez1 ]+ ⊕ [ez2 ]+

exp(λ
∼. [z]∼) = exp([λz]∼) = [eλz]+ = [(ez)λ]+

= λ⊙ [ez]+

In other words, one has obtained the following proposition:

PROPOSITION 3.2. The ln and exp maps are isomorphisms of the vector spaces

(Pd
++,⊕,⊙) and (Rd+1/∼,

∼
+,

∼. ), as illustrated in the commutative diagram of Figure 6.
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This description of Aitchison’s operations ⊕,⊙ at the level of equivalence classes thus
gives new insight on the intrinsic algebraic structure of Pd

++.

(Rd+1
++ ,×, )̂ (Rd+1,+, .)

(Pd++,⊕,⊙) (Rd+1/∼,
∼
+,

∼. )

ln

[.]+

exp

[.]∼

ln

exp

FIG 6. Isomorphism of vector spaces in log-coordinates.

3.2. Normalised log representatives: alr coordinates. From such an approach in terms
of equivalence classes and with Figure 6 in mind, one can obtain a geometrical description
of the alr, clr and ilr vector coordinates mentionned in Section 1. Indeed, we can identify the
quotient space Rd+1/∼, i.e. the stack of lines parallel to 1, with a subset of points in Rd+1

by taking as vector representatives z ∈ Rd+1 of [z]∼, the intersection of the line [z]∼ with
any hyperplane of Rd+1 not parallel to 1.

For example, one can consider representatives z with z0 = 0. Thus, a CoDa point [x]+,
identified by Lemma 3.1 via the ln transform to [z]∼ := [lnx]∼, is now identified, by choos-
ing µ=− lnx0 in (15), with the vector

ζ :=




0
lnx1 − lnx0

...
lnxd − lnx0


=

(
0

alr0(x)

)
∈Rd+1.

In turn, by dropping the first null coordinate, the latter can be identified with the element
alr0(x) = (ln(x1/x0), . . . , ln(xd/x0)) of Rd, as described in Section 1. See Figure 7.
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1

[z]�=[ln x]�

{z0=0}

alr0(x)

z

z

z0


d

FIG 7. alr0(x) as a vector representative of [lnx]∼. Equivalence classes [z]∼ are shown as dotted lines parallel

to the vector 1 (thick black arrow) in Rd+1. For a given [z]∼ = [lnx]∼ (red line) with two vector representatives

z (thin black arrows), the alr0(x) (blue arrow) vector representative is located on the intersection of [z]∼ with

the vector hyperplane {z : z0 = 0} (blue vertical line).

3.3. Normalised log representatives: clr coordinates. One can also associate to each
log transformed equivalence class [lnx]∼ of positive CoDa element [x]+ a unique nor-
malised/distinguished vector representative in Rd+1 as follows: decomposes any vector rep-
resentative z ∈ Rd+1 of the line [z]∼ := [lnx]∼ into its component parallel to 1 and its
component z⊥ ∈Rd+1 orthogonal to 1: one sets

z= z⊥ + µ1, s.t. 〈z⊥|1〉= 0.

In other words, one defines the operation ⊥ :Rd+1→Rd+1 as

z⊥ := z− proj1(z) = z− 〈z|1〉
d+ 1

1,

where proj1 is the orthogonal projection on 1. It is easily seen that the mapping [z]∼→ z⊥

is well defined: if z1 = z+ µ1 is another representative of [z]∼ , then

z⊥1 = z+ µ1− 〈z1|1〉
d+ 1

1= z+ µ1− 〈z|1〉
d+ 1

1− µ1= z⊥.

By definition, z⊥ lies in the “null-sum” vector subspace

H1 := {z ∈Rd+1 :

d∑

i=0

zi = 0},

(of dimension d), which is the vector hyperplane parallel to the affine hyperplane Hsum of
the affine representation i) of Section 2.2. See Figure 8.
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For a positive CoDa [x]+ ∈ Pd
++, (lnx)⊥ corresponds to the clr coordinates. Indeed, in

coordinates, z⊥ writes in matrix terms as

z⊥ = (Id+1 −
11T

d+ 1
)z=




d
d+1

−1
d+1 . . . −1

d+1
−1
d+1

d
d+1 . . . −1

d+1
...

. . . . . .
...

−1
d+1 . . . −1

d+1
d

d+1


z,

where Id+1 is the identity matrix of Rd+1. For z= lnx, one has

(lnx)⊥ = lnx−


 1

d+ 1

d∑

j=0

lnxj


1

= ln

(
x

g(x)

)
= clr(x),

where g(x) is the geometric mean of x. One thus re-obtains the algebraic expression of clr
of Section 1, which is often given in the literature without geometric insight.

1

[z]∼=[ln x]∼

z

z

ℋ1

z
⟂
=clr(x)

z0


d

FIG 8. clr(x) as a vector representative of [lnx]∼. For a given [z]∼ = [lnx]∼ (red line) with two vector repre-

sentatives z (thin black arrows), the z⊥ = clr(x) (pink arrow) vector representative is located on the intersection

of [z]∼ with the null-sum vector hyperplane H1 (pink diagonal line).

REMARK 3. Since H1 is a vector subspace, the representatives z⊥ inherits its vector

space structure. This gives a more concrete, yet equivalent, way to define the
∼
+,

∼. operations,
via these orthogonal representatives, as

[z1]∼
∼
+ [z2]∼ := [z⊥1 + z⊥2 ]∼, z1,z2 ∈Rd+1

λ
∼. [z]∼ := [λz⊥]∼, z ∈Rd+1, λ ∈R.
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By pulling back to Pd
++ by the exp map, one obtains the original definition of Aitchison’s

operations in terms of clr coordinates. Here, one sees that the clr coordinates are again derived
vector coordinates from the underlying equivalence classes [.]∼, and [.]+.

3.4. Normalised log representatives: ilr coordinates. A third way to associate to a unique
normalised/distinguished vector representative in Rd to a positive CoDa element [x]+ is by
coordonatization in an orthonormal basis. Indeed, the previous section has shown that to
[z]∼ = [lnx]∼ is associated a unique vector representative z⊥ of Rd+1. By definition z⊥ ∈
H1, the null-sum vector hyperplane (3.3), which is of dimension d. Hence, by changing the
canonical basis (e0,e1, . . . ,ed) of Rd+1 into an orthonormal basis (1/||1||,v1, . . . ,vd), one
can express z⊥ as

z⊥ = 〈z⊥|1〉 1

||1||2 +

d∑

j=1

〈z⊥|vj〉vj =

d∑

j=1

〈z⊥|vj〉vj

and thus identify z⊥ with its coordinate vector representative (〈z⊥|v1〉, . . . , 〈z⊥|vj〉) in the
orthonormal basis (v1, . . . ,vd) of Rd.

Matricially, this vector representative in Rd is expressed as follows: set V= (v1 . . .vd) ∈
R(d+1)×d the sub-matrix of column orthonormal vectors, then the orthonormal coordinate
representation of z⊥ in Rd writes V T z⊥. In terms of the original Coda element [x]+, one can
thus define the ilr transform, directly at the level of the equivalence class [x]+ as

ilrV ([x]+) = V T lnx ∈Rd.

Again, as for alr and clr, the algebraic expression of the ilr coordinates is obtained from a
geometric reasoning. Note again that there is no need for closure, i.e. to go through a simplex
representation. One can now complete Figure 6 by Figure 9, to give a full picture of the
geometric underpinnings and relations between the different Aitchison’s log-ratio transforms.

x ∈Rd+1
++ lnx ∈Rd+1 (lnx)⊥ ∈H1 ⊂Rd+1

[

x
]

+ ∈ Pd++
[

lnx
]

∼ ∈Rd+1/∼

ln(x/x0) ∈Rd V T lnx ∈Rd

ln

[.]+

exp

[.]∼

ln

exp

alr0

clr

ilrV

FIG 9. Aitchison’s log-ratio alr, clr and ilr transforms from the equivalence classes viewpoint.

4. Hilbert’s projective metric on Pd
++.

4.1. Desiderata for the definition of a metric on CoDa. Having identified in Section 2
the two fundamental, projective and order, structures of CoDa, we can now enquire for an
adequate metric to compare CoDa points. In view of the preceding discussion, it is thus
required that a sensible metric on Pd

+ should

i) be compatible with these partial ordering and projective structures;
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ii) be intrinsic, in the sense that it does not depend on a particular representation of the
equivalence class, nor on a particular metricization of an ambient space.10

Equivalently, this amounts to building a distance11 function d on the non-negative orthant
cone, d :Rd+1

+ ×Rd+1
+ → [0,∞], which is scale-invariant, viz.

(18) d(λx, µy) = d(x,y), λ,µ > 0.

In addition to these structural conditions (and in particular scale invariance), [3] states two
other invariance conditions that any statistical method applied to compositions should sat-
isfy: iii) permutation invariance, and iv) subcompositional coherence. In short, permutation
invariance means that the analysis should give equivalent results when the ordering of the
parts in the composition is changed and subcompositional coherence that the distance be-
tween two full compositions must be greater than, or equal to, the distance between them
when considering any subcomposition.

It will be shown in this section and the next, that, for positive CoDa elements in Pd
++,

Hilbert’s projective metric appears to be particularly well-suited. Actually there are two ver-
sions of Hilbert’s metric: the original [29] metric defined by cross-ratio on the relative interior
of a bounded convex set and [12]’s version as a distance between pairs of rays in a cone. These
projective metrics have proven useful in numerous fields, such as Perron-Froebenius theo-
rems, matrix scaling/DAD/IPFP/Sinkhorn algorithm, etc.. See [43] and [33] for an overview
of Hilbert geometry. Article reviews are [34], [17], [32]. The application of Hilbert’s cross-
ratio distance for clustering on the simplex was proposed by [40] (see also [38]). We first
recall Hilbert’s version in the next subsection.

4.2. Hilbert’s original definition of a projective metric on a bounded convex set. In a
letter to Klein, [29] noted that a formula of Klein, based on the cross-ratio of projective
geometry, provides a metric on any bounded convex domain. The definition is as follows. Let
Ω be a bounded, open, convex subset of a real finite dimensional affine normed space. Given
x 6= y ∈Ω, set the cross-ratio

R(x′, x, y, y′) :=
||x′ − y||
||x′ − x||

||y′ − x||
||y′ − y|| ,

where x′,y′ are the intersection of the line {λx+ (1− λ)y, λ ∈R} with Ω, and are ordered
as in Figure 10 below.

Ω

x' x y y'

FIG 10. Hilbert’s projective metric for a bounded convex set

10Aitchison’s distance depends on the Euclidean metric of the embedding space Rd+1.
11At this preliminary stage, we allow for the search of an infinite metric on Pd+. The proposed Hilbert metric

will only be finite on Pd++. See also Remark 4.



CODA USING PROJECTIVE GEOMETRY AND HILBERT’S METRIC 23

Hilbert’s metric δ is defined as the log of the cross ratio: for x 6= y, set

δ(x,y) := lnR(x′, x, y, y′) = ln
||x′ − y||
||x′ − x||

||y′ − x||
||y′ − y|| ,

(sometimes a factor 1/2 is included). Set also δ(x,x) = 0. Then, one can show (see e.g. [43])
that

i) δ defines a finite metric on the relative interior of Ω, and the latter space equipped with
this metric becomes a complete metric space.

ii) δ is invariant under projective transformations.
iii) the Hilbert metric is projective in the sense that the straight lines are geodesics: δ(x,y) =
δ(x,z) + δ(z,y) whenever z is on the segment {λx+ (1− λ)y, λ ∈ [0,1]}.
In view of (7) in Section 2.2, the simplex representative [x]1 of positive CoDa elements

[x]+ lie in the open, bounded, convex set ∆d
++, so that Hilbert’s metric can be applied to Ω=

∆d
++. This leads to a definition of Hilbert distance δ for positive CoDa elements [x]+, [y]+ ∈

Pd
++ as

δ([x]+, [y]+) = δ([x]1, [y]1).

The invariance of the cross-ratio under projective transformations, i.e. that R(x′,x,y,y′) =
R(T (x′), T (x), T (y), T (y)), where T (x′), T (x), T (y), T (y) are the intersections of a hy-
perplane with the rays through x′,x,y and y′, respectively, mean that δ for positive Coda
does not depend on this simplex representation12 and translates in the sought for scale invari-
ance property (18). Moreover, since δ is based on the ratios of distances ||x′ − y||/||x′ − x||
and ||y′−x||/||y′−y|| of aligned triples of points, it only depends on the relative positions of
the four points x′,x,y,y′, and not on the norm ||.|| used. Indeed, setting x′ − x= t(x′ − y)
and y′ − y = s(y′ − x), with 0 < s, t < 1, then R(x′,x,y,y′) = 1/(st) > 1, which only
depends on the scalar s, t defining x′,y′ and not on the norm used to measure the distances.

4.3. Birkhoff’s ordered version of Hilbert’s metric on a cone. Birkhoff’s version of
Hilbert’s projective metric ([12]) is based on the partial order induced by a cone of a, possi-
bly infinite dimensional, real Banach space V , see [34], [17]. For our purposes, we simply to
need the case V =Rd+1. Let K a closed pointed solid convex cone with non-empty interior,
i.e. s.t.

i) K ⊂ V , K is closed, the interior K̊ is not empty;
ii) K +K ⊂K;
iii) λK ⊂K for all λ≥ 0;
iv) K ∩−K = {0}.
Then, K induces on V an (Archimedean) partial order ≤,

x≤ y⇐⇒ y− x ∈K
A way to quantify this order is via the following pair of asymmetric quantities, defined for
x,y ∈K∗ :=K \ {0}:

M(x,y) := inf{λ≥ 0 : x≤ λy},
m(x,y) := sup{µ≥ 0 : µy ≤ x},(19)

12This will be also clear using Birkhoff’s order approach to the definition of Hilbert’s metric. See next sub-
section.
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with m(x,y) =∞, M(x,y) =∞ if the corresponding set is empty. These quantities have
a geometric interpretation: given x ∈ K∗ chosen as a reference point, M(x,y) tells how
much one has to expand the length of y (keeping its direction fixed) to make it larger than
x, and conversely, m(x,y) tells how much one has to shrink y to make it lower than x. It is
noteworthy that m(x,y), M(x,y) are finite whenever x,y ∈ K̊ , even though x,y may not
be comparable, see Example 1.

EXAMPLE 1. Take K = R+
2 , x = (1/3,2/3), y = (1/2,1/2). x,y are not comparable:

y is larger than x w.r.t. to the first coordinate, and is lower w.r.t. to the second coordinate.
One has to enlarge y by at least 4/3 to have 4/3y ≥ x, and shrink it by at least 2/3 to have
2/3y ≤ x, viz. M(x,y) = 4/3, m(x,y) = 2/3, see Figure 11.

x

y

M(x,y).y ⩾ x

m(x,y).y ⩽ x

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.2

0.4

0.6

0.8

FIG 11. Quantization of the orthant order via the M and m functionals of Example 1. x = (1/3,2/3) , y =
(1/2,1/2) (black arrows) give M(x,y) = 4/3, m(x,y) = 2/3.

In particular, for K =Rd+1
+ , one has the following explicit formulas for m and M ,

(20) M(x,y) := max
i

xi
yi
, m(x,y) := min

i

xi
yi
, x,y> 0,

which justify their notation. Birkhoff’s version of Hilbert’s projective metric dH is then de-
fined on K∗ as follows:

DEFINITION 4.1. Hilbert’s projective metric dH on K∗ is defined by d(x,0) = 0,
d(0,y) = 0 and

(21) dH(x,y) = ln
M(x,y)

m(x,y)
, x,y ∈K∗.
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For K =Rd+1
+ and x,y> 0, since

1

minj{xj/yj})
=max

j
{(xj/yj)−1}=max

j
{yj/xj},

one has

dH(x,y) = ln
maxi xi/yi
minj xj/yj

= lnmax
i,j

xiyj
xjyi

.

The connection between the two versions of Hilbert’s projective metric is explained in
[32]. For the convenience of the reader, we reproduce their argument: let x,y ∈ K̊ and write
m=m(x,y) and M =M(x,y). Replacing x by λx for a suitable λ > 0, if necessary, will
insure that the line through x and y leaves K at two points, a and b, in the two-dimensional
subspace spanned by x and y, see Figure 12. As explained in Example 1, the point x−my is
obtained by moving from x in the−y direction until the non-negativity constraint is violated.
By similar triangles, we see that m= ax

ay
and that M = xb

yb
. Therefore,

dH(x,y) = ln
M(x,y)

m(x,y)
= ln

xb.ay

ax.yb
= lnR(a,x,y,b) = δ(x,y),

which establishes the connection with the original definition of Hilbert’s metric via cross-
ratio. For another proof, see [34] Theorem 2.2.

FIG 12. Birkhoff’s ordered version of Hilbert’s metric as a projective metric based on the cross-ratio.

Hilbert’s projective metric turns (K̊, dH) into a pseudo-metric space, with finite dH , where
K̊ is the interior of K . More precisely, one has the following properties, which follows from
those of m,M . (See e.g. [17], [32] or [34]).

PROPOSITION 4.2. i) dH(x,y)≥ 0, dH(x,y)<∞ for all x,y ∈ K̊ .

ii) On K̊ , dH(x,y) = 0 if and only if x= λy, for some λ > 0.

iii) Symmetry: dH(x,y) = dH(y,x).
iv) Triangle: dH(x,z)≤ dH(x,y) + dH(y,z)
v) Scale invariance: dH(λx, µy) = dH(x,y), for all λ,µ > 0, x,y ∈K .

4.4. Hilbert metric for positive CoDa vectors. Properties ii) and v) of Proposition 4.2
are precisely the requirements of independence of the representative and of scale invariance
(18), we asked for constructing a suitable metric for unnormalised CoDa vectors, i.e. for
equivalence classes (6). Birkhoff’s approach to Hilbert metric also makes immediately clear
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that dH is intrinsic on rays of Rd
+: no metricization of Rd was used in the definition of dH ,

only the (partial) order structure of the cone Rd
+. One therefore defines Hilbert’s metric on

the space Pd
++ of positive CoDa vectors as follows:

DEFINITION 4.3. Let K = Rd+1
+ be the positive orthant cone in definition (21). For

[x]+, [y]+,∈ Pd
++, let

dH([x]+, [y]+) := dH(x,y)(22)

= ln

(
max
i,j

xiyj
xjyi

)
(23)

=max
i,j

ln

(
xiyj
xjyi

)
(24)

where x,y are any representatives in Rd+1
++ of [x]+, [y]+. Then, dH is finite and well defined

on Pd
++. (Pd

++, dH) is a complete metric space.

REMARK 4 (On distances on Pd
+). Hilbert’s distance dH([x]+, [y]+) become infinite

whenever [x]+ or [y]+ has some zero components. By considering φ(dH([x]+, [y]+)), where
φ is a bounded, sub-additive, monotonically increasing function such that φ(0) = 0, (e.g.
φ(x) = 1/(1 + x)), one obtains an equivalent bounded metric on the whole Pd

+. This new
metric φ ◦ dH inherits the nice properties of dH of Section 5, when restricted to elements of
Pd
++, and attains the upper bound 1 whenever [x]+ or [y]+ has some zero components.
In order to have a more meaningful comparison of CoDa with zeros, another possibility

is to consider extrinsic metrics defined on the whole Pd
+, as suggested by the different repre-

sentations listed in Appendix A. In particular, the representation of Pd
+ as the “non-negative

sphere” suggest to consider the spherical/angular distance or the chordal (i.e. Hellinger) dis-
tance, while log-free affine representations suggest to use the Euclidean distance on these
affine subsets. The latter approach will be pursued elsewhere.

5. Properties of Hilbert metric.

5.1. Compatibility with the vector space structure ⊕,⊙ and permutation invariance.

Hilbert’s metric is well suited for positive CoDa vectors, as it is translation and permuta-
tion invariant, as shown in the next Proposition.

PROPOSITION 5.1. i) Compatibility with the vector space structure ⊕,⊙: one has, for

[x]+, [y]+, [p]+ ∈ Pd
++,

dH([x]+ ⊕ [p]+, [y]+ ⊕ [p]+) = dH([x]+, [y]+)

and, for λ ∈R,

dH(λ⊙ [x]+, λ⊙ [y]+) = |λ|dH([x]+, [y]+)

ii) Permutation invariance: Let s = (s(0), . . . , s(d)) be a permutation of {0,1, . . . , d} and

write xs for the vector (xs(0), . . . , xs(d)). Then,

dH([xs]+, [ys]+) = dH([x]+, [y]+)

In fact, taking into account the vector space structure of (Pd
++,⊕,⊙), Hilbert’s distance is

induced by a norm: setting the Hilbert norm as

(25) ||[x]+||H := dH([x]+, [1]+) =max
i,j

ln

(
xi
xj

)
,

then, the positive Coda space endowed with Hilbert metric becomes a normed vector space:
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PROPOSITION 5.2. (Pd
++,⊕,⊙, ||.||H) is a normed vector space, with

dH([x]+, [y]+) = ||[x]+ ⊖ [y]+||H .

Since every finite dimensional normed vector space is complete, this gives another proof
of the completeness of (Pd

++, dH).

5.2. The Lipshitz property in Hilbert metric and subcompositional coherence. As an-
nounced in Section 2.3, the unnormalised approach to CoDa vectors as equivalence class
allows to express the basic operations on CoDa, like extracting a subcomposition and amal-
gamation, as non-negative linear transformations on the vector representatives. For example,
selection of the first k components, [x0 : . . . : xk−1]+ ∈ Pk−1

+ , 1 ≤ k ≤ d + 1, of a CoDa
[x]+ = [x0 : . . . : xd] ∈ Pd

+, is simply obtained by matrix multiplication of the column vec-
tor representative x ∈ Rd+1

+ , with the matrix A=
(
Ik 0

)
∈ Rk×(d+1), (or any positive scalar

multiple of A), where 0 is the null matrix of size k× (d+ 1− k), and Ik the identity matrix
of size k. The resulting vector y=Ax= (x0, . . . , xk−1) is an unnormalised representative of
the k−subcomposition [y]+ ∈ Pk−1

+ , and the latter is simply obtained by taking the quotient
map of such representative. In the language of compositional morphisms of Section 2.3,

[y]+ = [A]+([x]+) = [Ax]+.

Similarly, the operations of amalgamation of several components into one, as e.g. in [x]+ =
[x0 : . . . : xd] ∈ Pd

+ transformed into [x0 + x1 : x2 : . . . : xd]+ ∈ Pd−1
+ , and permutation of

the components can also both be conveniently described by a compositional morphism, viz.
positive scalar multiples of a positive linear transformation, as the resulting matrix A is made
of 1 and 0.

This is in contrast with the classical simplex approach. where a subcomposition or an amal-
gamation have to be rescaled to unity by dividing with the remaining mass. This results in op-
erations expressed as fractional linear transformations, i.e. as ratio of linear transformations.
Thus, by considering the full equivalence class as our objects of study, these transformations
are simpler to express.

The fact that these transformations are positive linear implies that subcompositional co-
herence is automatically satisfied with Hilbert’s metric. Indeed, Hilbert’s metric has the re-
markable general property that it transforms an homogeneous, monotone mapping into a
Lipschitz’s one, with Lipshitz constant 1, see e.g. [33] Corollary 2.1.4. Let K ⊂ E,L ⊂ F
two closed cones of some vector spaces E,F and T :K → L be a transformation which is
r-homogeneous, viz.

T (λx) = λrT (x), λ > 0,x ∈K
and monotone, viz.

x≤K y⇒ T (x)≤L T (y), x,y ∈K.
Then,

dH(T (x), T (y))≤ rdH(x,y)

where the Hilbert distances are w.r.t. to the corresponding cones K,L.
In our particular case, K = Rd

+, L = Rk−1
+ , and as the transformation A expressing

the subcomposition operation is linear, it is homogeneous of degree one, so that A is
1−Lipschitz13 w.r.t to the Hilbert metric of the corresponding spaces,

(26) dH([Ax]+, [Ay]+)≤ dH([x]+, [y]+).

131-Lipshitz maps between metric spaces are also called non-expansive maps or metric maps in the literature.
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The latter is the expression of subcompositional coherence. One has thus he important prop-
erty:

PROPOSITION 5.3. The Hilbert metric is subcompositionally coherent, i.e. it satisfies

(26) for A expressing the subcomposition operation, and in general for any positive linear

transformation.

REMARK 5.
i) In its rescaled-to-unit-sum representation [x]1, a CoDa vector can be identified with (the

weights) of a probability measure. Then, taking a subcomposition van be expressed as trans-
forming such discrete probability measure by a Markov kernel. In the field of information
geometry, information monotonicity is the generalisation of subcompositional coherence and
also expresses a contracting property of Markov transformed probability measures, i.e. that
the statistical information of a sub-model can only decrease, see [6], [62].

ii) Theorem 2.9 in [32] shows that Hilbert’s metric is essentially the only metric on the positive
cone which i) is invariant on rays, ii) is projective in the sense that the straight line between
two points is a geodesic, viz. a shortest possible path between two points, and iii) contracts
under positive linear transformations, i.e. which satisfy (18) and (26). This is in contrast with
Aitchison’s distance where geodesics are curved.

5.3. Isometric embeddings and isometries for Hilbert distance and their relation to Aitchi-

son’s log-geometry.. In this subsection, we show how Hilbert’s metric can be expressed w.r.t
to some (pseudo)-metrics in Euclidean spaces. This is helpful in getting a better grasp of the
geometric picture of Hilbert’s distance of CoDa elements. In addition, it establishes some
metric connections with the log-coordinate classical approach of Aitchison, thereby com-
pleting the study of Section 3.

5.3.1. Isometric embedding in (Rd(d+1)/2, ||.||∞). Hilbert’s distance writes, for any rep-
resentatives x,y,

dH([x]+, [y]+) = ln

(
max

0≤i,j≤d

xiyj
yixj

)
= max

0≤i,j≤d

(
ln
xi
xj
− ln

yi
yj

)

= max
0≤i<j≤d

∣∣∣∣ln
xi
xj
− ln

yi
yj

∣∣∣∣ .

Since there are d(d + 1)/2 distinct pairs (i, j) with 0 ≤ i < j ≤ d, this suggests to define
Ψ : Pd

++ 7→Rd(d+1)/2 by

(27) Ψij([x]+) = ln
xi
xj
, for 0≤ i < j ≤ d.

Note that Ψ is well-defined on Pd
++ since (27) is scale-invariant. Hilbert’s distance now

writes,

(28) dH([x]+, [y]+) = ||Ψ([x]+)−Ψ([y]+)||∞
One has thus proved the following:

PROPOSITION 5.4. (Pd
++, dH) is isometrically embedded into (Rd(d+1)/2, ||.||∞) by the

distance-preserving map Ψ, viz.

(Pd
++, dH) →֒ (Rd(d+1)/2, ||.||∞).
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REMARK 6. i) One can also directly check that Ψ is injective:

Ψ([x]+) = Ψ([y]+)⇐⇒ ln(xi/xj) = ln(yi/yj), 0≤ i < j ≤ d
⇐⇒ xi/yi = xj/yj = λ, 0≤ i < j ≤ d
⇐⇒ x= λy⇐⇒ [x]+ = [y]+

for some λ > 0.
ii) The Ψ coordinates (27) can be arranged into an anti-symmetric matrix Ψ([x]+) :=(

Ψij([x]+)
)
∈ R(d+1)×(d+1). This bears some analogy with the Plücker coordinates in

projective geometry, where projective subspaces can also be represented by anti sym-
metric matrices (Plücker matrices). Hilbert’s metric then writes as a distance between
matrices,

dH([x]+, [y]+) = ||Ψ([x]+)−Ψ([y]+)||max,

where the distance is the (element-wise) ∞−matrix norm ||.||max, viz. ||A||max :=
maxi,j |aij |. Notice that such matrix norm is not sub-multiplicative. This suggests the
possibility to use other matrix norms and more generally to view CoDa as matrix-valued
elements.

iii) Ψ can be interpreted as a generalization of the additive log-ratio alr0 transform intro-
duced in Section 1. Ψ partially remedies some drawbacks of the alr0 transform alluded
earlier: whereas alr0 is not symmetrical, as the first coordinate x0 is used as reference for
ratio standardization (see (8)) and thus plays a distinguished role, Ψ is symmetrical as it
considers simultaneously all alri transforms, i= 0, . . . , d.

Proposition 5.4 shows that, with appropriate distances, Ψ establishes an isometric em-
bedding of Pd

++ into Rd(d+1)/2. However, Ψ is clearly not surjective, as these spaces do
not have the same dimensions. This implies in particular, that these Ψ coordinates are
not independent, but are related by a system of equations, as is the case with Plücker
coordinates of projective points. (For example, when d = 2, one can directly check that
Ψ12 =−Ψ01 +Ψ02.) In other words, the image of Ψ is a subset of Rd(d+1)/2. Of course,
ψ is a (bijective) isometry onto its image ψ(Pd

++). Regarding alr and isometries, see also
the forthcoming Corollary 5.6 and Remark 7.

5.3.2. Isometry with Rd. For z ∈Rd+1, define

(29) ||z||MM = max
0≤i≤d

zi − min
0≤i≤d

zi.

Indeed, it is readily checked that z 7→ ||z||MM is i) non-negative, ii) sub-additive, iii) absolute
homogeneous, but iv) ||z||MM=0 only implies z = λ1, for some λ ∈ R, equivalently [z]∼ =
[0]∼, where [.]∼ is the equivalence class (15), defined in Section 3. Thus, ||.||MM is only a
pseudo-norm on Rd+1, but a genuine norm on Rd+1/∼. Combining this variation norm with

the operations
∼
+,

∼. of (17), one obtains that (Rd+1/∼,
∼
+,

∼. , ||.||MM) is a normed vector space.
On the other hand, for two positive CoDa [x]+, [y]+ ∈ Pd

++, Hilbert’s metric also writes

dH([x]+, [y]+) = dH(x,y) = lnmax
i,j

xiyj
yixj

=max
i,j

ln
xi
yi

yj
xj

=max
i

max
j

ln
xi
yi
− ln

xj
yj

=max
i

ln
xi
yi

+max
j

(− ln
xj
yj

)
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=max
i

ln
xi
yi
−min

i
ln
xi
yi

=max
i

(lnxi − lnyi)−min
i
(lnxi − lnyi)

= ||lnx− lny||MM

= ||[lnx]∼
∼
− [lny]∼||MM(30)

where in (30), [lnx]∼
∼
− [lny]∼ stands for [lnx− lny]∼, in agreement with the definition

of the
∼
+,

∼. operations of Section 3. Combined with Lemma 3.1, (30) thus establishes that
the ln map is an isometry14 between the normed15 vector spaces (Pd

++,⊕,⊙, ||.||H) and

(Rd+1/∼,
∼
+,

∼. , ||.||MM). We have thus established the following:

PROPOSITION 5.5. (Pd
++,⊕,⊙, ||.||H) and (Rd+1/ ∼,

∼
+,

∼. , ||.||MM) are isometrically

isomorphic.

At last, and as explained in Section 3, we can identify the quotient space Rd+1/ ∼ with
Rd, by taking a vector representatives z ∈ Rd+1 located on any vector hyperplane of Rd+1

not parallel to 1. It is instructive to see what happens when one chooses the alr coordinates:
for z with z0 = 0, a CoDa point [x]+, identified by Proposition 5.5 via the ln transform to
[z]∼ := [lnx]∼, is now identified with the vector

ζ :=

(
0

alr0(x)

)
∈Rd+1,

where (0, alr0(x)) stands for the concatenation of 0 with alr0. (30) then writes

dH([x]+, [y]+) = ||(0, alr0(x))− (0, alr0(y))||MM.
The above can be written as a distance between elements alr0(x) and alr0(y) of Rd by

introducing on Rd the modified variation norm ||.||MM0
(compare with (29) as,

||z||MM0
:= max(0, z1, . . . , zd)−min(0, z1, . . . , zd), z ∈Rd.

It is readily checked that ||.||MM0
is a norm (and not only a pseudo-norm) on Rd, since

||z||MM0
= 0 implies

(
0
z

)
= µ

(
1
1

)
⇒ µ= 0⇒ z= 0.

Eventually, one has that

dH([x]+, [y]+) = ||alr0(x)− alr0(y)||MM0
,

having thus proved the following:

COROLLARY 5.6. alr is a bijective isometry between (Pd
++, dH) and (Rd, ||.||MM0

).

The following figure illustrates the results and constructions established in this subsection.

14A bijective distance-preserving map.
15The norm corresponding to dH on Pd++ is obviously ||[x]+||H := dH ([x]+, [1]+).
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[

x
]

+ ∈ (Pd++, dH )
[

lnx
]

∼ ∈ (Rd+1/∼, ||.||MM)

x ∈ (∆d
++, dH ) alr0(x) ∈ (Rd, ||.||MM0)

ln

C=[.]1

exp

ζ[.]+

alr

FIG 13. Bijective isometry of the positive CoDa space (Pd++, dH ) with (Rd, ||.||MM0)

REMARK 7. We have thus shown that alr is indeed a (bijective) isometry, when Rd is
endowed with the correct metric. This is a noticeable feature, which goes against the pre-
vailing conceptions regarding alr in the CoDa literature. Indeed, [45] state that “the essential
problem with alr coordinates is the non-isometric character of this transformation”, when the
Euclidean distance ||.||2 is used in the alr coordinates domain Rd. To that regard, the standard
Euclidean distance used in the classical approach in the CoDa literature does not seem to be
well suited.

5.4. About geodesics in the CoDa space with Hilbert distance. We discuss the remark-
able fact that straight line segments, in both the affine and Aitchison’s log coordinates, are
geodesics for the Hilbert metric, i.e. length minimising curves. This gives some insight with
the manifold approach of Information geometry and vindicate the usefulness of using Hilbert
metric to measure distances on the space of (discrete) distributions.

5.4.1. e and m straight line segments of Information Geometry. A CoDa element [p]+
can be thought of as the distribution of a discrete random variable, and thus CoDa can also be
studied from the point of view of Information Geometry ([24]). Information Geometry ([5],
[6], [24]) views the space of probability measures as a manifold, and defines special systems
of coordinates to describe it. This manifold is then endowed with a Riemannian metric and
a dually flat structure. We briefly explain the basics below and connects with the projective
approach.

Let X be a discrete random variable over, say, {0,1, . . . , d}. Its distribution is given by

(31) p(x) := P (X = x) =

d∑

i=0

piδi(x),

where δi(x) = 1i=x is the Kronecker function, and p = (p0, . . . , pd) ∈∆d
+ is a constrained

vector of the probability simplex. (31) expresses the distribution of X as a mixture of the
Dirac distributions δi, so p are called the m−coordinates of the distribution (m for mixture).
Thus, m−coordinates in Information Geometry corresponds to the affine representations in
the simplex (7).

The discrete distribution can also be expressed as an exponential family: since 1 =∑d
i=0 δi(x),

lnp(x) =

d∑

i=0

(lnpi) δi(x) =

d∑

i=1

ln(pi/p0) δi(x) + lnp0.
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Hence, p(x) writes as an exponential family as

p(x) = p(x;θ) := exp(

d∑

i=1

θiδi(x)−Z(θ)),

where θi = ln(pi/p0), θ = (θ1, . . . , θd), and

Z(θ) =− lnp0 = ln

(
1 +

d∑

i=1

eθi

)

is the cumulant generating function. Thus, the θ coordinates, viz. the natural parameter in the
exponential family, is another system of coordinates, called the e−coordinates in Information
Geometry (e for exponential). e− coordinates correspond to the alr transform of the CoDa
literature,

θ = lnp/p0 = alr0(p).

(Note that one can dispense with introducing the cumulant function, by mixing m and e

coordinates, and writing p(x;θ) := p0 exp
(∑d

i=1 θiδi(x)
)
.)

Each coordinate system, p and θ, defines a linear structure on the space of discrete proba-
bility measures, inducing two notions of straight line segments (called geodesics in Informa-
tion Geometry). Linearity is obtained by simply declaring that the corresponding coordinate
system is affine, and the segments are obtained by linear interpolation of the coordinates.
Thus, the mixture coordinate system defines a m−straight line segment γm : [0,1]→ ∆d

+

connecting two distributions p and q by taking the linear interpolation of the two distribu-
tions,

γm(t) := (1− t)p+ tq.

Geometrically, γm is a straight line segment in the simplex ∆d
+. Similarly, the exponential

coordinate system defines a e−straight line segment γe : [0,1]→∆d
+ connecting two distri-

butions p(x;θp) and p(x;θq) by linearly interpolating the natural parameter θ as

θ(t) := (1− t)θp + tθq.

Thus, by taking the logarithm, it corresponds to a linear interpolation of the two distributions
in the logarithmic (alr) scale: such e-straight segment writes

γe(t) := p(x,θ(t)),

or, more explicitly,

alr0(γ
e(t)) = (1− t)alr0(p) + t alr0(q)

Hence, in the CoDa framework, this e−segment corresponds to a vector segment in Aitchi-
son’s geometry, i.e. w.r.t. ⊕, ⊙ operations,

[γe(t)]+ = (1− t)⊙ [p]+ ⊕ t⊙ [q]+.

From the projective viewpoint, it can also be described as

[lnγe(t)]∼ = (1− t) ∼. [lnp]∼
∼
+ t

∼. [lnq]∼.

Geometrically, the latter expresses the e−segment as a linear interpolation of the lines [lnp]∼
and [lnq]∼, as in Figure 7.
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REMARK 8. In addition, Information Geometry shows that these two coordinate systems
are dual, in the sense that the negative entropy φ(p) :=

∑d
i=0 pi lnpi is a convex function of

p, and that θ is the gradient of φ, θ =∇φ(p): θ and p are dual in the sense of the classical
Fenchel-Legendre transform of convex analysis. The Bregman divergence based on φ is the
Kullback-Leibler divergence and can be written in terms of φ, its convex conjugate φ∗ (which
is the cumulant generating function) and a mix of the e andm coordinates. This gives, among
other, a Riemannian metric (the Fisher information matrix), and generalized Pythagorean and
projection theorems. More generally, a divergence function endows a Riemannian metric and
a pair of dually coupled affine connections on the space of probability measures. See e.g. [5]
for more details.)

5.4.2. Information geometry geodesics w.r.t. Hilbert distance.. Now, let us study these
e− and m−segments from the (Hilbert) metric geometry viewpoint (see e.g. [15]). Recall
that a geodesic path γ in a metric space (M,d) connecting x, y ∈M is a (continuous) map
γ : [0,1]→M , such that

d(γ(s), γ(t)) = |s− t|d(x, y) for all s, t ∈ I.
(sometimes the multiplicative constant d(x, y) on the right hand side is normalised to 1). A
metric space is said to be a geodesic space if for each x, y ∈M , there exists a geodesic path
γ : [0,1]→M joining x and y, i.e. γ(0) = x and γ(1) = y.

Regarding the CoDa space (Pd
+, dH) as a metric space, it is a geodesic space. This is

obvious when one regards (Pd
+,⊕,⊙, ||.||H) as a normed vector space, i.e. one considers

e−segments. However, the geodesics are not unique. In particular,m−segments, i.e. straight-
line segments in the simplex representation ∆d

++ are also geodesics for Hilbert metric. This
was Hilbert’s original motivation for the definition of his metric. This is the content of the
next Proposition.

PROPOSITION 5.7. The m− and e− segments are geodesics for the Hilbert metric.

6. Differentiability properties and smooth approximations of Hilbert distance. In
view of statistical applications, which are often formulated as optimisation problems, we
study in this section the differentiability properties of Hilbert projective distance. This leads
us to introduce a smoothed approximation of Hilbert’s distance which is shown to satisfy
many (but not all) properties of the original Hilbert’s distance.

6.1. Differentiability properties of Hilbert distance.

6.1.1. Directional differentiability. For a function f : Rd+1→ R, recall that f is said to
admit a directional derivative of f at x in the direction v ∈Rd+1 if the limit

f ′(x,v) := lim
α↓0

1

α
[f(x+ αv)− f(x)]

exists, and f is said to be directionally differentiable at x if it admits a directional derivative
at x for every direction v. The following Proposition shows that Hilbert’s metric, considered
as a function on (Rd+1

++ ,+, .) is directionally differentiable.

PROPOSITION 6.1. For some fixed y ∈ Rd+1
++ , consider the function f : Rd+1

++ ∋ x 7→
dH(x,y). Then, for all x ∈Rd+1

++ , f is directionally differentiable with directional derivative

(32) f ′(x,v) = max
i∈U(x)

vi/xi − min
i∈L(x)

vi/xi, v ∈Rd+1,

where U(x) = {i = 0, . . . , d : ln(xi/yi) = maxj ln(xj/yj)} and L(x) = {i = 0, . . . , d :
ln(xi/yi) =minj ln(xj/yj)}.
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REMARK 9. The sets U(x) and L(x) of (32) remain invariant by rescaling x← λx,
y← µy, for λ,µ > 0. However,

f ′(λx,v) =
1

λ
f ′(x,v).

Thus, the value of the directional derivative f ′ depends on the choice of the representative
x ∈Rd+1

++ . Note, however, that f ′(λx, λv) = f ′(x,v), so that f ′ is scale invariant, when both
the point x and direction v are rescaled.

6.1.2. Log-directional differentiability. In view of the vector space structure of
(Pd

++,⊕,⊙) (see Proposition 5.2), and/or the linear structure of e−segments of Section 5.4,
it also makes sense to define directional differentiability of a mapping f : Pd

++ → R w.r.t.
the ⊕,⊙ operations, viz. w.r.t. log coordinates: following [44] Chapter 13, let us say that f
admits a log-directional derivative at [x]+ in the direction [v]+, if the limit

f
′⊕([x]+, [v]+) := lim

α↓0

f([x]+ ⊕ α⊙ [v]+)− f([x]+)
α

exists, and f is said to be log-directionally differentiable at [x]+ if it admits a log-directional
derivative for every direction [v]+.

One can then gives the log version of Proposition 6.1:

PROPOSITION 6.2. For some fixed [y]+ ∈ Pd
++, consider the function f : Pd

++ ∋ [x]+ 7→
dH([x]+, [y]+). Then, for all [x]+ ∈ Pd

++, f is log-differentiable with log-directional deriva-

tive

(33) f
′⊕([x]+, [v]+) = max

i∈U([x]+)
lnvi − min

i∈L([x]+)
lnvi, v ∈Rd+1,

where U([x]+) = {i= 0, . . . , d : ln(xi/yi) =maxj ln(xj/yj)} and L([x]+) = {i= 0, . . . , d :
ln(xi/yi) =minj ln(xj/yj)}.

REMARK 10 (Bouligand differentiability). In fact, Hilbert’s distance satisfy a stronger
form of directional differentiability called Bouligand differentiability, which was introduced
by Robinson in [49] for locally Lipschitz continuous functions, and studied in [52]. In short,
a function is B-differentiable if it is directionally differentiable and if in addition, the direc-
tional derivative is a first-order approximation of f . Compared to the usual (Fréchet) deriva-
tive, one does not require that the derivative be linear in the direction, simply positively
homogeneous. The first-order approximation condition in the definition, is the key to have an
operative concept (in particular the chain rule) for optimisation purposes. The concept of B-
differentiability avoid using set-valued analysis (unlike other form of generalized derivatives)
and apply to the large class of non-smooth functions, in particular piece-wise differentiable
functions (see e.g. Proposition 4.1.3 in [52]). Since Hilbert distance is the composition of the
max operation and smooth functions, it is piece-wise differentiable hence B-differentiable.

6.2. Smooth approximations of Hilbert’s metric.

6.2.1. Definition. The non-differentiability of Hilbert’s metric comes from the max op-
eration in the expressions (23) or (24) defining it. This suggests to use a smooth approxima-
tion of the maximum in order to obtain a differentiable approximate proxy of the Hilbert
metric. In particular, one can use the log-sum-exp function (see e.g. [13]), defined for
x= (x1, . . . , xm) ∈Rm as

lse(x) = ln

(
m∑

i=1

exi

)
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or its rescaled version lsec(x) := c−1lse(cx), where c > 0 controls the degree of approxima-
tion of max by lsec, see Lemma 6.4 below. In view of (24), the smooth approximate version
of Hilbert’s metric is then defined as follows:

DEFINITION 6.3 (Smooth Hilbert distance). For [x]+, [y]+,∈ Pd
++ and c > 0, the smooth

Hilbert approximate distance is defined as

dH,c([x]+, [y]+) := lsec

(
. . . , ln

(
xiyj
xjyi

)
, . . .

)
, 0≤ i, j ≤ d,(34)

=
1

c
ln


 ∑

0≤i,j≤d

(
xiyj
xjyi

)c



where x,y are any representatives in Rd+1
++ of [x]+, [y]+.

It is readily checked that dH,c is well defined, irrespective of the chosen representatives.
Note that we could have considered several variants, as explained in the following remark.

REMARK 11 (Variants). i) One could have used equation (23) instead of (24) as the for-
mula of Hilbert’s metric and approximate the max inside the logarithm. However, from an
approximation viewpoint it is better to first take the logarithms and then approximate the
max, as the reverse would propagate the approximation error through a function with
unbounded derivative. Also, we checked that the structural properties of the resulting
Hilbert’s metric proxy would be less satisfying (for example we do not have scalar equiv-
ariance as for (34), see Proposition 6.5 below).

ii) For given x,y ∈Rd+1
++ , set R(i, j) := xiyj

xjyi
the odds-ratio, so that Hilbert’s distance writes

dH([x]+, [y]+) = maxi,j lnR(i, j). Since R(i, i) = 1 and lnR(i, j) = − lnR(j, i), it is
clear that one can restrict the max operation in the definition of Hilbert’s metric to distinct
pairs i 6= j, i.e. dH([x]+, [y]+) = maxi 6=j lnR(i, j). In turn, applying the log-sum-exp

trick to distinct pairs yields a variant d̃H,c of Definition (34), which writes as

d̃H,c([x]+, [y]+) :=
1

c
ln


∑

i<j

(
R(i, j)c +

1

R(i, j)c

)
 .

Similar reasoning shows that the proposed smooth proxy of Hilbert’s metric (34) can
also be written as,

dH,c([x]+, [y]+) :=
1

c
ln


d+ 1+

∑

i<j

(
R(i, j)c +

1

R(i, j)c

)


=
1

c
ln


d+ 1+ 2

∑

i<j

cosh(c lnR(i, j))


 .

Note that adding a constant in the sum of exponentials yields a strictly convex approx-
imation of the max, as shown in Appendix A of [39], where the authors consider, instead
of lse, lse+(x1, . . . , xm) := log(1 +

∑m
i=1 e

x
i ) as a strictly convex smooth approximation

of the max.
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6.2.2. Properties of the smoothed Hilbert metric. We collect in the following lemma
some elementary properties of the rescaled lse function, which will be useful for studying the
properties of dH,c:

LEMMA 6.4. i) Approximation inequality: for x= (x1, . . . , xm),

max(xi)≤ lsec(x)≤
lnm

c
+max(xi)

ii) lsec is convex and strictly increasing w.r.t. to each coordinate.

iii) Sub-additivity: lsec(x+ y)≤ lsec(x) + lsec(y)
iv) Positive scalar equivariance: lsec(λx) = λ× lseλc(x), for λ > 0.

In turn, the smooth Hilbert approximate distance has the following properties:

PROPOSITION 6.5. i) Smooth approximation of Hilbert’s metric from above:

dH([x]+, [y]+)≤ dH,c([x]+, [y]+)≤ dH([x]+, [y]+) +
2 ln(d+ 1)

c
ii) Distance-like properties:

a) Non-negativity and “almost separability”:

dH,c([x]+, [y]+)≥ dH,c([x]+, [x]+) =
2 ln(d+ 1)

c
≥ 0

b) Symmetry: dH,c([x]+, [y]+) = dH,c([y]+, [x]+).
c) Triangular inequality:

dH,c([x]+, [z]+)≤ dH,c([x]+, [y]+) + dH,c([y]+, [z]+)

iii) Partial compatibility with the vector space structure ⊕,⊙:

a) for [x]+, [y]+, [p]+ ∈ Pd
++,

dH,c([x]+ ⊕ [p]+, [y]+ ⊕ [p]+) = dH,c([x]+, [y]+)

b) Almost scalar equivariance for λ ∈R∗,

dH,c(λ⊙ [x]+, λ⊙ [y]+) = |λ|dH,c|λ|([x]+, [y]+)

c) Strict convexity w.r.t ⊕,⊙: for fixed [y]+, the mapping [x]+ → dH,c([x]+, [y]+) is

strictly convex w.r.t. the vector operations ⊕,⊙.

iv) Permutation invariance:

If s is a permutation of {0,1, . . . , d}, then

dH,c([xs]+, [ys]+) = dH,c([x]+, [y]+).

7. Statistical applications: Fréchet-Hilbert means, Gaussian-Hilbert distributions
and nonparametric regression. The previous sections have explained how the positive
CoDa space Pd

++, equipped with Hilbert’s projective metric dH , is now a metric space. This
section eventually proposes statistical applications based on such comparisons of distances
of CoDa points.

7.1. Intrinsic measures of location and spread based on Hilbert distance. We begin our
statistical applications by considering Hilbert’s metric analogues of the basic descriptive
statistics like the mean, median and variance. Following [47], we first explain the different
notions of extrinsic and intrinsic means which can be defined on a general topological space.
Specialising to the CoDa space, Aitchison’s mean fits into this framework as an extrinsic
mean, and other such means could be considered. Switching to the intrinsic viewpoint, one
can also define a Fréchet mean, median and variance based on Hilbert distance. Existence
and unicity are discussed.
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7.1.1. Extrinsic means on a general topological space. Let (Ω,A, P ) be a probability
space. Consider a random element X : Ω→X on some topological space X . The first basic
descriptive statistic of the distribution PX of X is provided by a notion of center/mean. For a
general space X , the mean EX is not defined since X does not carry the structure of a linear
space. (In particular, there is no notion of arithmetic averaging so that

∫
X xP

X(dx) does not
even make sense.)

When there is an embedding (i.e. an injective map) φ : X →֒ Rm into an ambient Eu-
clidean space Rm, X can be identified with a subset φ(X ) of Rm. The latter space both has a
linear structure (i.e. is a vector space) and a metric structure (is endowed with the Euclidean
distance). Thus, one can define the ambient mean (w.r.t. φ), as

a(X) :=E(φ(X)) ∈Rm,

and the latter expectation can be defined,

i) either algebraically, as the vector integral

a(X) =

∫

Rm

yPY(dy),

where PY is the multivariate distribution of Y = φ(X) ∈Rm;
ii) or metrically, as the minimizer of the sum of squares distances

(35) a(X) = arg min
z∈Rm

∫

Rm

d2(y,z)PYdy,

where d is a distance on the ambient space Rm. When d is the usual Euclidean distance,
both definitions coincide.

For a sample X1, . . . ,Xn ∈ X , the empirical ambient mean an := an(X) is obtained as
above by replacing PY by the corresponding empirical measure. Hence, i) yields a definition
of the ambient mean via the vector space structure of Rm, as the arithmetic average an =
n−1

∑n
i=1 φ(Xi), or equivalently as the unique point such that the residuals (φ(X1)− an) +

. . . + (φ(Xn) − an) sum to zero, while ii) is based solely on the metric space structure of
Rm, as an = argminz∈Rm

∑n
i=1 d

2(φ(Xi),z).
If φ is bijective, then a(X) can be pulled back to X , so that one defines the extrinsic mean

of X on X based on φ, as

(36) Eφ(X) := φ−1(a(X)) = φ−1(Eφ(X)).

If φ is not surjective, it may happen that a(X) /∈ φ(S), so that one can not directly
pull-back the ambient mean to X . However, in such a case, The Euclidean structure of
the ambient space allows to orthogonally project the ambient mean a(X) to φ(X ): Define
µ(X) ∈ φ(X )⊂Rd as

(37) µ(X) = arg min
z∈φ(X )

||z− a(X)||.

Provided that µ(X) exists and is unique, its pull-back to the original space X is

Eφ(X) := φ−1(µ(X)) = φ−1(arg min
z∈φ(X )

||z−Eφ(X)||),

In general, µ(X) (a fortiori Eφ(X)) may not exists or may be not be single-valued. Figure
14 illustrates the conceptual procedure.
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FIG 14. Extrinsic mean on a topological space X based on an embedding φ :X →֒Rm.

7.1.2. Aitchison’s mean as an extrinsic mean. For positive Coda in Pd
++, Aitchison’s

approach follows such an extrinsic definition of the mean, using clr as embedding map φ: for
X ∈∆d

++, a positive CoDa random element represented in the simplex, sinceH1 ⊂Rd+1 (as
defined in (3.3) is a vector subspace,E(clr(X)) ∈H1. Moreover, since clr is an isomorphism
between ∆d

++ and H1, Aitchison’s simplex mean can then be defined via (36) as

E⊕(X) := clr−1(E clr(X)).

It is then shown that E⊕(X) is equal to ilr−1
V (E(ilrV (X))), for any contrast matrix V . The

empirical version is simply the arithmetic average n−1⊙ (x1⊕ . . .⊕xn), which corresponds
to the closed geometric mean. Aitchison’s CoDa mean is thus a quasi-arithmetic or gener-
alised mean (see [14]). The extrinsic character of Aitchison’s mean comes from the special
choice of log-coordinates and the use of the Euclidean distance to compute the mean in the
log-coordinates spaces.

The use of such mean has been criticized in the literature [59], [50]: geodesics correspond-
ing to Aitchison’s distance are curved, which may not be suitable for some datasets where
Aitchison’s mean may lie outside the data cloud. Moreover, the ⊕ operation corresponds
more to a change of unit (see e.g. [61]) than, say mixing cocktails into a single one ([50]),
and thus may not be appropriate when one wants to aggregate compositions to obtain an “av-
erage” composition. Eventually, Remark 7 hinted that the Euclidean distance might not be an
“adequate” metric for CoDa.

Let us just mention, that, in view of the embeddings studied in section 5, one can consider
other kinds of extrinsic means than Aitchison’s mean. In particular, one can take the em-
bedding map Ψ : Pd

++ →֒ Rd(d+1)/2 defined in (27). This time, obtaining an extrinsic mean
EΨ([X]+) on Pd

++ as in Figure 14, based on Ψ, possibly requires the additional step (37) of
projecting the ambient mean a([X]+) to µ([X]+) ∈Ψ(Pd

++). We shall not pursue further, as
we will focus on intrinsic means, to be defined thereafter.

7.1.3. Intrinsic Fréchet mean based on Hilbert distance. The above approach for defin-
ing a generalised notion of mean on a general topological space X is extrinsic in the sense
that it is depends on the auxiliary ambient space, through the embedding map φ and the dis-
tance d chosen. When (X , dX ) is a metric space with intrinsic distance dX , equation (35)’s
metrical characterisation of the mean as a solution of a least-squares problem suggest a more
intrinsic definition of the mean. Following [26], the Fréchet intrinsic mean on the metric
space (X , dX ) is directly defined as

MF (X) := arg inf
m∈X

∫

X
d2X (m,x)P

X(dx).
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In general, MF (X), if it exists, is a set, and the question of uniqueness is often non-trivial
(see e.g. [18], [1]). The intrinsic Fréchet variance is then the corresponding average square
distance to the Fréchet mean, viz.

V arF (X) :=

∫

X
d2X (M

F (X), x)PX(dx) =E [d2X (M
F (X),X)].

These formulas are thus the natural generalisation of the mean and variance of Euclidean
vectors, with the Euclidean distance replaced by the distance dX , of X .

Applied to the CoDa space P d
++, and in view of the intrinsic character of Hilbert’s projec-

tive metric of Sections 4-6, these considerations suggest to define measures of location and
scatter for CoDa as follows:

DEFINITION 7.1 (Intrinsic Fréchet-Hilbert mean and variance). For [X]+ ∈ Pd
++ a ran-

dom element with distribution µ, set the Fréchet energy as

Fµ([m]+) :=E
(
d2H([X]+, [m]+)

)
.

Then, the intrinsic Fréchet-Hilbert mean of [X]+ is defined as

(38) [mH ]+ := arg inf
[m]+∈Pd

++

Fµ([m]+),

and the Fréchet-Hilbert variance as

VarH([X]+) :=Fµ([m
H ]+)),

provided [mH ]+ exists and is unique.

The empirical version, for a sample [X1]+, . . . , [Xn]+, writes

[mH
n ]+ := arg inf

[m]+∈Pd
++

n∑

i=1

d2H([Xi]+, [m]+),

with corresponding empirical variance

Var
H
n :=

1

n

n∑

i=1

d2H([Xi]+, [m
H
n ]+).

In analogy to the Euclidean case, one can also define a metric/geometric/Fermat-Weber-
Torricelli median, by setting

Lµ([m]+) :=E (dH([X]+, [m]+)) ,

and defining the intrinsic Fréchet-Hilbert median as

[MedH ]+ := arg inf
[m]+∈Pd

++

Lµ([m]+),

and similarly for the empirical case. The corresponding median absolute deviation in Hilbert
distance is E(dH([X]+, [Med

H ]+)).

7.1.4. Existence and Characterisation of Fréchet-Hilbert means and medians. We say
that the distribution µ of [X]+ has finite second Hilbert moment, if Fµ([m]+)<∞ for some
[m]+ ∈ Pd

++. We collect in the following lemma some elementary property of the Fµ, Lµ
functionals.

LEMMA 7.2. i) Lµ is 1−Lipschitz continuous, Fµ is Lipschitz on each compact set of

Pd
++.
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ii) If µ finite second Hilbert moment, then Lµ([m]+),Fµ(m]+)<∞ for all [m]+ ∈ Pd
++.

iii) Lµ,Fµ are coercive, i.e. Lµ([m]+), |Fµ([m]+)→∞, as [m]+ converges to the bound-

ary of Pd
++, i.e. converges to a point with some zero components.

iv) Lµ,Fµ are convex w.r.t. the vector space operations ⊕,⊙ of Pd
++.

Existence of the intrinsic Fréchet-Hilbert mean and median then easily ensues:

THEOREM 7.3. Let the distribution µ of [X]+ has finite second, resp. first, Hilbert

moment. Then, the intrinsic Fréchet-Hilbert mean [mH ]+, resp. Fréchet-Hilbert median

[MedH ]+, of [X]+ exist.

In particular, the empirical Fréchet-Hilbert mean and median always exist. Unlike the Eu-
clidean case, where the squared distance is a smooth, strictly convex function of the two
points, the squared Hilbert metric is a non-smooth, convex (w.r.t. ⊕,⊙), but not strictly con-
vex function. This implies that unicity is not guaranteed. This issue is also related to the
non-unicity of the geodesics w.r.t. Hilbert metric, as exemplified by Proposition 5.7.

From convexity, a local minimum of Fµ, resp. Lµ, is a global minimum. From directional
differentiability of Hilbert distance (Propositions 6.1 and 6.2), a necessary and sufficient
condition for a local minimum of a convex function on a convex set is given by the classi-
cal condition of non-negativity of the directional derivative in all directions emanating from
the minimum. This gives the following variational inequality characterisation of a Fréchet-
Hilbert mean [mH ]+: [mH ]+ is a Fréchet-Hilbert mean, if and only if, for all [m]+ ∈ Pd

++,

F ′⊕
µ ([mH ]+; [m]+ − [mH ]+)≥ 0,

where F
′⊕
µ ([x]+; [v]+) is the log-directional derivative of the Fréchet functional in the direc-

tion [v]+ at [x]+. From the additive form of Fµ and Proposition 6.2, one could give a more
explicit form, but the resulting expression is not particularly tractable, and is thus omitted.

7.1.5. Smooth Fréchet-Hilbert Mean: a practical surrogate. Hopefully, replacing dH in
the Fréchet functional of Definition 7.1 with the smooth approximate Hilbert distance dH,c of
Definition 6.3 allows to alleviate these issues of non-unicity of the Fréchet-Hilbert mean and
medians and non-differentiability of the objective function. Indeed, from Proposition 6.5 iii)
(c), it follows that dH,c is strictly convex w.r.t. the vector space operations ⊕,⊙. This guaran-
tees the unicity of the Fréchet-Hilbert mean and median based on the smooth Hilbert distance
dH,c. In addition, the objective is now a convex (w.r.t. ⊕,⊙) and differentiable function, and
can be computed practically using classical methods of smooth and convex optimisation.

Interestingly, numerical experiments reported in Example 2 below indicates the good be-
haviour of the smoothed Fréchet Hilbert mean: for toy data located on a line in the simplex,
the smoothed Fréchet-Hilbert mean is visually on the line, and thus manages to give an av-
erage compatible with the intrinsic geometric structure of the data. See also the extension to
nonparametric regression in Section 7.3.

EXAMPLE 2. Figure 15 illustrates the dissimilarity between the different kind of empir-
ical means on a toy example dataset. The raw data consists of 10 points on the (projective)
line x2 = x1 + x0, with x0, x1 i.i.d. uniform on [0,1]. Aitchison’s mean visually lie outside
the line where sits the data. Hilbert’s Fréchet mean, computed by a general numerical local
minimizer, give a point close, but still not on the line. In addition, the position depends on
the starting point in the local minimizer procedure, which illustrates the fact that the Fréchet-
Hilbert mean is in general not unique (in the example depicted here, the starting point is
(0.5,0.5,0.5)). The smooth Fréchet-Hilbert mean, with c = 100, is visually on the line. In
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FIG 15. Comparison of empirical means for 10 data points (blue points) on a line. Aitchison’s geometric mean

(orange square), Hilbert’s Fréchet mean (green diamond), Smooth Hilbert’s mean (red triangle).

Aitchison Hilbert Smooth Hilbert
0.0555 0.0171 0.0057

TABLE 1
(Euclidan) Distance of the different means to the data line: the smooth Hilbert mean is the closest.

addition to this qualitative assessment, Table 1, computes the distance of the different means
to the projective line where the data sits: the smooth Hilbert mean is the closest and thus best
captures the intrinsic geometric feature of the data.

7.2. Hilbert Gaussian/Laplace distribution via Least Squares of Hilbert distances.

Defining an analogue of the Gaussian distribution for CoDa is important to provide a sta-
tistical foundation for inference based on Fréchet Mean with respect to Hilbert’s projective
metric. In this section, we define such an analogue on the positive CoDa space (Pd

++, dH),
based on the statistical characterisation of the Gaussian distribution.

7.2.1. Gauss’ statistical characterisation of the Normal distribution. Indeed, recall that
Gauss’ original characterisation of the Gaussian distribution is that, in the observation-with-
error linear regression model

x=m+ ǫ,

where m ∈ Rd is the value to be estimated and x ∈ Rd the observation, the distribution of
measurement errors ǫ is Gaussian if and only if Maximum Likelihood estimation of m is
equivalent to the method of Least-Squares. In other words, the empirical mean n−1

∑n
i=1 xi,

obtained by minimizing the sum of squares
n∑

i=1

d(xi,m)2,
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where (x1, . . . ,xn) is a sequence of i.i.d. observations and d the usual Euclidean distance, if,
and only if x follows a N (m, σ2Id) distribution with density

1√
2πσ2

exp

(
−d

2(x−m)

2σ2

)
.

Similarly, the Laplace distribution (m,σ) has density

Z(σ) exp

(
−d(x−m)

σ

)
,

where Z(σ) is a normalising factor, is associated to the fact that the maximum likelihood
estimate of m is the empirical median obtained by minimizing the sum of (non-squared)
distances

∑n
i=1 d(xi,m) .

7.2.2. Generalised Hilbert Gaussian distribution. This statistical characterisation of the
Gaussian/Laplace distribution suggest to define the following analogue on the positive CoDa
space (Pd

++, dH): consider the sub-density,

gα([x]+; [m]+, σ) := exp

(
−
(
dH([x]+, [m]+)

σ

)α)

parametrized by ([m]+, σ) ∈ Pd
++ ×R++, where α ∈R++. Set the normalizing factor,

Zα([m]+, σ) :=

∫

P
d
+

gα([x]+; [m]+, σ)ν(d[x]+)

where ν denotes the uniform measure on Pd
++ (see below). Since dH ≥ 0 , Zα([m]+, σ) is

finite, and

(39) fα([x]+; [m]+, σ) := (Zα([m]+, σ))
−1gα([x]+;m, σ)

is a well-defined probability density on (Pd
++, dH), akin to the Gaussian density for α = 2,

and to the Laplace density for α= 1 (and the uniform density for α= 0). One has thus:

DEFINITION 7.4 (Generalised Hilbert Gaussian distribution). Let ([m]+, σ,α) ∈ Pd
++×

R++ × R+. Then, [X]+ ∈ Pd
++ follows a Generalised Hilbert Gaussian distribution with

parameters [m]+, σ,α if its density w.r.t. the uniform measure ν on Pd
+ writes as (39). Let

us call it the Hilbert Gaussian distribution for α= 2, and the Hilbert Laplace distribution for
α= 1.

Figures 16 and 17 gives density plots of a standard Gaussian, resp. Laplace distribution,
for d= 2, i.e., with [m]+ = [1 : 1 : 1]+ and σ = 1. The hexagonal shape of the density levels
corresponds to the balls in Hilbert metric. When the distribution is no longer centered around
the neutral point of the simplex, the shape is distorted accordingly. As an illustration, Figure
18 shows a Hilbert Gaussian distribution with [m]+ = [0.7 : 0.1 : 0.2]+ and σ = 1.

For concrete computations, one can take the simplex representation 7 and compute prob-
abilities by transfer. In particular, having w.l.o.g. x0 = 1−∑d

i=1 xi as fixed component, the
d− dimensional uniform measure ν on the simplex ∆d

++ writes

ν(dx1, . . . , dxd) =
1

d!

d∏

i=1

1xi>01
∑

d

i=1
xi<1 dx1 . . . dxd,
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FIG 16. Standard Gaussian-Hilbert distribution.

0

2

4

6

8

10

FIG 17. Standard Laplace-Hilbert distribution.

so that the Hilbert Gaussian/Laplace distribution of a random CoDa [X]+ ∈ Pd
++ writes, for

any Borel set A of Pd
++,

P([X]+ ∈A) =
∫

[A]1

gα([x]1; [m]1, σ)

Zα([m]+, σ)

1

d!

d∏

i=1

1xi>01
∑

d

i=1
xi<1 dx1 . . . dxd,

where [A]1 stands for the simplex transformed image of A. Here, one sets x0 = 1−∑d
i=1 xi

in the expression of [x]1, so that the resulting integral is a d-fold classical Lebesgue integral.
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FIG 18. Gaussian-Hilbert distribution with [m]+ = [0.7 : 0.1 : 0.2]+ and σ = 1.

REMARK 12 (Haar measure on Pd
++). The analogue of the uniform/Lebesque measure

on Pd
++ could have been defined intrinsically as a Haar measure. Let G= (Rd+1

++ ,×) be the
multiplicative Abelian group of positive vectors and H = {hλ := λ1, λ ∈R} be its subgroup
of positive vectors along the ray 1. Then, Pd

++ =G/H and by Haar’s Theorem there is, up to
a positive multiplicative constant, a unique countably additive non-trivial measure ν on the
Borel subsets of (P d

++, dH) s.t. for all Borel set B of Rd
++ and hλ ∈ H , ν(hλB) = ν(B).

However, we believe that measures on Pd
++ are easier to grasp by working extrinsically with

representatives [x]1 ∈∆d
++.

7.3. Nonparametric CoDa regression estimator based on Hilbert distance.

7.3.1. Basic principle. One can generalise the empirical intrinsic Fréchet-Hilbert mean
to a regression framework into the estimation of the conditional mean. Recall that for an
Euclidean random vector (X,Y) ∈Rp×Rq , the Nadaraya-Watson estimate of the regression
function r(x) :=E(Y|X= x),

r̂(x) =

∑n
i=1YiK

(
||Xi−x||

h

)

∑n
i=1K

(
||Xi−x||

h

) ,

where K is a univariate kernel and h > 0 a bandwidth, is the solution of the local constant
weighted least square,

r̂(x) = arg inf
a

n∑

i=1

||Yi − a||2K
( ||Xi − x||

h

)
,

where ||.|| are the Euclidean norms on the corresponding spaces. Replacing the (square) Eu-
clidean distance for X or Y by Hilbert’s distance allows to define a nonparametric estimator
of the regression function, with X and/or Y of the CoDa type. In particular,
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• For an Euclidean covariate X ∈ Rp and a CoDa response [Y]+ ∈ Pd
++: The Nadraya-

Watson type estimator [r̂(x)]+ of the regression function of [Y]+ given X= x is a mini-
mizer of

n∑

i=1

KΣ(xi − x)d2H([yi]+, [r̂]+)

over [r]+ ∈ Pd
++, with KΣ multivariate kernel with bandwidth matrix Σ.

• For CoDa Covariate [X]+ ∈ Pd
++ and [Y]+ ∈ Pd

++ The Nadaraya-Watson type estimator
minimizes

n∑

i=1

K(dH([xi]+, [x]+)/σ)d
2
H([yi]+, [r̂]+)

over [r]+ ∈ Pd
++, this time with a univariate kernel K and bandwidth σ.

In view of the normed vector space structure (Proposition 5.2), more sophisticated Hilbert
metric based local linear estimates could be constructed by fitting a local linear model instead
of a locally constant one. Also, nearest-neighbour based on (smoothed) Hilbert distance can
be adapted. See e.g. [58], [36].

7.3.2. Numerical illustrations. The following example illustrates the feasibility of the
proposed approach to nonparametric CoDa regression based on the smoothed version of
Hilbert’s distance.

EXAMPLE 3. Figure 19 shows the Nadaraya-Watson estimate of the regression function
of a CoDa response variable [Y]+ = [Y0 : Y1 : Y2]+, with a univariate regressor x. The data
points (blue circles) are generated according to the model

Y0 = cos(xπ/2) + 0.2 + ǫ0

Y1 = sin(xπ/2) + 0.2 + ǫ1

Y2 = sin(xπ) + 0.2 + ǫ2,

with ǫ0, ǫ1, ǫ2 i.i.d. uniform on [−0.2,0.2], and x regularly spaced between [0.01,0.99] with
increments of 0.05 (197 data points). The smoothed Fréchet-Hilbert conditional mean esti-
mator (green diamonds, bandwidth σ = 0.1.) is able to track the nonlinear regression curve
(orange triangles). Notice, however that the estimated curve misses the beginning and end
of the regression curve. This boundary effect, which is typical of a local constant estimator,
could be, in principle, be dealt with more sophisticated local linear regression techniques.

8. Conclusion and perspectives. We have thus tried to give a guided tour on the pro-
jective geometry viewpoint for CoDa analysis. The main message is that the projective view-
point gives a natural setting for an intrinsic study of CoDa as equivalence classes, giving
much needed geometric insight on the structure, representations and properties of CoDa. As
CoDa is studied irrespective of the subjective choice of a particular representation and co-
ordinate systems, our claim is that the projective approach gives a unified view and more
general perspective on CoDa. It thus appears at least complementary to the more down-to-
earth coordinate-based approaches, which are seen, from the projective viewpoint, as special
representations/geometries of the same object. Our hope is that this unified view should foster
some advances on the methodological side, and, maybe, some reconciling in the debates over
the competing coordinate-based approaches. To that respect, Hilbert’s projective metric, with
its intrinsic character and its compatibility with both Aitchison’s log ratio vector space and
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FIG 19. Nadaraya-Watson nonparametric regression estimator based on smoothed Hilbert metric for a CoDa

response with a real regressor.

the affine simplex structure, seems a candidate to challenge the view espoused in [42] that “it
is not possible to come up with a compelling choice for either method based on purely a pri-
ori or theoretical grounds, and that a more pragmatic approach is to make a data-dependent
choice of metric.” In addition, and as was shown in the numerical simulations, its smooth
and strictly convex approximate seems to offer a practical surrogate for paving the way to an
intrinsic statistical analysis of CoDa.

For length reasons, we have barely scratched the surface of statistical applications based
on such an intrinsic projective geometry and Hilbert’s metric. Our objective was to quickly
validates the feasibility of an intrinsic projective statistical analysis based on Hilbert’s metric.
Much more needs to be done to establish a full framework. So let us close the article by briefly
indicating some directions of further research based on the intrinsic projective viewpoint. The
statistical analysis of Fréchet mean and median deserves a deeper study. In particular, non-
asymptotic confidence intervals for Fréchet means could be constructed, adapting methods
of e.g. [28] [31]. Efficient computations of the Fréchet mean or its smooth surrogate ([23])
is another topic of further research. Another obvious candidate for an interesting alternative
to the log-sum-exp smooth approximation of Hilbert’s metric would be the Moreau-Yosida
regularisation based on infimal convolution (see e.g. [13]). This would, in principle, yield an
efficient computation method of a smooth Fréchet-Hilbert mean based on proximal minimi-
sation algorithms. Nonparametric density estimation can be obtained by using a kernel based
on measuring distances with Hilbert metric, for example the Hilbert-Gaussian distribution we
introduced. Distance covariance (see e.g. [55], [56], [21], [35]) i.e. covariance measures and
dependence coefficients based on certain expectations of pairwise distance suggest to study
the analogue based on Hilbert’s metric. More generally, the study of dependence (inter and
intra) deserves a thorough separate study, some of which is current work in progress.
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APPENDIX A: PROJECTIVE SPACES AND THEIR (USUAL) REPRESENTATIONS

There are several equivalent ways to define a projective space. The axiomatic approach
defines it as an abstract structure verifying certain axioms (in particular incidence axioms). A
more intuitive approach is by means of concrete models, using concepts from linear algebra
and Euclidean geometry. Recommended references are [48], [37], [53], [11], [16]. See also
[54] for two-sided oriented projective geometry, and its applications to computer vision.

A.1. The vector space model of a projective space. In the vector space model of a
projective space, a projective space is viewed, via the operation of projectivization P(.), of a
given vector space.

DEFINITION A.1 (Projectivization of a vector space). Let E be a vector space. The pro-
jective space P(E) induced by E is the set of of one-dimensional sub-spaces of E,

P(E) = {span(x),x ∈ E,x 6= 0,},
with span(x) = {λx, λ ∈ R}. Elements of P(E) are called (projective) points and will be
denoted by [x]. x ∈ E, x 6= 0 is called a a representative of [x].

Geometrically, a point in P(E) is a line in E passing through the origin, i.e. an unoriented
direction. Similarly, a projective line corresponds to a two dimensional plane in E, and sim-
ilarly for higher dimensional objects. If E is finite dimensional, the (projective) dimension
of P(E) is dim E− 1. We will usually consider E= Rd+1 the Euclidean vector space of di-
mension d+ 1, and denote simply by Pd the projective space (of dimension d) induced by
Rd+1.

• Projective subspaces: The projectivization operation allows to naturally consider projective
subspaces from vector subspaces: If E′ ⊂ E is a vector subspace of E, then P(E′)⊂ P(E),
since every line span(x) contained in E′ is also contained in E.

• Projective mappings: Let L and M be two linear subspaces and f : L→M a linear map-
ping. If ker f = {0} then f maps any straight line from L into a uniquely determined
straight line in M and hence induces the mapping P(f) : P(L)→ P(M), called the pro-
jectivization of f . In particular, if f is an isomorphism, then P(f) is called a projective
isomorphism. When ker f 6= {0}, straight lines contained in ker f , that is, consisting of
the projective subspace P(ker f)⊂ P(L), are mapped into zero, which does not determine
any point in P(M). Therefore, the projectivization P(f) is determined only on the comple-
ment P(L) \ P(ker f).

• Projective group: Let L =M and f, g be bijective. Then, i) P(idL) = idP(L), ii) P(fg) =
P(f)P(g) iii) P(f−1) = P(f)−1. P(f) runs through the group of mappings of P(L) into
itself, which is called the projective group of the space P(L) and is denoted by PGL(L).
Every mapping P(f) maps the projective subspaces of P(L) into projective subspaces,
preserving dimension and all incidence relations.

A.2. Analytical model: homogeneous coordinates. The analytical model represents
points of Pd by their homogeneous coordinates. Let (e0,e1, . . . ,ed) be the canonical basis
of Rd+1. A point M of Pd is represented by any non-null vector x ∈ Rd+1, with coordi-
nates (x0, x1, . . . , xd) s.t. the vector line span(x) corresponds to the projective point M . The
coordinates (x0, x1, . . . , xd) of the vector x in the basis (e0,e1, . . . ,ed) of E are called the
homogeneous coordinates of the point M . Since any collinear vector y = λx, with λ 6= 0,
spans the same one-dimensional subspace, span(y) = span(x), thus corresponds to the same
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projective point M , it is readily seen that homogeneous coordinates are not unique but con-
sists of multiples (λx0, λx1, . . . , λxd), for λ ∈R∗ and fixed (x0, x1, . . . , xd) ∈Rd+1 \ 0. We
will denote by

[x0 : x1 : . . . : xd]

these homogeneous coordinates of the projective point M , with scalar multiples identified.
Hence, each point M ∈ Pd has infinitely many sets of homogeneous coordinates.

If a bijective linear mapping f : E→ E is represented in terms of coordinates of the matrix
A, then P(f) in appropriate homogeneous coordinates is represented by the same matrix A
or any matrix λA proportional to it.

A.3. Algebraic model. The algebraic model builds the projective space Pd(E) as a quo-
tient space, as described in Section 2. For x,y ∈ E a general vector space, define the equiv-
alence relation ≡ as in (4), and the equivalence class [x] of x for (4) as in (5), then, the
projective space Pd(E), obtained by quotienting E \ {0} by the equivalence relation ≡, i.e.
as

Pd := (E \ {0})�≡=
E \ {0}
R \ {0} .

A.4. Spherical model. The spherical model of Pd consists of in identifying a projective
point with (a pair of) points on the surface of the sphere. Depending on the norm chosen,
several “spherical” models arise.

A.4.1. Unit Euclidean sphere: direction cosines. Since the intersection of a line passing
through the origin and the unit sphere is a pair of diametrically opposed points, the radial
projection

S : x 7→ x

||x||2
, x 6= 0,

sends a projective point [x] to points on the unit sphere

S2(E) := {x ∈ E : ||x||2 = 1},
with opposite points identified. Projective lines are then represented by the great circles.
For CoDa points [x]+, the non-negativity constraint x≥ 0, ensures that the CoDa projective
point [x]+ is identified with just one point on the unit sphere. The components of S(x)
are the direction cosines ([63]). One can thus parametrize a CoDa point by the vector of
corresponding angles,

α= arccosS(x) ∈ [0, π/2]d+1,

which satisfy the constraint
∑d

i=0 cos
2αi = 1.

Regarding the metric structure, such a spherical representation of the projective space
suggests a natural way to measures distance between points, resp. CoDa, as angles between
lines, resp. non-negative half-lines, (see e.g. [11] p. 171 Definition 8.6.3): As 〈x|y〉

||x||||y|| does

not depend on the representatives, one can define, after normalisation16 by 2/π, the angu-
lar/spherical/elliptic distance for CoDa as

(40) dS([x]+, [y]+) =
2

π
arccos

〈x|y〉
||x||||y||

It satisfy the following properties:

16This normalisation is optional.
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i) boundedness: 0≤ dS([x]+, [y]+)≤ 1
ii) dS([x]+, [y]+) = 0 iff [x]+ = [y]+. Note that dS([x]+, [y]+) = 1 iff x ⊥ y (which can

only happen if both elements are on the “edges”, i.e. have some null components).
iii) symmetry is obvious.
iv) hereditary property: if F⊂ E is a subspace containing [x]+ and [y]+, the angles are the

same whether measured in F or in E. The latter property is a version of subcompositional
coherence.

v) Invariance w.r.t rotation: (see [11] Proposition 8.6.6). This property is the analogue of in-
variance by translation of Proposition 5.1 i), but with vector addition replaced by rotations.
This imply in particular invariance w.r.t. permutation of the labelling of the components of
CoDa.

vi) triangle inequality. (see [11] Theorem 18.4.2 and Section 19.1).

In addition, this distance is defined for all points of Pd
+, and not only for positive CoDa points

of Pd
++: it can handle CoDa with zeros.

A.4.2. Triangular/Simplex representation. Similarly, by taking the L1 norm, the radial
projection17

C : x 7→ x

||x||1
maps the projective point [x] to (a pair of identified) points on the unit diamond-shaped
“sphere” w.r.t. L1 norm, S1(E) := {x ∈ E : ||x||1 = 1}.

For CoDa points, the non-negativity constraint x≥ 0, ensures that the CoDa projective
point [x]+ is identified with just one point on S1(E). This corresponds to standardizing a
vector x ∈ Rd+1

+ \ {0} representing the ray [x]+ by the sum of its components. This is the
simplex representation of a CoDa point, which was presented in Section 2.2 from the affine
viewpoint, as a projection on the affine hyperplane Hsum (see below).

A.4.3. Unit Euclidean sphere: square root. By combining the simplex representation
with the square root, one obtains another way to map a CoDa point to the unit sphere w.r.t.
the L2 norm,

R : x 7→
√

x

||x||1
=
√
C(x)

This is the square-root representation of [63].
This representation leads to an interesting connection with information geometry: the Eu-

clidean distance between two square-root transformed pointsR(x) andR(y) interprets prob-
abilistically as is the Hellinger distance between the corresponding probability vectors C(x)
and C(y). Geometrically, the latter is the chordal distance between R(x) and R(y).

A.5. Affine/Ratio representation. The affine representation was presented in Section
2.2, taking as affine subspace eitherHsum orH0 of Rd+1. For the latter, π0(x) can be further
identified with a point in Rd, by dropping the first constant coordinate.

More generally, for each i= 0, . . . , d, let

Ui = {[x] ∈ Pd, with xi 6= 0}

17i.e., the closure operation in the CoDa literature, for x > 0.
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and πi :Ui→Rd be obtained by dividing x by xi and dropping the constant ith component,
as

πi([x0 : . . . : xd]) = (
x0
xi
, . . . ,

xi−1

xi
,
xi+1

xi
, . . . ,

xd
xi

) ∈Rd.

Then, (i) the points of each Ui are in one-to-one correspondence with the points of Rd, (ii)
the complements Hi := Pd \ Ui may be identified with Pd−1, (iii) Pd = ∪di=0Ui. (See [20]
Corollary 3 p. 369.) One has thus a covering of the projective space by an atlas of affine
charts, and πi([x]) are the affine/inhomogeneous coordinates of [x].

A.6. Historical-Straight model . In this model, Pd is thought as the affine space18 Rd,
completed with some “points at infinity”. In the plane R2, these points at infinity corresponds
to the direction of each set of parallel lines, so that in the completion, theses lines all pass
through the point they define. This approach allows to overcome the deficiency of the in-
cidence axiom of affine planes, in the sense that two lines in the projective plane will now
always intersect at a unique point. In higher dimensions, the idea is similar,

P(E) =Rd ∪H∞

whereH∞ is a set of points at infinity. Historically, this approach was motivated by perspec-
tive drawings.

A.7. Grassmannian/ Matrix representations. More generally, the set of k dimensional
subspaces of a d+1 dimensional vector space is called the Grassmannian G(k, d+1), Thus,
for k = 1, G(1, d+ 1) corresponds to the projective space Pd, and the CoDa space Pd

+ cor-
responds to the non-negative part of such Grassmannian. Grassmannian admit a variety of
representations by (classes) of matrices, see e.g. [19]. In particular, a projective, resp. CoDa,
point, [x], resp. [x]+, can be represented by the orthogonal projection matrix (xxT )/(xTx),
or dually, by the corresponding orthogonal projection matrix on the vector hyperplane or-
thogonal to x.

APPENDIX B: PROOFS.

PROOF OF LEMMA 2.2. That PGLd
+ is a group is trivial. For PGLd

++, simply note that
if [A]+, [B]+ ∈ PGLd

++, then, setting bk :=
∑d

j=0 bkj > 0, one has that for all 0≤ j ≤ d,
∑

j

∑

k

aikbkj =
∑

k

bkaik ≥min
k
bk
∑

k

aik > 0.

Thus, [AB]+ ∈ PGLd
++.

PROOF OF LEMMA 3.1. i) Injectivity: let x,y ∈ Rd+1
++ s.t. [lnx]∼ = [lny]∼. This

means that there exists some µ ∈ R s.t. lnx = lny + µ1. Thus, lnxi = lnyi + µ =
ln(yie

µ), i= 0, . . . , d, which implies xi = λyi, with λ= eµ > 0, that is to say [x]+ = [y]+.
ii) Surjectivity: let [z]∼ ∈ Rd+1/ ∼. Then, [z]∼ is represented by vectors ζ ∈ Rd+1 of the

form ζ = z + µ1, where µ ∈ R can be chosen arbitrarily. Taking µ = − ln(
∑d

i=0 e
zi)

yields

ζi = zi − ln

(
d∑

i=0

ezi

)
= ln

(
ezi

∑d
i=0 e

zi

)
, i= 0, . . . , d.

18and not Rd+1 !
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That is to say ζ = ln ([ez)]1), where [.]1 is the unit-sum rescaling/closure operation (7).
Thus, every element [z]∼ of Rd+1/∼ writes as the ln of a normalised CoDa element [ez]1
in ∆d

++, a fortiori as an element [ez]+ of Pd
++.

PROOF OF DEFINITION 4.3. Finiteness follows from Proposition 4.2 i) and independence
of representatives from Proposition 4.2 iv). Completeness follows from e.g. [17] Theorem
4.1.

PROOF OF PROPOSITION 5.1. i) By definition,

dH([x]+ ⊕ [p]+, [y]+ ⊕ [p]+) = dH(x× p,y × p)

= lnmax
i,j

xipiyjpj
xjpjyipi

= lnmax
i,j

xiyj
xjyi

= dH([x]+, [y]+)

and similarly for the other equality.
ii) Also clear from (23).

PROOF OF PROPOSITION 5.2. That ||[x]+||H ≥ 0 and ||[x]+||H = 0 iff [x]+ = [1]+ are
obvious from the definition of ||.||H . It is also clear that

||λ⊙ [x]+||H = ||[xλ]+||H =max
i,j

(λ ln(xi/xj)) = |λ| × ||[x]+||H .

The triangle inequality ||[x]+ ⊕ [y]+||H ≤ ||[x]+||H + ||[y]+||H follows from the vector
isomorphism of the log map and the elementary inequality maxi(ai + bi) ≤ maxi ai +
maxi bi.

PROOF OF PROPOSITION 5.7. 1. i) The fact that m-segments, i.e. straight line segments
in the simplex ∆d

+, are geodesics, follows from [33] Theorem 2.6.3. We adapt their proof
to our setting and notations, for the convenience of the reader. Let [p]+, [q]+ ∈ Pd

++, and
set δ = dH([p]+, [q]+). For 0 ≤ t ≤ 1, set [p(t)]+ defined by linear interpolation on the
simplex as [p(t)]1 = (1− t)[p]1 + t[q]1.

The properties of the cross-ratio for aligned points entails that, for 0≤ s < t≤ 1,

(41) dH([p]+, [p(s)]+) + dH([p(s)]+, [p(t)]+) = dH([p]+, [p(t)]+).

Set α(t) := dH([p]+, [p(t)]+), so that (41) writes

α(s)− α(t) =−dH([p(s)]+, [p(t)]+)< 0

for s < t. Thus, α : [0,1]→ [0, δ] is strictly increasing and continuous, hence a bijection
with inverse mapping α−1. Rescale the m−segment by setting, for 0≤ u≤ 1,

[γm(u)]+ = [p(α−1(δu)]+.

Then, for 0≤ u < v ≤ 1 and s := α−1(δu), t := α−1(δv), (41) yields

dH([γm(u)]+, [γ
m(v)]+) = dH([p(α−1(δu)]+, [p(α

−1(δv)]+)

= dH([p(s]+, [p(t]+)

= α(t)− α(s)
= α(α−1(δv))− α(α−1(δu))

= δ(v− u)
= |u− v|dH([p]+, [q]+)
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2. ii) e-segments (i.e. Aitchison’s segments) are geodesics for Hilbert metric, as follows
directly from the normed vector space structure of (Pd

++,⊕,⊙, ||.||H) of Proposition 5.2:
for 0≤ s, t≤ 1,

dH([γe(t)]+, γ
e(s)]+) = dH((1− t)⊙ [p]+ ⊕ t⊙ [q]+, (1− s)⊙ [p]+ ⊕ s⊙ [q]+)

= ||[p]+ ⊕ t⊙ ([q]+ ⊖ [p]+)⊖ ([p]+ ⊕ s⊙ ([q]+ ⊖ [p]+))||H
= ||(t− s)⊙ ([q]+ ⊖ [p]+)||H
= |t− s| ||[q]+ ⊖ [p]+||H = |t− s|dH([p]+, [q]+))

PROOF OF PROPOSITION 6.1. For some fixed y ∈ Rd+1
++ , let φi : R

d+1
++ → R be defined

by

φi(x) = ln(xi/yi) = lnxi − lnyi

Formula (30) writes

f(x) =max
i
φi(x)−min

i
φi(x) =max

i
φi(x) +max

i
(−φi(x)).

φi is C1−differentiable on Rd+1
++ , hence directionally differentiable with directional derivative

φ′i(x,v) = 〈∇φi(x),v〉= vi/xi.

By Theorem 2.4.1 in [30] p. 41 or Proposition 3.5 in [22], f is directionally differentiable,
and formula (32) follows.

PROOF OF PROPOSITION 6.2. The function φ : Pd
++ → Rd+1

+ + defined by φ([x]+) =
lnx− lny is affine w.r.t. to ⊕,⊙ (it expresses the translation from the line [lny]∼ to the
line [lnx]∼). Thus,

φ([x]+ ⊕ λ⊙ [v]+)− φ([x]+)
λ

= lnv = φ
′⊕([x]+, [v]+).

Applying again Theorem 2.4.1 in [30] p. 41 or Proposition 3.5 in [22] yields the result.

PROOF OF LEMMA 6.4. i) Follows from the inequality

max ecxi = ecmaxxi ≤
∑

i

ecxi ≤mmax ecxi =mecmaxxi .

ii) Monotonicity is obvious. Regarding convexity, let S(x) = (ecx1 , . . . , ecxm), and 1 =
(1, . . . ,1). Then, the gradient writes ∇lsec(x) = S(x)/(1TS(x)), and the Hessian is

∇2lsec(x) = c
diag(S(x))1TS(x)− S(x))S(x))T

(1TS(x))2
=: µA,

where we have set the matrix A = [aij ] := diag(S(x))1TS(x) − S(x))S(x))T and
µ := c/(1TS(x))2 is a scalar. The diagonal terms of the Hessian are ai := µaii =
µecxi

∑
k 6=i

ecxk and the sum of the absolute value of the non-diagonal terms for row
i of the Hessian are Ri := µ

∑
j 6=i |aij | = ai. Therefore, it follows that the Hessian is

diagonally dominant thus positive semi-definite by Gershgorin’s circle Theorem [27].19

Hence, lsec is convex.

19Gershgorin’s circle Theorem state that all (complex) eigenvalues of a square matrix lies within at least one
of the closed discs of center ai and radius Ri. Here, since ai =Ri, this implies that all eigenvalues are ≥ 0.
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iii) One has

lsec(x+ y) =
1

c
ln

(
∑

i

ecxiecyi

)
≤ 1

c
ln

(
max

i
ecyi

∑

i

ecxi

)

=max(y) + lsec(x)≤ lsec(y) + lsec(x),

where the last step follows from i).
iv) Follows from calculation.

PROOF OF PROPOSITION 6.5. i) follows from the definition (34) and Lemma 6.4 i).
ii) Non-negativity follows from i) and non-negativity of Hilbert’s distance. In fact, Remark

11 ii) yields dH,c([x]+, [y]+)≥ dH,c([x]+, [x]+) =
2 ln(d+1)

c . Symmetry is obvious. Since

ln

(
xizj
xjzi

)
= ln

(
xiyj
xjyi

)
+ ln

(
yizj
yjzi

)
,

the triangle inequality follows from the sub-additivity of lsec, Lemma 6.4 iii).
iii) a) Obvious from the definition (34).

b) By definition of ⊙,

dH,c(λ⊙ [x]+, λ⊙ [y]+) = dH,c([x
λ]+, [y

λ]+)

=
1

c
ln


∑

i,j

ec lnR(i,j)λ


 ,

where R(i, j) was defined in Remark 11 ii). If λ > 0,

dH,c(λ⊙ [x]+, λ⊙ [y]+) =
λ

λc
ln


∑

i,j

eλc lnR(i,j)




= λ× dH,λc([x]+, [y]+).

If λ < 0, write λ=−|λ|, so that

dH,c(λ⊙ [x]+, λ⊙ [y]+) =
|λ|
|λ|c ln


∑

i,j

e−|λ|c lnR(i,j)




=
|λ|
|λ|c ln


∑

i,j

e|λ|c lnR(j,i)




= |λ| × dH,|λ|c([x]+, [y]+)

since − lnR(i, j) = lnR(j, i), as shown in the aforementioned remark. Note that for
λ= 0, one has only dH,c(λ⊙ [x]+, λ⊙ [y]+) =

2 ln(d+1)
c , which is the lower bound of

dH,c by ii) (a).
c) Set Ψ̃ : Pd

++→ R(d+1)×(d+1) the version of Ψ of (27) extended to all pairs of indices,
i.e. defined for 0 ≤ i, j ≤ d, by Ψ̃([x]+)ij = ln(xi/xj). Then, the smoothed Hilbert
metric writes dH,c([x]+, [y]+) = lsec(Ψ̃([x]+) − Ψ̃([y]+)). By the vector space iso-
morphism of the logarithm, Ψ̃([x]+⊕ [y]+) = Ψ̃([x]+)+ Ψ̃([y]+) and Ψ̃(λ⊙ [x]+) =
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λΨ̃([x]+). Therefore, [x]+→ dH,c([x]+, [y]+) is the composition of the lsec function,
which is convex by Lemma 6.4 ii), with an affine function, hence is convex w.r.t. the
vector space operations ⊕,⊙. Moreover, since Ψ̃([x]+)ii = 0 for all 0≤ i≤ d. There-
fore, and as explained in Remark 11 ii), the lse function computes a smooth approxi-
mation of the maximum of (d+ 1)2 terms with d+ 1 constant terms 1, which results
in the mapping being strictly convex.

iv) Obvious.

PROOF OF LEMMA 7.2. i) By the reverse triangle inequality,

|Lµ([m]+)−Lµ([p]+)| ≤E|dH([X]+, [m]+)− dH([X]+, [p]+)| ≤ dH([m]+, [p]+).

Similarly for Fµ,

|Fµ([m]+)−Fµ([p]+)| ≤ dH([m]+, [p]+)(Lµ([m]+) +Lµ([p]+)).

By Weierstrass theorem, Lµ is bounded on each compact set of Pd
++, thus Fµ is Lipschitz

on compact sets.
ii) By Cauchy-Schwarz, Fµ([m]+) <∞ implies Lµ([m]+) <∞. By the (local)-Lipschitz

property of Lµ, resp. Fµ, Lµ([m]+) <∞, resp. Fµ([m]+) <∞ for some [m]+ ∈ Pd
++

implies Lµ([m]+)<∞, resp. Fµ([m]+)<∞ for all [m]+ ∈ Pd
++.

iii) Obvious from the Definition 4.3.
iv) Follows from the fact that (Pd

++,⊕,⊙, ||.||H) is a normed vector space, and that the norm
is a convex function.

PROOF OF THEOREM 7.3. By assumption, there exists [m0]+ s.t. Fµ([m0]+) < ∞.
Since Fµ is continuous, X0 := {[m]+ ∈ Pd

++ : Fµ([m]+) ≤ Fµ([m0]+)} is closed. Hence,
X0 is non-empty, bounded by coercivity of Fµ, and closed, therefore compact since Pd

++ is
a finite dimensional vector space. Thus Fµ admits a minimum [mH ]+ on X0 by Weierstrass
theorem. For all [m]+ /∈ X0, Fµ([m]+)>Fµ([m0]+)≥Fµ([m

H ]+). Therefore, [mH ]+ is a
global minimum on Pd

++.
The proof for the median is similar.
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