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Abstract

Dynamic treatment regimes (DTR) are a statistical paradigm in precision medicine which aim to
optimize patient outcomes by individualizing treatments. At its simplest, a DTR may require only
a single decision to be made; this special case is called an individualized treatment rule (ITR) and is
often used to maximize short-term rewards. Generalized dynamic weighted ordinary least squares
(G-dWOLS), a DTR estimation method that offers theoretical advantages such as double robustness
of parameter estimators in the decision rules, has been recently extended to now accommodate cat-
egorical treatments. In this work, G-dWOLS is applied to longitudinal data to estimate an optimal
ITR, which is demonstrated in simulations. This novel method is then applied to a population af-
fected by HIV whereby an ITR for the administration of Interleukin 7 (IL-7) is devised to maximize
the duration where the CD4 load is above a healthy threshold (500 cells/µL) while preventing the
administration of unnecessary injections.

1 Introduction

In precision or personalized medicine, the central paradigm lies in adopting patient-centric medical
practices rather than disease-centric approaches [30]. Because people are intrinsically different, the
effects of available treatments can be highly variable from one patient to another. Particularly in
the clinical management of chronic illnesses, the evolving nature of ailments such as cancer, depres-
sion and substance abuse amongst many other long-term conditions often calls for treatments to be
adapted to patient response, characteristics and overall well-being [3, 30].

Dynamic treatment regimes (DTR) are a statistical paradigm in precision medicine that optimizes
an outcome of interest through sequential decision making. In general, the procedure of optimizing
for multi-stage decision problem requires knowledge of the underlying data-generating mechanism.
Although the mechanism is often unknown, it – or components of it – can be estimated using data-
driven methods. This is where evidence-based medicine meets statistics, where the development of
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a reliable theoretical framework is fundamental in finding optimal treatment regimes and in quan-
tifying their uncertainty. The primary goals of DTR are twofold: comparing expected utilities of
different deterministic treatments and obtaining optimal individualized treatment plans for patients
[3]. Formally speaking, a DTR is a function that receives patient history as input and outputs an op-
timal decision vector which itself is comprised of one or multiple decisions, depending on the nature
of the problem. At its simplest, a DTR is an estimation procedure that optimizes for a single deci-
sion; such single-stage DTR are referred as individualized treatment rules (ITR). One of the biggest
strengths of the DTR framework is its ability to optimize long-term outcomes which involve medical
interventions that are performed in a cascading fashion.

The primary objective of this current work is to demonstrate how generalized dynamic weighted
ordinary least squares (generalized dWOLS or G-dWOLS), a DTR estimation method, can be used
to optimize short-term or immediate outcomes from longitudinal data; we refer to such treatment
regimes as myopic due to the nearsightedness of the maximization procedure. Although DTR is
known for its ability to optimize multi-stage decision problems, we illustrate that developing myopic
treatment regimes can be done for problems where it is reasonable to assume no delayed treatment
effects. While such global optimal treatment strategies are preferable to locally optimal regimes, the
benefits in solving for myopic treatment regimes are its simpler interpretation and a more lightweight
statistical estimation procedure. By performing this methodological simplification, we remove the
recursive process in the estimation of an optimal multi-stage DTR [3]. The underlying correlation be-
tween observations from a same individual can be accounted for by applying G-dWOLS within the
generalized estimating equation (GEE) framework. We can accommodate the correlation between
observations in the same individuals in a linear modelling framework; this works well with the G-
dWOLS approach since it solves for parameters of interest in a weighted least squares (more details
in section 3.2).

This methodological extension of G-dWOLS is motivated by the therapeutic benefits of Interleukin 7
(IL-7) injections in low immunological responders - HIV-infected individuals who are characterized
by a low CD4 count despite a lack of viral load following antiretroviral treatment [41]. Clinical trials
such as INSPIRE 2 and 3, whose protocol is available in Appendix A of the Supplementary Material,
have been conducted to evaluate the effect of exogenous IL-7 injections on the immune system in
low immunological responders who have been treated with antiretrovirals [16, 41]. Using a simu-
lation study available in Appendix B of the Supplementary Material, we show that the theoretical
properties of G-dWOLS still hold when devising an ITR with longitudinal data and multiple treat-
ment categories. An application of our proposed method is then performed on data from INSPIRE
clinical trials to see if tailoring treatment with respect to subject-level information would be clinically
relevant.

Following the presentation of the INSPIRE data in section 2, a summary of our proposed method are
stated in section 3. In section 4, we explain how G-dWOLS will be applied to data from the INSPIRE
studies and data analysis results are elaborated in section 5. Lastly, the benefits and limitations of the
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work are considered in section 6.

2 INSPIRE Trials and Related Work

HIV is characterized by a depletion of CD4+ T cells (CD4), which are a pillar of the immune sys-
tem ([5]). Highly active antiretroviral therapy (HAART), the reference treatment for HIV, inhibits the
replication of the virus and it is most often followed by an increase of CD4 T cells ([5]). It has been
shown that failure to reconstitute of CD4 cells in HIV-infected individuals to a threshold greater or
equal to 500 cells/µL is associated with a higher mortality rate and an increased risk in developing
opportunistic infections ([17, 19, 23]). However, despite having no detectable viral load, 15% to 30%
of individuals receiving HAART are known as poor or low immunological responders due to their
inability to increase their CD4 counts and hence reconstitute their immunological system ([19, 11]).

Clinical trials INSPIRE 1, 2 and 3 were conducted to investigate the benefits of administering injec-
tions of IL-7 in low immunological responders by attempting to increase participants’ CD4 count
above 500 cells/µL [15, 42]. IL-7 is a cytokine that plays an essential role in the survival and main-
tenance of CD4 cells [14, 38, 39, 41]. While this protein is naturally produced in stromal and ep-
ithelial cells of the bone marrow and thymus, multiple studies conducted both in humans and in
animals suggest that the administration of IL-7 leads to the reconstitution of the immune system
[20, 33, 36, 39]. The main finding of INSPIRE 1 was that, after receiving injections of IL-7, partic-
ipants exhibited improvements of many immunological markers including a sustained increase of
CD4 cells [42]. However, a gradual decrease in CD4 counts followed which motivated the assess-
ment of repeated cycles of IL-7 injections in INSPIRE 2 and 3. Three doses of IL-7 (10, 20 and 30
µg/Kg) were used in INSPIRE 1 whereas injections in INSPIRE 2 and 3 were all of 20 µg/Kg dosage
due to its compromise in treatment effectiveness and side effects [15, 43]. In this study, only data
from INSPIRE 2 and 3 were used due to the lack of baseline patient characteristics in INSPIRE 1.

INSPIRE 2 was a single-arm clinical trial where participants were drawn from an adult population of
people living with HIV who have been receiving HAART for over a year and exhibiting suboptimal
CD4 counts, i.e. between 100 and 400 cells/µL [12, 16]. The protocol entails providing three injections
of IL-7 at one week intervals, monitoring patient T-cell response quarterly and providing another set
of injections after 12 months of follow-up only if their CD4 count fell below 550 cells/µL [16, 42].
INSPIRE 3 was a clinical study where participants were randomized into a IL-7 arm and a control
arm at a 3:1 ratio. With eligibility criteria defined similarly to those used in INSPIRE 2, the clinical
protocol in the IL-7 arm entailed beginning patients with three injections, and readministrating three
injections if patients presented a CD4 count < 550 cells/µL at any quarterly evaluations. Patients
in the control arm had their CD4 count measured for one year without any IL-7 injections. After
one year, similarly to participants in the IL-7 arm, injections were administered if patients in the
control arm presented a CD4 count below 550 cells/µL [42]. The discrepancy between the protocol
CD4 threshold for treatment administration of 550 cells/µL and “healthy” threshold of 500 cells/µL
accounts for possible measurement error and an anticipated immediate decrease in CD4 counts be-
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low 500 cells/µL if participants exhibited CD4 levels between 500 and 550 cells/µL [41, 42]. From
INSPIRE 2 and 3, a combined total of 113 patients received 198 sets of injections; two participants
withdrew from the study. Over the course of the study, 1300 adverse events related to the admin-
istration of IL-7 have been recorded, although most of them were not deemed serious [42]. Of all
reported occurrences, 77.6% were grade ≤ 1, 20.7% were grade 2 and 1.7% were grade ≥ 3; three
patients experienced serious side effects and there was no significant difference in the number of ad-
verse events for each visit [42]. A figure visualizing the INSPIRE protocols is available in Appendix
A of the Supplementary Material.

The goal of the data analysis presented in section 4 is to devise a myopic treatment rule that optimizes
the number of injections while preventing the administration of unnecessary ones using G-dWOLS
[27]. There are costs – both financial and clinical (such as treatment fatigue and risk of adverse effects)
– to injections, and so it is of interest to find the smallest number of injections needed to ensure that
CD4 concentration lies above 500 cells/µL.

3 ITR Estimation for Longitudinal Data

ITR can be used in the optimization of long-term outcomes through the maximization of short-term
or immediate rewards. The overarching idea behind this approach bears strong similarities with the
greedy algorithm whereby locally optimal decisions are made in the attempt to maximize an overall
or terminal outcome [13]. The essence of this method stems from the trade-off between the simpler
formulation of the problem-solving framework and a potentially non-optimal solution that is rela-
tively close to the best one [13].

The process of estimating optimal ITR, also known as myopic optimal rules, can involve less model-
based extrapolation while yielding more precise (i.e. narrower) confidence intervals [27]. Rather than
evaluating regimes through a sequence of decision rules, one of many ways to approach the study
design to treat every stage as a single observation. In doing so, the sequential nature of interventions
is eliminated and the optimization procedure ensues with the maximization of short-term rewards.

Of course, there are many examples where a greedy algorithm or a myopic treatment strategy may
fail to provide a reasonable policy to optimize long-term outcomes. In Appendix C in the Supplemen-
tary Material), we outline a sufficient set of conditions – requiring assumptions on the immediacy of
the effect of treatments and potential interactions between treatments over time – that are needed to
suggest the myopic strategy is adequate, and relate these to the INSPIRE setting, which is the focus
of this work.
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3.1 Overview of Regression-Based Approaches for ITR Estimation

When working with ITR, positing simpler models such as linear regressions to estimate contrasts of
utilities offers simpler interpretability of estimated parameters. A blip function denoted by γ(xxx, a;ψψψ)

is defined to be the expected gain in outcome if treatment A = a were to be chosen instead of a
reference or baseline treatment aref. For instance, in the binary case where A ∈ {0, 1}, aref = 0 often
represents an absence of treatment. Non-parametrically, this is given by

γ(xxx, a;ψψψ) = E
[
Y (xxx, a)− Y

(
xxx, aref

)
|XXX = xxx,A = a

]
where Y (xxx, a) denotes the counterfactual outcome under treatment a with covariates xxx. In other
words, the blip function characterizes the expected gain in the outcome upon providing treatment
A = a compared to the reference treatment aref. When modelling for the outcome variable Y , the
model is often written as the sum of two expressions: the treatment-free model and the blip function,
which are parametrized by the respective coefficients βββ and ψψψ. The treatment-free model G(xxx;βββ) is
the portion of the outcome model that is independent of the treatment:

E [Y |XXX = xxx,A = a;βββ,ψψψ]︸ ︷︷ ︸
outcome model

= G(xxx;βββ)︸ ︷︷ ︸
treatment-free model

+ γ(xxx, a;ψψψ)︸ ︷︷ ︸
blip function

.

The nomenclature for the models in the outcome model is due to the clear separation of linear ex-
pressions due to the terms which interact with the treatment variable of interest. In the binary case
where A ∈ {0, 1}, the blip function can be understood as an expected gain in utility or reward when
receiving treatment A = 1 compared to A = 0; it is assumed that A = 0 is the baseline or reference
treatment. However, when more than 2 treatments are possible, adaptations to blip function and
hence the estimating function must be made. Keeping the treatment-free model untouched, the sum
ofm−1 contrast terms will comprise the “new”, multi-treatment blip function. In other words, a lin-
ear term xxxψψ` must be posited for each non-reference treatment a`. When A is a categorical variable
where A ≡ {a0, a1, . . . , am−1}, assume without loss of generality that a0 is chosen to be the reference
treatment. The blip function can be written as a sum of treatment contrasts, each of which represents
an expected gain in utility compared to the counterfactual situation in which a0 was the assigned
treatment:

γ(xxx, a;ψψψ) =

m−1∑
`=1

1a=a` xxx
ψψψψ`

where 1a=a` = 1 if a = a`. Linear contrast functions γ`(·) are often posited for convenience, but, in
theory, any functional form which equals 0 when evaluated at the reference treatment is permissible.
ITR estimation methods such as G-dWOLS also calls for a treatment model, also referred as (gener-
alized) propensity score or conditional treatment density function, denoted by π(xxx, a), which can be
estimated using (multinomial) logistic regression [1, 32]:
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π(xxx, a;ααα) = E [A = a |XXX = xxx;ααα] .

The treatment model parameters are estimated separately, then weights are constructed and plugged
into the regression used to estimate outcome model parameters in a two-step estimation procedure.
Whether in a dynamic treatment regime setting or, as is our focus here, a repeated ITR setting where
a myopic regime is estimated via longitudinal data, it is typical to model the propensity score in each
treatment interval independently, without taking into account within-person correlation. Under the
assumption of no unmeasured confounding, this approach is justified. In this work, the three models
detailed above – treatment, treatment-free and blip model – are respectively parameterized by coef-
ficientsααα, βββ andψψψ. Regression-based approaches for ITR estimation posit linear models for the latter
two, i.e. G(xxx;βββ) = xxxββββ and γ(xxx, a;ψψψ) = xxxψψψψ. Superscripts β and ψ are used to label explanatory
variables with respect to their respective “submodel” within the outcome model, whereby XXXβ and
XXXψ are typically subsets of subject-level covariates denoted byXXX .

3.2 Generalized Dynamic Weighted Ordinary Least Squares

When working with ITR, positing simple models to model contrasts of utilities offers straightforward
interpretability of estimated parameters [3]. Recent work has examined the use of statistical learning
models such as decision trees [40] and deep neural networks ([18]). However, we will not pursue
such approaches but rather focus on G-dWOLS, a regression-based approach in the estimation of
treatment regimes. Other related DTR estimation methods include Q-Learning [22, 21], G-estimation
[31] and dynamic weighted ordinary least squares (dWOLS) [44], the estimation method on which
G-dWOLS builds upon Schultz and Moodie (2020) [34].

The G-dWOLS method is a weighted regression-based approach for the estimation of optimal treat-
ment regimes first introduced by [44] and further extended by Schultz and Moodie (2020)[34]. This
subsection highlights the theoretical underpinnings and practical considerations detailed in the lat-
ter article. Recent work in the dWOLS literature is now also able to handle survival outcomes [35]
and continuous treatments [34], but this work focuses on categorical treatments. Other DTR esti-
mation procedures for categorical treatments include Qi et al. (2020) [29] and Xue et al. (2020) [46].
The main advantages of using G-dWOLS compared to other methods are threefold: its relatively
intuitive implementation, its ability to accommodate categorical treatments and its statistically ro-
bust estimation procedure (more details in the next subsection). G-dWOLS provides doubly-robust
blip parameters by relying on having weights w(xxx, a) satisfying the balancing property below. This
estimation procedure also has the potential of being less daunting in implementation due to the
familiar function form of estimating function, as it is equivalent to minimizing a weighted least
squares. This equivalence in methodological procedure allows a relatively straightforward imple-
mentation of the G-dWOLS algorithm using built-in regression functions with weights w(·) such
that π (xxx, a)w (a,xxx) = π(xxx, a′)w (a′,xxx) is satisfied for all a, a′ ∈ A where π (xxx, a) = P (A = a |XXX = xxx)

[34]. This equality stems from the theorem of the balancing property in dWOLS and G-dWOLS liter-
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ature and a detailed proof of this is provided in Wallace and Moodie (2015) [44] for binary treatments
and Schultz and Moodie (2020)[34] for categorical treatments.

According to the balancing property, doubly-robust blip parameters are ensured by using correctly
specified propensity scores in the weights associated to each observation in the weighted least squares
minimizing. The formulation of the theorem is general, in that the product π (xxx, a)w (xxx, a) needs to
bear the same value for all treatments a ∈ A. Examples of multinomial weights adhering to the
balancing property that will be discussed in this work include inverse probability of treatment (IPT),
w(xxx, a) = {π(xxx, a)}−1, and overlap weights, w(xxx, a) = {π(xxx, a) ·

∑m
`=1 π(xxx, a`)

−1}−1. Notice that the
overlap weights are in fact IPT weights divided by a stabilizing term

∑m
`=1 π(xxx, a`)

−1 that solely de-
pends on xxx. This dissimilarity in weight forms allows overlap weights to be bounded between 0 and
1, whereas IPT weights which are unbounded from above. In Schultz and Moodie (2020) [34], other
weight forms for categorical treatments adhering to the balancing property are also provided, but
will not be addressed in this paper as they offer no discernible advantage over the IPT and overlap
weights.

Without the balancing weights, the G-dWOLS estimation process simplifies to Q-learning in a single-
stage setting [44]. In practice, when using G-dWOLS for ITR estimation, the selection of the weights
comes down to potential gain in efficiency and researcher’s preference. Standard error estimates can
vary depending on the form of weights since the asymptotic variance of blip parameters depend on
w(·) [34, 44]. The G-dWOLS estimation procedure for ITRs is described in the five following steps:

1. Select (possibly identical) subsets of covariatesXXXα,XXXβ andXXXψ fromXXX for the treatment model,
the treatment-free model and the blip function respectively. We let covariate matrices XXXβ

i and
XXXψ
i be of (p× 1) and (r × 1) dimension.

2. Propose a treatment model E [A |XXX] and define a weight w such that the balancing condition is
satisfied.

3. Posit treatment-free model f(·) in E [Y |XXX,A] = f
(
XXXββββ

)
+
∑m−1
`=1 1A=a`XXX

ψψψψ`. Typically, linear

regressions are used due to their appealing statistical properties and simplicity, i.e. f(XXXβ ,βββ) =

XXXββββ.
4. Solve the following system of estimating equations to obtain the blip function parameter esti-

mates ψ̂ψψ:

000(p+(m−1)r)×1 =

n∑
i=1


XXXβ
i

1Ai=a1XXX
ψ
i

...
1Ai=am−1

XXXψ
i

wi

(
Yi −XXXββββ −

m−1∑
`=1

1Ai=a` XXX
ψψψψ`

)
.

The solution to the score function is a (p+(m−1)r)×1-dimensional parameter vector:
(
βββ,ψψψ1, . . . ,ψψψm−1)

)
.
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5. Evaluate the optimal treatment plan for each subject given estimates ψ̂ψψ as follow:

Âopt(xxxψ) =


argmax

`∈{1,...,m−1}
xxxψψ̂ψψa` if max

`∈{1,...,m−1}
xxxψψ̂ψψa` > 0

a0 otherwise.

3.3 Generalized Estimating Equation Framework

When solving multi-stage decision problems using a myopic regime study design, each participant
i contributes ni observations into an agglomerated dataset; in a clinical context, each observation
can be referred to as patient-stage. Because there are many observations for a single individual, an
intuitive assumption is to suppose that there is some degree of correlation between measurements
contributed by the same person. Many statistical concepts surrounding generalized estimating equa-
tions (GEE) have been developed to accurately estimate parameters while acknowledging underly-
ing correlation structures. This general framework provided in [4] allows statistical inference to be
performed on linear coefficients βββ and ψψψ =

(
ψψψ1, . . . ,ψψψm−1

)
under the assumption of different corre-

lation structures for repeated measurements [4]. Notation and terminology are largely inspired from
Chapter 4 in [4].

To account for the correlation of repeated measurements, different structures for the variance matrix
can be assumed Vi = Var(YYY i), which is also referred as the working covariance matrix and may
differ from the true variance structure [4]. The primary benefit in using a GEE framework is that
the estimators of linear coefficients are asymptotically normal even when misspecifying the working
covariance structure Vi [4]. This is particularly useful in situations where the underlying correlation
structure is unknown. Based on previous research [45, 26], we advocate for the use of an indepen-
dence working correlation, however an autoregressive structure could also be a reasonable choice.

Although longitudinal data call for a GEE or similar approach, in G-dWOLS, the procedure for esti-
mating the standard errors of blip coefficients for an ITR also needs to incorporate the variability due
to estimating generalized propensity scores (or parameters of a treatment model). The G-dWOLS
method incorporates estimated rather than known weights into the estimation procedure of DTR. In
practice, these weights are estimated values, which means that an adjustment to the robust standard
error formula is required for them to provide valid inference. One way to circumvent this issue is
to estimate standard errors via bootstrapping [6]. In G-dWOLS, bootstrap estimation of standard
errors can be beneficial in that it accounts for the uncertainty attributable to the estimation of the
generalized propensity score. However, it is also prone to suffer from small sample size issues since
resampling must be performed on individuals rather than observations to retain the underlying cor-
relation structure due to repeated measurements across bootstrap iterations.
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3.4 Summary of Proposed Method

Combining elements from G-dWOLS and methods to account for repeated measurements, an overview
of the proposed method for ITR estimation thesis is provided below.

For each individual iwith ni ≥ 1 observations, given a sequence of outcome variablesYYY i = {Yi1, . . . , Yini}>,
categorical treatment AAAi = {Ai1, . . . , Aini}> with Ai· ∈ A ≡ {a0, . . . , am−1} and time-varying
subject-level characteristics XXXi = (XXXi1, . . . ,XXXini)

>, we wish to understand the treatment effects of
each treatment option aj ∈ A on the outcome Y . We first concatenate all observations into a single set
denoted by D = {(Yij , Aij ,XXXij)}. As detailed in section 3.1, we propose the following linear model
for the outcome variable:

E [Yi |XXXi, Ai;βββ,ψψψ] = XXXβ
i βββ +

m−1∑
`=1

1Ai=a`XXX
ψ
i ψψψ`.

Compared to other similar methods in DTR or ITR estimation, dWOLS and G-dWOLS offer both
double-robustness of blip estimators and relative ease in implementation given the estimating func-
tion is a weighted least squares [44]. Likewise, another key advantage of these estimation methods
is that these approaches are regression-based. Instead of using the multi-stage framework in DTR
to address longitudinal data, a simpler study design can be employed: a myopic ITR can be esti-
mated in which repeated measurements can be accounted for by specifying a covariance structure.
Combining both G-dWOLS balancing weights wi adhering to the balancing property and proposed
covariance structure Vi ∈ Rni×ni , the estimating function in whichψψψ needs to be solved for is similar
to the one provided in step 4 of section 3.2 in which diag(wi) is multiplied by Vi.

Estimation of standard errors can be done robustly using robust or sandwich estimator (although this
ignores variability due to estimation of the balancing weights) or bootstrap resampling on individu-
als. By performing the resampling of individuals rather than observations, the correlation structure
induced by the repeated measures is preserved. However, because the number of observations varies
from one individual to another, sample sizes can also differ between bootstrap iterations.

4 Analysis of INSPIRE Data

For this work, interest lies in determining the smallest number of injections to ensure reconstitution
of CD4 load above a healthy threshold of 500 cells/µL. In other words, we are interested in obtaining
the optimal number of IL-7 injections by preventing the administration of unnecessary ones. Because
the INSPIRE 2 and 3 protocol calls for injections if the CD4 load falls below 550 cells/µL at quarterly
evaluations, the optimal number of injections will be determined at 90 day time intervals, which was
the usual duration between two visits as per trial protocol [41].
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4.1 An Outcome Balancing Benefits and Patient Inconvenience

The first challenge was to conceive a scalar-valued outcome consisting of a utility accounting for a
patient’s immune response and penalization for excessive injections, so that the outcome of interest
was a single measurement representing an entire 90-day windows which we call a treatment stage.
We also define such treatment stages to be time intervals where patients are eligible to receive in-
jections, i.e. the first CD4 measurement of candidate treatment stages or CD41 must be below 550
cells/µL [42]. Given that participants are enrolled for at least one year, CD4 dynamics need to be esti-
mated. For simplicity, we define CD4(t) to be the estimated trajectory of patients cell count obtained
via linear interpolation (see Appendix D in the Supplementary Material for an example). More so-
phisticated statistical methods such as mechanistic models [12, 28, 43] have been used to explicitly
estimate the CD4 T-cell dynamics. In Figure 1, we illustrate an example of treatment stage labelling
alongside an estimated CD4 trajectory for a given patient.

Figure 1: Estimated CD4 dynamics of an INSPIRE 2 participant using their observed CD4 counts
with seven treatment stages labelled.

Example 4.1. Consider the CD4 dynamics of a patient from INSPIRE 2 with the labelling of treatment
stages in Figure 1. Here, this patient receives two sets of injections: a first set consisting of three
injections for treatment stage 1 spanning from day 0 to day 374 and a second set consisting of a
single injection for treatment stage 4 spanning from day 374 to day 756. Both treatment intervals are
split into multiple treatment stages: the first treatment interval contains 3 treatment stages whereas
the second cycle contains 4 treatment stages. In the first treatment interval, the participant receives an
injection cycle consisting of 3 injections in the first treatment stage and this is followed by 3 treatment
stages where no injections are administered. In the second treatment interval, the participant receives
an injection cycle consisting of a single injection in the first treatment stage (4th overall) and this is
followed by 3 treatment stages with no injections. Notice that the interval between day 78 and day
163 does not constitute as a treatment stage because the CD4 count measured at day 78 is above 550
cells/µL.
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An outcome of interest denoted by Ug that captures immune response is defined to be the pro-
portion of time in a treatment stage where a participant had CD4 level above 500 cells/µL. By
definition, Ug ∈ [0, 1] and Ug = 0 if all observed measurements are below 500 cells/µL. The cost
U inj ∈ {−3,−2,−1,−0} is defined to be the negative of the number of injections. In other words, the
purpose of penalizing for the number of injections on top of a low CD4 cell count is to prevent the
administration of superfluous injections. Inspired by Pasin et al. (2018) [25], we define the outcome
variable of interest, denoted by U(η), to be a convex sum of two previously defined utilities, Ug and
U inj:

U(η) = ηUg + (1− η)U inj for η ∈ [0, 1].

The parameter η allows the focus of the constructed outcome variable to vary depending on the cho-
sen value of η. Thus, an η of 0 would suggest that the utility is simply the negative of the number
of injections, which would be maximized by never injecting participants. Conversely, setting η to 1
would generate a treatment rule designed to maximize CD4 response, without any consideration of
the number of injections.

It is worth noting that the possible values that Aopt can take depends on η due to the definition of U .
Because Ug is a proportion, i.e. Ug ∈ [0, 1], we have that U ≥ 0 under A = 0, hence the penalization
term U inj would restrict the domain of Aopt depending on η. For instance, under A > 0, we have that:

max
Ug

U(η) = η · 1 + (1− η)U inj ≤ η + (1− η)(−1) = 2η − 1 < 0 for η < 0.5 .

Likewise, A =1 is only eligible to be the optimal number of injections for η ≥ 0.5, A =2 for η ≥2/3
and A =3 for η ≥ 3/4 (see Appendix E for more details).

4.1.1 Q-TWiST Method

The results from the statistical analysis using ITR modelling will provide the ideal number of in-
jections according to a patient’s profile and response to previous injections. While we consider the
potential onset of side effects important in assessing the necessity of each IL-7 injection, data related
to the occurrence of adverse effects was not provided in this analysis. As such, a penalization term
for the number of injections will serve as a surrogate for the risk of side effects in the statistical anal-
ysis of an optimal treatment rule.

The idea behind the definition outcome variable U(·) shares similar objectives with the Q-TWiST
method, short for Quality-adjusted Time Without Symptoms of disease or Toxicity of treatment [9, 8].
The overarching goal behind this method is to define a single outcome which captures different
utilities, all of which bears clinical relevance in evaluating the trade-off between quality and quantity
of life. An outcome of interest to be investigated is formed from a weighted sum of three utilities:
treatment toxicity, time spent devoid of symptoms or side effects and time after relapse [8]. The
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difference in importance allocated to factors surrounding quality or quantity of life can be reflected
by varying weights values attributed to the three utilities. For instance, patients who are more prone
to adverse effects may put a stronger emphasis on symptom-free time whereas others may prefer
stronger treatments if it decreases the chances of illness relapse. The Q-TWiST method provides
a framework to compare different treatment options for patients with potentially different clinical
preferences. Particularly in the clinical management of chronic illnesses and palliative care, a quality
of life index is of prime importance in assessing various treatment possibilities for late-stage diseases
[8]. In individualizing the number of IL-7 injections, rather than considering three utilities as in the
Q-TWiST method, a single outcome capturing the two quantities Ug and U inj can be optimized under
fixed values of the utility weight parameter η.

4.1.2 Tailoring Variables

In practice, the idea behind longitudinal studies as a whole is to investigate the effects of studied in-
terventions over time. In this analysis, we allow for previous immune responses to affect future ones
in the modelling procedure by conditioning on individual patients’ histories. That is, in addition to
positing a correlation structure between treatment stages of the same patient, one way to account for
historical injection information is to define tailoring variables that can embody potential prior bio-
logical response to the administration of IL-7. A patient’s historical treatment information, denoted
by Hx, is a dichotomous variable indicating if a patient has received injections in a prior treatment
stage. A patient’s response to previous treatment is denoted by Resp, and is defined as followed:

Resp =

0 if Hx = 0

1

# prev inj

(
max
k

({
CD4prev

k

}nprev

k=1

)
− CD4prev

1

)
if Hx = 1,

where the “prev” superscript refers to the most recent preceding treatment stage in which injections
were administered to the individual. The k subscript indexes the set of observed CD4 counts in that
“prev” treatment stage, hence CD4prev

1 refers to its first CD4 reading and nprev is the number of ob-
servations in that treatment stage. For instance, in Figure 1, “prev” refers to stage 1 for stages 2, 3,
and 4 whereas, for stages 5, 6 and 7, “prev” refers to treatment stage 4. Resp is defined to be the
largest increase in CD4 counts compared to the “prev” baseline value CD4prev

1 and the multiplicative
coefficient {# prev inj}−1 serves the purpose of adjusting for the number of injections administered.
The idea is to highlight the sensitivity of a participants’ immune response to the quantity of IL-7
provided. Since Resp exhibited considerable skew, a transformation which we denote logResp =
log(Resp + 1) was employed in the G-dWOLS analysis to reduce the impact of outlying values. Data
on participants’ characteristics collected in the INSPIRE studies 2 and 3 can be used to tailor the num-
ber of injections to HIV-infected patients within the G-dWOLS framework. In the outcome model,
such quantities can be incorporated into the blip function, and include the following information:
age, sex, BMI, ethnicity and logResp. A table summarizing these variables is given in Table 1 in
section 4.2.1.
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4.1.3 Analysis Plan

The statistical analysis of INSPIRE data using an ITR framework is summarized in the following
protocol. In what follows, the subscript i indexes data points (pre-treatment covariates, number of
injections, and utility) from a specific treatment stage rather than an study participant.

1. ComputeUg andU inj for all patients and all stages. A value of 1 for the Origin variable indicates
that a participant is of African origin and 0 otherwise (i.e. Caucasian or other); the Sex variable
was also defined as dichotomous, where 1 represents male.

2. Fit generalized propensity scores P (Ai = ai |XXXα
i ) where covariatesXXXα

i consist of the following:
Sex, Age, BMI, Origin and CD41. Weights wi were taken to be IPT weights, i.e. wi = P (Ai =

ai |XXXα
i )−1. We use A = 0 as baseline treatment as it is the largest group.

3. Define the treatment-free and blip model covariates to include patient-specific data:

– XXXβ : Sex, Age, BMI, Origin, Hx, logResp and CD41
– XXXψ : Sex, Age, BMI, Origin, Hx and logResp

4. Compute U(η) = ηUg + (1 − η)U inj for a given weight value η for all individual-stage data.
Separate analyses will be performed for each value of η.

5. Apply the G-dWOLS algorithm above using the defined IPT weights W , treatment-free co-
variates XXXβ , blip covariates XXXψ and outcome variable U(0) using a weighted GEE to perform
estimation (here, we opt for an independence working correlation). We use ψ` for the vector
of blip parameters associated with injections for a ∈ {a1, a2, a3} ≡ {1, 2, 3} (where, recall,
A = a0 = 0 is the baseline treatment category).

6. Estimate empirical standard errors and confidence intervals using the robust variance estimator
for the blip parameters ψ̂ψψ obtained from the previous step.

7. Determine the optimal treatment (number of injections) for each patient using the formula
provided in step 5 of section 3.2 where a ∈ {0, 1, 2, 3}.

Repeat the analytic steps 4-7 for other values η ∈ [0, 1].

4.2 Results

4.2.1 Descriptive Results

Treating patient-stages as observations, a summary of its covariates is available in Table 1. The stan-
dardized mean difference (SMD) is a score that measures the imbalance of characteristics across ob-
servations in different treatment groups [7, 47]. An SMD value greater than 0.1 is a common criterion
used to determine if a particular covariate is imbalanced across treatment groups [37]. For instance,
in Table 1, both the Age and Sex variables have an SMD value of 0.12, the smallest SMD value
amongst covariates of interest. This descriptive measure shows that there are significant imbalances
in all characteristics across observations grouped by treatment category. It is also worth highlighting
the low sample size in treatment categories A = 1 and A = 2. There are 315 observations associated
with 0 injections and 150 observations associated with 3 injections whereas there are only 17 and
22 observations associated with 1 and 2 injections respectively. The low number of observations in
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the A = 1 and A = 2 group is a by-product of the INSPIRE protocols where 3 injections should be
have administered according to study protocol. The average treatment stage duration is 90.5 days
with a standard deviation of 12.3 days. It is assumed that this variability does not substantially affect
the analysis, especially in the definition of the immune response utility, where Ug is computed as a
proportion.

Table 1: Summary of patient characteristics with respect to the number of injections received

Characteristic
Mean (SD) or Count (Proportion)

SMD

A = 0

(n = 315)

A = 1

(n = 17)

A = 2

(n = 22)

A = 3

(n = 150)

Sex 227 (77%) 12 (71%) 17 (77%) 102 (68%) 0.12

Age 45.4 (8.8) 46.3 (8.8) 44.5 (7.9) 44.9 (8.4) 0.12

BMI 24.4 (3.6) 25.0 (4.5) 25.8 (4.5) 24.3 (3.5) 0.21

Origin 0.40 (0.49) 0.29 (0.47) 0.32 (0.48) 0.48 (0.50) 0.22

CD4init 350 (112) 435 (89) 358 (105) 322 (116) 0.56

logResp 3.60 (2.53) 4.89 (1.90) 2.97 (2.79) 2.01 (2.68) 0.64

Figure 2: Boxplots for U(η) values for η ∈ {0.25, 0.6, 0.75, 0.9, 0.95, 1}.

Figure 2 provides an overview of the outcome variable U(η) distribution with respect to treatment
categories and utility weights. For instance, for η < 0.6, the value of U(·) is largely dominated by
the penalizing term U inj for the quantity of administered injections. This result follows from the
discrepancy in the widths of ranges of Ug and U inj; Ug ∈ [0, 1] whereas U inj ∈ {-3, -2, -1, 0}. When
more emphasis is put on immune response, i.e. in cases where η conveys a larger value such as 0.9,
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0.95 or 1, the outcome values for 1, 2 and 3 injections are closer to each other. In the bottom three
plots in Figure 2, utilities capturing immune response information do not seem to be considerably
different in patient-stages where at least 1 injection was administered. Ug values for 0 injections are
0 for nearly all patient stages, which explains the lack of variability in the boxplot for A = 0.

Generalized propensity scores were fitted using multinomial logistic regression, which were then
used to compute the weights wi needed for the dWOLS analysis. Boxplots for generalized propen-
sity scores P (A = a |XXX), IPT and overlap weights are displayed in Appendix F of the Supplementary
Material.

The use of either weight functions in G-dWOLS analysis can be argued. While both IPT weights
and overlap weights adhere to the balancing property for G-dWOLS, a potential gain in efficiency is
possible when using overlap weights due to the restriction in their range. However, the similarity in
results produced by our simulation results (see Appendix B in the Supplementary Material) using the
different weight forms permits the use of either weight function in the analysis of INSPIRE studies.
In fact, IPT weighting for controlling of confounders has garnered much attention from researchers
in the causal inference literature over the recent year. The popularity of this well-studied and well-
documented method also motivate the use of IPT weights in the data analysis of INSPIRE data [2,
21, 32].

4.2.2 Statistical Summary of Blip Coefficients

Blip parameter estimates of ψ̂ψψ1, ψ̂ψψ2 and ψ̂ψψ3 and their confidence intervals are dependent on the out-
come measure U(·) which itself relies on a particular choice of η ∈ [0, 1]. Each η value yields different
values for the outcome variable, which in turn implies that the estimated ITR would vary accord-
ingly. Because there are many coefficient estimates of interest and the utility weight is a continu-
ous parameter, the overarching purpose of the statistical analysis and its interpretation is to paint a
comprehensive portrait of the results while providing sufficient detail to determine key factors that
influence treatment recommendation. The statistical analysis results for η = 0.7 and 0.9 are provided
in Tables 2 and 3 respectively on the following page. Coefficient estimates are displayed alongside
their 95% confidence intervals; bold estimates are statistically significant at a 5% significance level.
From these summary tables, coefficients for Hx and Resp, denoted by ψ̂`,Hx and ψ̂`,logResp, are sta-
tistically significant across contrast functions γ`(·), ` = 1, 2, 3 for both η = 0.7 and η = 0.9. Other
coefficients such as ψ̂2,Sex, ψ̂3,Sex and ψ̂3,Age are also statistically significant for η = 0.7 and η = 0.9. For
residual plots, see Appendices G and H in the Supplementary Material for outcome variables U(0.7)

and U(0.9) respectively.
The optimal number of injections can also be calculated for each patient-stage in the dataset used
for the analysis. Estimation of contrast values γ`(xxxψ) can be done by plugging in covariate-specific
information xxxψ for each patient-stage in the processed dataset. Âopt can be obtained by comparing
values of the blip functions as discussed in section 3.2. The number of observations having Âopt

being equal to 0, 1, 2 or 3 injections are displayed with respect to η values ranging from 0 to 1 in
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Table 2: Summary of estimated blip coefficients for a G-dWOLS analysis of outcome U(0.7)

Characteristic
Estimates (95% C.I.)

A = 1 A = 2 A = 3

Intercept −0.11 (−0.64, 0.41) −0.10 (−0.83, 0.63) 0.17 (−0.11, 0.45)

Sex −0.02 (−0.11, 0.06) 0.220.220.22a (0.00, 0.43) −0.06−0.06−0.06 (−0.12, 0.00)

Ageb 0.08 (−0.01, 0.17) −0.07 (−0.18, 0.04) −0.04−0.04−0.04 (−0.07, 0.00)

BMIc −0.03 (−0.16, 0.10) 0.03 (−0.13, 0.19) −0.12−0.12−0.12 (−0.21,−0.04)

Origin 0.14 (−0.02, 0.29) 0.11 (−0.08, 0.30) −0.02 (−0.08, 0.05)

Hx −1.79−1.79−1.79 (−2.69,−0.89) −1.35−1.35−1.35 (−2.15,−0.55) −0.65−0.65−0.65 (−1.08,−0.21)

logResp 0.290.290.29 (0.13, 0.45) 0.240.240.24 (0.10, 0.39) 0.100.100.10 (0.03, 0.18)

Table 3: Summary of estimated blip coefficients for a G-dWOLS analysis of outcome U(0.9)

Characteristic
Estimates (95% C.I.)

A = 1 A = 2 A = 3

Intercept 0.14 (−0.54,−0.82) 0.44 (−0.50, 1.4) 1.081.081.08 (0.72, 1.44)

Sex −0.03 (−0.14, 0.08) 0.280.280.28 (0.04, 0.56) −0.08−0.08−0.08 (−0.20, 0.00)

Ageb 0.10 (−0.01, 0.21) −0.09 (−0.23, 0.06) −0.05−0.05−0.05 (−0.10, 0.00)

BMIc −0.04 (−0.20, 0.13) 0.04 (−0.17, 0.25) −0.16−0.16−0.16 (−0.28,−0.05)

Origin 0.18 (−0.03, 0.38) 0.14 (−0.11, 0.38) −0.02 (−0.11, 0.06)

Hx −2.30−2.30−2.30 (−3.45,−1.14) −1.73−1.73−1.73 (−2.77,−0.70) −0.83−0.83−0.83 (−1.39,−0.27)

logResp 0.370.370.37 (0.17, 0.57) 0.310.310.31 (0.12, 0.50) 0.130.130.13 (0.033, 0.23)

aBold indicates statistical significance at a 0.05 significance level.
bFor every 10 years
cFor every 10kg/m2
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Figure 3. One important thing to observe is that, when η = 1, i.e. when there is no penalization
for the number of injections, a considerable number of patient-stages are still being recommended 1
or 2 injections rather than 3. Although other factors such as a patient’s age, sex, ethnic origin may
affect the estimated ITR, recall that the observed immune response utility Ug seems to be comparable
across groups A = 1, A = 2 and A = 3 (see Figure 2).

Figure 3: Number of observations having Aopt as each treatment type with respect to η values. Pos-
sible values of Aopt as a function of η are indicated on the top horizontal axis.

4.2.3 Treatment Recommendation for Specific Patient Profiles

Treatments depend on the chosen weight values associated with utilities Ug and U inj; however the
individualization of the treatment recommendation also depends on characteristics of patients, as the
blip model is a function of covariatesXXXψ . To give an idea of the optimal number of injections, plots
showing the estimated value of γ`(·, a`) for a` = 1, 2, 3 for four chosen patient profiles are shown in
Figure 4. The chosen patient profiles are as follow:

Profile 1: 25-year-old man of non-African ethnic background, with a BMI of 25 and without any IL-7
injection history;

Profile 2: 40-year-old woman of African ethnic background, with a BMI of 35 and with a recent
injection cycle with a Resp value of 200;

Profile 3: 60-year-old man of African ethnic background, with a BMI of 24 and without any IL-7
injection history;

Profile 4: 80-year-old woman of non-African ethnic background, with a BMI of 30 and with a recent
injection cycle with a Resp value of 400.
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Figure 4: Contrast function utility for different number of injections with respect to utility weights
η ∈ [0, 1] for four patient profiles.

The dotted line representing the 0 utility threshold is the value of the blip function for theA = 0 cate-
gory since it was chosen to be reference treatment. Because the blip function compares utilities across
treatment options, the number of injections exhibiting the largest utility value for a fixed η value is
the optimal treatment determined by the dWOLS analysis. Profile 1 seems to suggest that A = 2

is generally better than other treatment option counterparts while treatments seem to offer similar
estimated utility values in Profile 2 (with A = 2 marginally better than A = 1, 3 for η > 0.9. Esti-
mated contrast function plots for Profiles 3 and 4 show that a single injection seems to perform better
than two and three injections for η > 0.5. For values of η < 0.5, no injections seem to be the recom-
mended treatment for all four patient profiles. These results align well with the theoretical range of
Aopt as discussed in Section 4.1 and in Appendix E. From these plots, three conclusions can be drawn.

Firstly, similarly to what [12] have found, there does not seem to be a considerable benefit in ad-
ministering 3 injections. Instead, either 1 or 2 injections seem to result in comparable or even better
immune response since, for η = 1, A = 2 seems to provide better utility than A = 3 for patient pro-
files 1 and 2 whereas A = 1 curves are above A = 3 for patient profiles 3 and 4. Secondly, although
Aopt = 0 for η < 0.5, the decision to administer a non-zero number of injections seems to vary across
patient profiles. The A = 1 line crosses the dotted line in profile 3 and 4 for a smaller value of η
relative to the A = 2 line in profiles 1 and 2. The main difference between these pairs of patient
profiles is their age: profiles 1 and 2 are respectively 20 and 40 years old whereas profiles 3 and 4 are
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respectively 60 and 80 years old. This in turn can imply that, according to this analysis, a first IL-7
injection is more necessary in older participants than in younger counterparts but a second dosage is
unnecessary. However, for younger patients, assigning 1, 2 or 3 injections yield comparable results in
immune response; a moderate decision of 2 injections may be the best, most conservative approach.

5 Discussion and Conclusion

The goal of this statistical analysis was to show that G-dWOLS can be applied on longitudinal data
within a GEE framework in constructing a myopic ITR. Overall, the G-dWOLS analysis provides
valuable insight on the ideal number of injections through the design of ITR, one for each value of
the utility weight η. Treatment recommendation largely depends on two things: the value of η and
patient-specific information. When η is closer to 0, more weight is put on minimizing the number of
injections and, as a result, the recommended number of injections is conservative. When η is closer
to 1, more importance is put on having a better immune response, hence participants are more likely
to be recommended to receive injections. However, despite this, many observations in the dataset
are suggested to receive 1 or 2 injections. This result follows immediately from the good immune re-
sponse outcome for observations associated with these treatment categories, despite their low sample
size (see Figure 2). For a relatively large number of treatment stages, the maximal number of injec-
tions set by the clinical protocol are not being recommended; this warrants further investigation on
the relevance of a third injection first; this question was previously raised by Jarne et al. (2017) [12].
While a third injection may increase the CD4 load to a higher peak, their results show that two injec-
tions are sufficient to ensure that the CD4 concentration exceeds the threshold of 500 cells/µL [12, 25].

Previous approaches to optimizing IL-7 treatment protocols have not incorporated covariate-specific
information on the ideal number of injections to provide [25, 43]. In this work, intrinsic patient
characteristics such as BMI and ethnic origin have not shown to be either statistically or clinically
significant in individualizing the number of injections. Their the estimated coefficients did not sig-
nificantly differ from 0, and do not seem to alter treatment recommendation (see Tables 2 and 3).
The coefficient estimates for sex across treatment groups were also low in magnitude, except for A =

2; however, this finding was not found to have a strong impact on our results. Although our anal-
yses were limited in power, our results suggest that age may be clinically useful tailoring variable
to determine the optimal number of injections. For instance, the findings in the analysis of specific
patient profiles recommend a first injection in older patients at lower utility weights than in younger
patients. However, for the latter subpopulation, a second injection seems more necessary whereas, in
older patients, treatment recommendation seems to follow a “one or nothing” approach to injections.
This could potentially point to the risk of treatment toxicity in older people living with HIV, since the
penalization term U inj in this analysis served as a proxy for any potential undesirable consequences
attributed to IL-7 injections, or simply to a plateauing of response in older patients. The effect of age
on treatment recommendation warrants further investigation, particularly as adverse effects to IL-7
were not available to us for this analysis.
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Two major limitations that must be raised are the sparsity of observations associated with 1 and 2
injections and the design of the myopic rule. When receiving a cycle of IL-7 injections, participants
from the INSPIRE studies were more much more likely to receive 3 injections than they are to re-
ceive 1 or 2; cycles consisting of 1 or 2 injections are considered incomplete by the clinical protocols
of INSPIRE 2 and 3 [42, 43]. An inherent limitation of this is that we cannot exclude confounding
by indication due to participants not receiving all 3 injections, although we consider the possibility
unlikely due to the nature of the treatment and outcome. Second, the design of the studied ITR as-
sumes that the effect of IL-7 injections are short-term, in that their lingering influence on the CD4
count across subsequent stages are insignificant. The use of an ITR to investigate injection effects is
motivated by the desire to maximize immediate utilities and its simpler interpretation [27]. However,
an observable trend in the INSPIRE participants’ CD4 dynamics is its gradual decrease over time fol-
lowing injections. An important model-based consideration in future work would to incorporate the
duration since prior injections because, with increasing time, patients CD4 load are be more likely to
fall below 500 cells/µL. Although we attempted to capture information regarding immune response
from previous injections, the temporal aspect was not considered in this analysis.

The initial research question that inspired this study addresses the issue of an ideal number of IL-7
injections to provide to a patient exhibiting poor restoration of CD4 cells despite receiving HAART.
The application of G-dWOLS requires the definition of an outcome variable that takes into account
information regarding both a desirable immune response and the number of injections for an en-
tire treatment stage. In our formulation of the statistical methodology, the outcome is defined as a
sum of utilities which reflect both pieces of information through a weighting parameter η that varies
between 0 and 1. As such, the optimal number of injections can only be determined for fixed val-
ues of this utility weight η. The choice of this parameter can depend on many aspects surrounding
clinical outcomes of IL-7 administration, such as improvements in quality of life, treatment fatigue,
side effects and treatment toxicity amongst many others. However, an ideal value of η cannot be
determined by simply examining patient characteristics and medical history: it is a value that is
subjective to a patient’s preference or a medical decision maker’s opinion. As argued in literature
surrounding the Q-TWiST method, a single clinical measure accounting for multiple health factors
provides a useful framework for medical decision-making [8, 10]. The ability to evaluate treatments
by shifting focus or changing utility weight values with respect to clinical preference enables deci-
sion makers and especially patients to subjectively tailor medical care. The risk-benefit assessment
of the Q-TWiST approach suggests that the optimal utility weight value η depends on the clinical
implications of the statistical analysis and preferences of a patient [8]. In fact, it may even be the
case that these preferences change with time. We posit that it is not possible to provide an optimal η
value via data-driven methods. Rather, our analysis allows patients to determine optimal number of
injections with respect to their personal (rather than statistical) valuation of the potential risks and
benefits of IL-7 therapy, which may change over time as, for example, side effects are experienced
and their severity and tolerability assessed.

In this work, we have provided the first ITR analysis of the ‘dosing’ of IL-7 using a myopic imple-
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mentation of G-dWOLS applied to longitudinal data. Our analysis relied on several assumptions,
including that of no unmeasured confounding which is plausible in the INSPIRE setting. The deci-
sion of an individual patient not to follow trial protocol and receive all three planned injections is
highly unlikely to be associated with immune response. There have been some investigations into
the use of random effects models to address unmeasured confounding [24], an avenue for future
investigation in a repeated measures setting such as this. Another important direction for further
research is to more fully determine the necessary and sufficient conditions under which the myopic
approach may be used in place of a DTR analysis.
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F., MOLINA, J.-M., ROUZIOUX, C., AVETTAND-FÉNOÊL, V., ET AL. Enhanced t cell recovery
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Appendix A: INSPIRE Protocol

Patients assigned to the control arm of INSPIRE 2 only have CD4 and Ki67 evaluations in their
“Induction” phase as they do not receive IL-7 injections until a year of follow-up.

Figure 5: Protocols for INSPIRE 2 and IL-7 arm in INSPIRE 3 ([12, 43]). Three IL-7 injections, each at
dose of 20µg/Kg, were provided within the first 3 weeks following enrolment into the study. After
3 months, study participants received another cycle of three injections if their CD4 count fell below
550 cells/µL. CD4 counts were measured at various times points and are displayed by green dots.
Although measurement of the Ki67 markers was also taken and depicted by blue dots in the figure
above, they were not relevant in our analysis.

Appendix B: Simulation Study

We carry out a simulation study to showcase the theoretical guarantees of the G-dWOLS analysis
in devising a myopic treatment regime using longitudinal data. The goal of this simulation study
is twofold; firstly, as presented in [44], we want to illustrate the double robustness of blip param-
eter estimators by conducting simulations with varying sample sizes under different specifications
of the treatment-free and treatment model. Secondly, we show that the myopic formulation of the
optimization problem is appropriate for longitudinal data under the assumption of no delayed treat-
ment effects. We generate longitudinal data to mimic the evolving nature of the outcome variable
and time-varying confounders on which the G-dWOLS algorithm can be applied. Intra-patient cor-
relation due to the contribution of multiple observations to the processed data is also created in the
simulated data. The presentation of simulation results is done in two parts: a summary of blip pa-
rameter estimates under different simulation designs is first depicted followed by an application of
the simulated results on a “test” population to better understand the potential advantages of the G-
dWOLS’ theoretical guarantees from a practical perspective. That is, we examine bias and variability
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of the parameters that together specify the estimated optimal ITR, and then evaluate the impact of
that ITR on a hypothetical population of new patients.

Data Generation Procedure

We let Oij = (Sexij ≡ Sexi,CD4ij , Aij , Yij) denote the jth stage-specific data of individual i as we
generate four observations, each of which we refer as a stage, for each participant. We define Yj to
be some clinical outcome to be maximized and Aj ∈ {0, 1, 2} to be a categorical exposure or treat-
ment variable. Two covariates are defined: Sexi, a time-invariant binary variable which denote a
person’s biological sex, and CD4ij , a continuous time-varying variable which can represent a per-
son’s evolving CD4 cell count. Each individual is associated with four observations O·j , as if these
measurements were taken at each stage in a longitudinal study. The Sex variable is sampled from
a Bernoulli distribution with p = 0.7 whereas the CD4 variable is sampled from a truncated nor-
mal distribution denoted by TRN[50,550] (350, 100) (centered around 350 with standard deviation 100
whose domain is bounded by 50 from below and 550 from above). The distribution parameters were
chosen either be representative of “real life” or ideal in illustrating the theoretical properties of G-
dWOLS; treatment effects and qualitative visualization of simulation results can vary depending on
the specified model parameters. For instance, when parameter estimates are theoretically biased, the
variation in CD4 counts needs to be somewhat substantial such that the bias is visually evident. The
proportion of males in participants from INSPIRE studies 2 and 3 is around 70%, hence the p was
specified to be 0.7 in the distribution of the Sex variable. The upper bound value of the truncated nor-
mal distribution was selected for context completeness because, in the INSPIRE protocol, patients are
only eligible for treatment if their measured CD4 load is below 550 cells/µL. On the other hand, CD4
count is a strictly positive quantity and a lower bound of 50 cells/µL was chosen to reflect a lower
limit of detection for testing. Treatment allocation probabilities p0, p1 and p2 depend on parameters
ααα1 and ααα2, which were chosen such that a reasonable proportion of generated “people” are assigned
to each treatment category. The outputs from Algorithm 1 will serve as inputs for the G-dWOLS
estimation procedure which was provided in more detail in section 3.2. The assigned stage-specific
treatment is sampled from a multinomial distribution whereby the probabilities p0, p1 and p2 for
treatment allocation are defined such that they can be estimated using a logistic regression model:

p0 =
1

1 +XXXαααα1 +XXXαααα2
, and

p` =
XXXαααα`

1 +XXXαααα1 +XXXαααα2
for ` = 1, 2 .

whereXα
ij = (1, Sexij ,CD4ij). Although the probabilities of receiving assigned treatment a0, a1 or a2

are in fact covariate dependent, the indices i and j are dropped to alleviate the notation. We define
our outcome variable Yij as followed:

Yij = Xβ
ijβββ + 1Aij=1X

ψ
ijψψψ1 + 1Aij=2X

ψ
ijψψψ2 + bi + εij
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where Xβ
ij =

(
1, exp {CD4ij/200} ,

√
CD4ij

)
and Xψ

ij = (1, Sexij ,CD4ij). Intra-subject correlation is
generated by a time-invariant random effect bi sampled from a normal distribution centered at zero
with standard deviation 0.5 and a random effect εij was sampled from a N (0, 3) distribution. In a
first simulation study, parameters were chosen to be: ααα1 = (-0.5, -0.2, 0.005),ααα2 = (-1, -0.4, 0.007), βββ =

(45, -10, 1), ψψψ1 = (-10, 5, 0.02) and ψψψ2 = (-30, -7, 0.1). The simulations are also conducted under the
null, where there is no difference in expected utilities across all treatment categories. In other words,
a second set of simulations is also performed withψψψ1 = ψψψ2 = (0, 0, 0) and same values forααα1,ααα2 and
βββ as in the first simulation. A summary of the data generation procedure is available in Algorithm 1.

Algorithm 1: Data Generation Procedure for Simulation Study

Input: Parameters ααα,βββ,ψψψ and sample size n
1 for i in {1, . . . , n} do
2 Sample bi ∼ N (0, 0.5)

3 for j in {1, . . . , 4} do
4 if j == 1 then
5 Sample Sexij ∼ Bern(p)

6 Sample CD4ij ∼ TRN[50,550](350, 100)

7 else
8 Set Sexij = Sexi1
9 Sample ∆ ∼ N (0, 5)

10 Set CD4ij = CD4i(j−1) + ∆

11 if CD4ij > 550 then
12 Set CD4ij = 550

13 else if CD4ij < 50 then
14 Set CD4ij = 50

15 end
16 Sample Aij ∼Multinomial(p0, p1, p2)

17 Define Xα
ij = (1, Sexij ,CD4ij)

18 Define Xβ
ij =

(
1, exp {CD4ij/200} ,

√
CD4ij

)
19 Define Xψ

ij = (1, Sexij ,CD4ij)
20 Sample εij ∼ N (0, 3)

21 Set Yij = Xβ
ijβββ + 1Aij=1X

ψ
ijψψψ1 + 1Aij=2X

ψ
ijψψψ2 + bi + εij

22 end

23 end
/* Generating inputs for G-dWOLS estimation process of simulated data */

24 Define Sex = {Sexij}(i,j)∈{1,...,n}×{1,...,K}
25 Define CD4 = {CD4ij}(i,j)∈{1,...,n}×{1,...,K}
26 DefineAAA = {Aij}(i,j)∈{1,...,n}×{1,...,K}
27 Define YYY = {Yij}(i,j)∈{1,...,n}×{1,...,K}
28 return Sex,CD4,AAA,YYY
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Estimation Under Various Model Specifications

While parameters for the generalized propensity score, the treatment-free and blip models are all
estimated in the G-dWOLS algorithm, interest predominantly lies in the blip coefficient estimates ψψψ
as they provide information on the expected difference in utilities compared to baseline treatment
A = 0. The specification of the set of covariates on which outcome regression and estimation of
generalized propensity score are performed will dictate the asymptotic behaviour of ψ̂ψψ estimates.
Recall that, in G-dWOLS, the double robustness property allows misspecification of at most one of
the nuisance models to ensure consistency of blip parameter estimators.

• Model 1 (both treatment model and treatment-free model incorrectly specified):

– Regress Y on 1, Sex, CD4 and treatments, with interactions between treatments and each
of the two covariates.

– Fit an intercept only multinomial logistic regression1.

• Model 2 (correct treatment model, incorrect treatment-free model):

– Regress Y on 1, Sex, CD4 and treatments, with interactions between treatments and each
of the two covariates.

– Fit a multinomial logistic regression on 1, Sex, CD4.

• Model 3 (incorrect treatment model, correct treatment-free model):

– Regress Y on 1, exp {CD4/200},
√

CD4 and treatments, with interactions between treat-
ments and each of the two covariate, where the interaction between treatment and CD4 is
on the untransformed, linear CD4 scale.

– Fit an intercept only multinomial logistic regression.

• Model 4 (both models correctly specified):

– Regress Y on 1, exp {CD4/200},
√

CD4 and treatments, with interactions between treat-
ments and each of the two covariates, where the interaction between treatment and CD4
is on the untransformed, linear CD4 scale.

– Fit a multinomial logistic regression on 1, Sex, CD4.

Even though correlation was included in the data generation procedure to induce bias caused by
repeated measurements, an independence correlation structure will be used in the G-dWOLS esti-
mation process within the GEE framework. A correct specification of the covariance structure would
yield more efficient estimators, but one of the main benefits of the GEE framework in accommo-
dating longitudinal data is its asymptotic unbiasedness of linear estimates ([4]). The standard error
estimation can be done via using the sandwich estimator or bootstrapping, but we used the former
method to alleviate computational burden.
The simulation study was conducted on sample sizes n = 100 and n = 1000 to investigate sample
properties of estimators. As mentioned in section 3.2, IPT and overlap weights both satisfy the bal-
ancing property, a feature of the dWOLS algorithm that ensures the double robustness of ψ̂ψψ; both

1An intercept only multinomial logistic regression model does not estimate P (A = a |XXXα) for each value ofXXXα but rather
a marginal or unconditional probability, i.e. P (A = a |XXXα) = P (A = a) = n−1(

∑n
i=1 1Ai=a).
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weights were used in analyzing the simulated data. Each simulation design requires a choice of sam-
ple size n, G-dWOLS weight function (IPT or overlap) and one of four possible model specifications.
To numerically assess the underlying properties of our statistical methodology, 1000 Monte Carlo
replications were carried out for all possible simulation scenario combinations.

Simulation Results

The presentation of the results from the simulation study will be split into two parts: a summary
of blip coefficient estimates followed by an application of these estimates on a completely novel or
“test” set of 10 000 subject-level data. In a first instance, an overview of the variation and median
of the ψ̂ψψ estimated values across the 1000 replications would provide a better idea on the effects of
sample sizes, weight function choice and model specification on the blip coefficient estimates. After-
wards, the application of simulation results on an out-of-sample population would shed light on the
quantitative benefits of the G-dWOLS estimation procedure in tailoring treatment to individual-level
information.

Summary of Blip Coefficient Estimates – Each point estimate of ψψψ is obtained by applying the G-
dWOLS algorithm on a generated dataset consisting of n subjects, for n = 100 or n = 1000 as men-
tioned previously. The results of the simulation study are showcased in Figures 6 and 7, which dis-
play boxplots summarizing the estimates across the 1000 runs for the non-null and null simulation
settings. For purposes of notational simplicity, ψ·1 is the blip model coefficient for Sex whereas ψ·2
is that for CD4, with the · representing treatment level 1 or 2, relative to baseline level of treatment.
Because similar conclusions can be drawn from the numerical results presented in both figures, the
focus of this discussion will be on Figure 6.
The first row is parameters corresponding to treatment A = 1 whereas the second row corresponds
to treatment A = 2. In each plot, there are boxplots grouped with respect to the four different com-
binations of model specifications as described on the previous page (Models 1, 2, 3 and 4). Labelled
by their shading and hatch pattern, each set itself showcases the simulation results under different
sample sizes and G-dWOLS weight form. The dotted horizontal line in every plot indicates the true
value of the parameter used in the data generating process. The most important visual pattern across
the plots is the bias of estimated values under Model 1. This result is not surprising, as G-dWOLS
does not guarantee consistency when both nuisance models are incorrectly specified. However, it is
important to point out that the estimates of ψ11 and ψ21 under Model 1 do not depart significantly
from the true parameter value. In other words, unbiasedness can still be achieved but it is not guar-
anteed in Model 1. Other noticeable patterns are the decreasing interquartile range from n = 100 to
n = 1000, which is evidence of a gain in efficiency with increasing sample size. The relative closeness
between the median of estimates in Models 2, 3 and 4 and the true parameter values depicted by hor-
izontal dotted lines suggests that unbiasedness can be reached in reasonable sample sizes. Although
the simulation results show that finite sample performance improves with increasing values of n, ψψψ
estimates at n = 100 perform well and data analysis results using similar sample sizes can yield good
point estimates with reasonable variability provided that researchers are confident in the modelling
choices. The difference in using IPT weights and overlap weights, which can be inferred by com-
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Figure 6: Boxplots of ψ̂ψψ estimates are displayed for four different model specifications, for two differ-
ent sample sizes (n = 100, 1000) and for two forms of balancing weights (IPT and overlap). The top
row corresponds to the blip parameters for treatment level 1 (relative to level 0) and the bottom row
to treatment level 2. The first column represents the main effect of treatment level, the middle and
right columns are, respectively, the interactions of treatment with Sex and CD4.

Figure 7: Boxplots of ψ̂ψψ estimates are displayed for four different model specifications, for two differ-
ent sample sizes and for two forms of balancing weights whereby all blip parameters set to 0 in the
data generating process. Rows and columns are as in Figure 6.31



paring boxplots with diagonal hatch patterns to the ones without such patterns, does not seem to be
dramatic. That being said, the smaller variability in ψ̂ψψ estimates when using overlap weights suggest
that having them bounded between 0 and 1 provide a more precise point estimate, since IPT weights
are unbounded from above ([44]).

Average Utilities and Agreement Rates – A collection of data comprised of out-of-sample 10 000
subjects, which have not been used in the estimating process, is generated using Algorithm 1 as well
to further examine and validate the results of the simulation study. Since this additional dataset was
not used in obtaining estimates of blip function parameters, two comparisons which stem from this
newly created set of potential participants are made. Firstly, the expected outcome value under uni-
form treatment (e.g. all 10 000 “test” people receive medical interventionA = 0, 1 or 2) are evaluated.
Secondly, the utility under the estimated optimal treatment denoted by Âopt depends on the value
of ψ̂ψψ of a given iteration. The estimated ideal treatment Âopt in patient-stages will be compared to
the true values of Aopt, whereby the proportion of Aopt agreeing with Âopt will be referred to as the
agreement rate. In Figure 8, we show the average outcome value under Âopt for the out-of-sample
data which we define as Y

opt
=
∑10 000
i=1 E[Y |XXX = xxxi, A = Âopt; ψ̂ψψ]. Note that the true values of Aopt

are known for all patient-stages since blip coefficient parameters are known by design in a simulation
study, fixed by the choice of data-generating parameters.

Figure 8: Average outcome under different model specifications using blip coefficients estimated
with different sample sizes; the corresponding agreement rate is displayed on top of each bar. Dotted
lines are the average utilities under uniform treatment, labelled respectively by the treatment options
A = 0, 1 or 2; average utility under optimal treatment is indicated by Aopt.

In the absence of substantial variability in the outcome variable or treatment effects, a perfect agree-
ment rate can be attained in drawing meaningful conclusions regarding the effect of sample size,
forms of G-dWOLS weight functions and model specifications on the estimation of optimal treat-
ment. The values of Y

opt
are represented by the height of each bar in Figure 8 for various model

specifications. The corresponding agreement rate for each simulation design is displayed on top of
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the bars in the barplot. Results confirm that the selection of weight function for the G-dWOLS al-
gorithm provides comparable results, although the overlap weights seem slightly better in Model 2
where only the treatment is correctly specified. Models 2, 3 and 4 show that larger outcome values
and better agreement rates can be achieved in light of the correct specification of at least one of the
treatment-free or treatment model. However, for n = 100, Model 3 and 4 seem to outperform Model
2, which suggests that the gain in efficiency can be slightly different in smaller sample sizes depend-
ing on which nuisance model is correctly specified. Nonetheless, the main conclusion that can be
extracted from Figures 6 and 8 is that desirable results are achievable in relatively larger sample sizes
given that at least one of the nuisance models is correctly specified and the chosen weight function
adheres to the balancing property.

Appendix C: Suitability of the Myopic Strategy for the INSPIRE

Setting

Suppose that Y = Y1 + Y2, i.e. the final, end-of-study outcome of interest in the dynamic treatment
strategy is the sum of the stage-specific outcomes, Yj , and consider the regret functions for a two
stage setting:

µ1(xxx1, a1;ψψψ) = E[Y (aopt1 , aopt2 (aopt1 ))− Y (a1, a
opt
2 (a1))|XXX1 = xxx1, A1 = a1]

µ2(xxx2, a2;ψψψ) = E[Y (a1, a
opt
2 (a1))− Y (a1, a2)|XXX1 = xxx1, A1 = a1,XXX2 = xxx2, A2 = a2].

We begin with the second-stage optimal treatment. The optimal dynamic (rather than myopic) treat-
ment strategy maximizes Y , and hence minimizes the regret:

aoptd,2 = arg max
a∗∈A2

E[Y (a1, a
∗)− Y (a1, a2)|XXX1 = xxx1, A1 = a1,XXX2 = xxx2, A2 = a2].

As we condition on all pre-treatment covariates and the first stage treatment, note that Y1 must be
fixed and cannot be affected by choice of the second-stage treatment. Thus the counterfactual first-
stage outcome, Y1(a1, a2), is a function of a1 only. That is, we have that

Y (a1, a2) = Y1(a1, a2) + Y2(a1, a2)

= Y1(a1) + Y2(a1, a2).

Hence,

arg max
a∗∈A2

E[Y (a1, a
∗))− Y (a1, a2)|XXX1 = xxx1, A1 = a1,XXX2 = xxx2, A2 = a2]

= arg max
a∗∈A2

E[Y (a1, a
∗))|XXX1 = xxx1, A1 = a1,XXX2 = xxx2]

= arg max
a∗∈A2

E[Y2(a1, a
∗))|XXX1 = xxx1, A1 = a1,XXX2 = xxx2]

= arg max
a∗∈A2

E[Y2(a1, a
∗))− Y2(a1, a2)|XXX1 = xxx1, A1 = a1,XXX2 = xxx2, A2 = a2].
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This is sufficient to show that the optimal myopic treatment strategy at the second stage coincides
with the optimal dynamic strategy at this stage, as the first expression defines the optimal dynamic
strategy and the latter defines the optimal myopic strategy.
Let us turn now to the optimal dynamic treatment strategy in the first stage, defined by

arg max
a∗∈A1

E[Y (a∗, aopt2 (a∗))− Y (a1, a
opt
2 (a1))|XXX1 = xxx1, A1 = a1]

= arg max
a∗∈A1

E[Y (a∗, aopt2 (a∗))|XXX1 = xxx1]

= arg max
a∗∈A1

E[Y1(a∗) + Y2(a∗, aopt2 (a∗))|XXX1 = xxx1].

The optimal myopic treatment strategy at the first stage maximizes Y1(a∗) over a∗ ∈ A1; denote this
aopt,m1 where the m indicates ‘myopic’. If aopt,m1 is the maximizer of Y2(a∗, aopt2 (a∗)) over a∗ ∈ A1,
then clearly the myopic and dynamic treatment strategies at this first stage will also coincide. In
what circumstances, then, does this hold? A sufficient set of conditions for the two strategies to
coincide are (1) treatment effects are immediate, such that Aj impact Yk for k = j only, and (2) there
are no synergistic or antagonistic effects between treatments at different stages. The latter condition
implies that there are no statistical interactions between treatments, and hence that prior treatments
do not act as tailoring variables. In the INSPIRE study, these sufficient conditions are biologically
plausible because, when including lagged injections as a tailoring variable in the blip function on top
of covariates detailed in Section 4.3, their statistical coefficients are not statistically significant at a 5%
level for selected values of η, i.e. η =0.7 and 0.9 as we used in our analyses.

Appendix D: Example of Linear Interpolation

Here, we provide an illustrative example on how we construct our outcome variable Ug in the adap-
tation of the INSPIRE data for the analysis of ITR.

Example 5.1. Consider a patient’s CD4 dynamics in Figure 9 in which they have three observations.
Two injections were provided in this treatment stage and they are represented by the two vertical
dotted lines. The three CD4 measurements are 400, 700 and 500 taken at respectively day 0, 24 and
80.
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Figure 9: Estimation of CD4 dynamics using linear interpolation.

Because two injections were administered, U i = -2. The estimated CD4 trajectory in Figure 9 crosses
the 500 cells/µL threshold at time points t ∈ {12, 66}. The utility associated to immune response can
be calculated as follows:

Ug =
1

80

∫ 80

0

1CD4(t)≥500 dt =
1

80

∫ 66

12

1 dt = 0.55

Appendix E: Range of Aopt with respect to η ∈ [0, 1]

Recall that our outcome is defined as U(η) = ηUg + (1 − η)U inj, where Ug ∈ [0, 1] and U inj ∈
{0,−1,−2,−3}. We can evaluate the range of Aopt by comparing U(η) under A = k for k = 1, 2, 3

to 0, the minimal value of U(η) under A = 0. In other words, because the utility is a non-negative
value if no injections are administered, A = k cannot be preferred for certain values of η due to the
penalization of U inj.

max
Ug

{
ηUg + (1− η)U inj} ≤ 0 under regime A = k

1 + (1− η)(−k) ≤ 0

η ≤ k

1 + k

This implies that, for k = 1, U(η) ≤ 0⇔ Aopt 6= 1 for η ≤ 1
2 . Likewise, the same logic can be applied

for k = 2 and k = 3. As a result, we have that:
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Aopt ∈ {0} for η ∈
[
0,

1

2

]
;

Aopt ∈ {0, 1} for η ∈
(

1/2, 2/3
]

;

Aopt ∈ {0, 1, 2} for η ∈
(

2/3, 3/4
]

;

Aopt ∈ {0, 1, 2, 3} for η ∈
(

3/4, 1
]
.

Appendix F: Boxplot of Generalized Propensity Scores and Weights

As expected, participants have a higher likelihood to receive 3 or no injections compared to receiving
1 or 2 injections in an injection cycle. This follows immediately from the small sample size of patient-
stages where only 1 or 2 injections were administered as a cycle. Likewise, in the boxplots of IPT
and overlap weights, it is shown that observations associated with treatment groups A = 1 or A =

2 receive larger weight values in the dWOLS analysis to accommodate for their underrepresentation
in the dataset.

Figure 10: Boxplot of generalized propensity scores, inverse weights and overlap weights

36



Appendix G: Residual Plots for Outcome Variable U(0.7)

Figure 11: Residuals plotted versus Age, BMI, CD4init, logResp and fitted values for outcome variable
U(0.7)
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Appendix H: Residual Plots for Outcome Variable U(0.9)

Figure 12: Residuals plotted versus Age, BMI, CD41, logResp and fitted values for outcome variable
U(0.9)
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