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A New Data Augmentation Convolutional Neural Network for Human
Emotion Recognition based on ECG Signals

Sihem NITA, Salim BITAM, Matthieu HEIDET, and Abdelhamid MELLOUK, IEEE Senior

Abstract—Nowadays, human emotion recognition based on
electrocardiogram (ECG) signal is considered as a hot topic ap-
plied in many sensitive domains such as healthcare, social secu-
rity, and transportation systems. In the literature, various machine
learning algorithms were proposed to this purpose however, the
recognition accuracy of these techniques is hampered by the
hardness of acquiring huge and balanced number of ECG dataset
samples, which is considered as a major challenge in this topic.
Therefore, we propose in this paper, a new data augmentation
convolutional neural network (CNN) for human emotion recognition
based on ECG signal. Specifically, we suggest to enrich the ECG
dataset by a significant number of representative ECG samples,
generated according to randomize, concatenate and resample
realistic ECG episodes process. Hence, a new seven-layer CNN
classifier is suggested, consisting of seven layers to detect human
emotions in terms of valence, arousal, and dominance levels.
Experiments that have been carried out using our proposal for Data
Augmentation Convolutional Neural Network strategy on bench-
mark DREAMER database resulted in an accuracy rate of 95.16%
to detect valence, 85.56% for arousal and 77.54% for dominance.

Index Terms— Human emotion detection, Electrocardio-
gram (ECG), Heart Rate Variability (HRV), Data augmenta-
tion, Convolutional Neural Network (CNN).

[. INTRODUCTION

The automatic digitalization and recognition of human emotions
are considered as a novel and fast-growing domain of research,
which makes a combination between knowledge in the fields of
psychophysiology, biomedical engineering, artificial intelligence and
computer science. Therefore, many researchers have revealed two
ways to recognize human emotions; the former is from facial and/or
voice expression [1] [2] [3], where the latter is from physiological
signals analysis like Electrocardiogram (ECG) [4] [5] [6]. Human
emotion detecting from voice or facial expression is very difficult,
subjective and, unreliable because the human can mask it humans
[7]. Moreover, the true effective states of a human being are not
always true in the case when only facial expressions and human
voices are considered however, the physiological signals generated
by the Autonomic Nervous System (ANS) cannot hide it, as it
reflects the real emotional state of the person [7]. Several studies
like [8] [9] [10] have successfully used physiological signal analysis
to identify human emotion. For example, in [11], the authors used the
electromyography (EMG), ECG and galvanic skin response (GSR) to
detect stress when driving cars. Moreover, the researchers proved that
the ECG is a reliable and effective source of information for human
emotion recognition systems [12] [13] and has considerable potential
for recognizing, and predicting human emotions such as anger, joy,

Sihem Nita is with Department of Computer Science, LESIA Labo-
ratory, University of Biskra, Po. Box 145 R.P. 07000 Biskra, ALGERIA.
Email: sihem.nita@univ-biskra.dz

Salim Bitam Department of Computer Science, University of Biskra,
Po. Box 145 R.P. 07000 Biskra, ALGERIA. Email: s.bitam@univ-
biskra.dz

Matthieu HEIDET is with SAMU 94 et Urgences, GHU Henri Mondor,
AP-HP, Créteil, France, Email: matthieu.heidet@aphp.fr

Abdelhamid Mellouk is with University Paris Est Creteil (UPEC), 122,
Rue Paul Armangot 94400 Vitry sur Seine, FRANCE and University of
Oran1, Oran, ALGERIA. Email: mellouk@u-pec.fr

trust, sadness, anticipation and surprise [5]. More specifically, to
detect these emotions, the Heart Rate Variability (HRV) values,
extracted from ECG are required. In fact, HRV analysis is defined
as a simple noninvasive and effective metric, reflecting the activity
of sympathetic and parasympathetic components of the ANS on the
sinoatrial node (known also as a sinus node -SA-), located in the wall
of the right atrium of the heart. Therefore, HRV helps to differentiate
among multiple emotions such as neutrality, happiness, disgust, fear,
sadness and anger [12] [14].

To deal with this issue, several machine learning-based techniques
were suggested to establish emotion recognition model. These tech-
niques have been applied on a limited size of datasets. This limited
size of dataset is due to the high cost of these sensitive data collection.
However, the availability of a rich dataset has a big impact on
the performance of machine learning. Furthermore, applying deep
learning methods to recognize human emotions from ECG signals
is still in its infancy. Because of the cost and limitation related to
data collection, the labeled ECG samples used in previous works are
significantly insufficient to train the deep learning models.

Therefore, we propose in this paper a new data augmentation
convolutional neural network for human emotion recognition based
on HRYV, extracted from ECG signal. Notice that the proposed
method increases and diversifies the considered samples and ensures
a balanced number of samples in each ECG category or class. It worth
noting that the existing studies regarding data augmentation for ECG
signal were dedicated to detect heart disease like atrial fibrillation
(AF) and not for emotion detection.

In this study, we are interested in one of the most frequently
machine learning issues which is the imbalance and scarcity of the
quantity of the training data [15]. Consequently, we suggest to enrich
the ECG dataset by a significant number of representative ECG
samples, generated according to randomize, concatenate and resample
realistic ECG episodes process. Indeed, this data augmentation does
not replace original data, the process is about increasing the amount
of training data by creating new data from existing ones. The obtained
dataset is then considered to train a new introduced seven-layer CNN
classifier to detect human emotions in terms of valence, arousal, and
dominance levels. The performance of this proposal is evaluated over
various simulations based DREAMER dataset, based on both original
and synthesized data. The obtained results were compared against
those reached using different classifiers namely, Neural network (NN)
and SVM.

The rest of this paper is organized as follows. In section 2, the
basic concepts and motivation of this work are introduced. Section
3 presents related works in human emotion recognition from the
ECG signal and the use of data augmentation in affective computing.
In section 4, we illustrate our proposed method in detail. After
that, section 5 suggests a series of experiments to validate the
proposed method on the DREAMER dataset [16]. The results are then
presented and discussed in section 6. Finally, this article is concluded
with some future research directions.

Il. BASIC CONCEPTS AND MOTIVATION

© 2022 published by Elsevier. This manuscript is made available under the CC BY NC user license

https://creativecommons.org/licenses/by-nc/4.0/


https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S1746809422001021
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S1746809422001021

2 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. XX, NO. XX, 2021

Dominance
o

Ny el | et

L J

’__4:'_-_-;'

Arousal 3 3

‘@y\

Valence

Fig. 1: VAD Emotions representation in 3D space [21].

A. Human emotion

Human emotion is not just a psychological activity, which is very
much related to physiological senses like vision, hearing, and others.
So, human emotion is defined as a complex behavioral phenomenon
that involves different levels of neural and chemical integration [17].
This complex state of feeling could be the cause of many physical
and psychological changes that affect thought and behavior. The study
presented by Russell [18] is the first one that described the human
emotions in two-dimensional model of valence and arousal. Recently,
another study presented by Warriner et al [19], which added the third
dimension dominance to form the Valence-Arousal-Dominance space
(VAD).

So, Three main affective qualities were considered by the psychol-
ogists to describe the human emotions which are: valence, arousal,
and dominance [20]. Figure 1 illustrates a 3 dimensional emotion
model, showing Valence, Arousal and Dominance (VAD in short).
These emotions are explained below.

o Valence: represents the fear or happiness; it is the positivity or
negativity of an emotion.

e Arousal: represents the intensity of emotion elicited by a
stimulus. Precisely, a high arousal is an anger status and a low
arousal represent a sadness status.

o Dominance: constitutes the state and level of control do by the
stimulus, we distinguish two states such as dominant (i.e. with
control) or submissive (i.e. without control).

As shown in figure 1, being Emotions are categorized on a 3D
plan, the x-axis represents the valence, y-axis is for arousal and z-
axis illustrates the dominance. There are 15 emotions grouped into
5 clusters: C1 represents the happy group with the emotions of
Happy, Joy, Fun, Exciting, then, C2 represents is for the love group
comprising: Love, Cheerful, Lovely, C3 shows the Sentimental Group
which includes Depressing, Sentimental, Mellows, the C4 group is
the sad group, with the emotions: Sad, Melancholy, and Terrible. C5
is the hate group with the emotion of Shock and Hate. Therefore,
a human emotion is formed a combination of the three dimensions
valence, arousal and dominance. In the happy group (Joy, Exciting,
Happy and Fun), the valence and arousal are relatively high. However,
in the sad group composed of Sad, Depressing and Melancholy the

valence in low. By this way, positive and negative emotions could be
expressed by numerical values [21]. For example, when we have a
perpendicular plan at valence 6.5, all the emotions on the right side
are called positive emotions, however, on the other side, the emotions
are considered as a negative emotions. We can also see the values of
an emotional state of fun, which are 6.85, 5.85, and 6 for valence,
arousal and dominance, respectively. According to [21], the range of
the valence, arousal and dominance are fixed as following:

o Valence value range: (Low: 1 - 4.5), (Medium: 4.5 — 5.5), and
(High: 55 -9)

o Arousal value range: (Low: 1 - 4.5), (Medium: 4.5 — 5.5), and
(High: (5.5-9)

o Dominance value range: (Low: 1 - 4.5), (Medium: 4.5 — 5.5),
and (High: 5.5 - 9)

Human emotions can be the reason of many physiological changes
through various involuntary neurological responses such as: respira-
tion [22] [23], skin electricity [24] [25], temperature [26], muscular
activity, [27] and cardiologic activity. [28] [30]. Various studies
proved that ECG can be efficiently used for detecting human emotion
[29] [31].In the next subsection, we explain how ECG can help to
detect human emotions.

B. ECG and emotion recognition

In cardiology, heart rate (HR) is defined as the number of beats
(or systolic contractions) per minute, the ECG records this cardiac
electric activity responsible for the myocardial contraction, by the
number of ventricular electric QRS waves see figure 2). HR is
measured by counting the number of R waves registered in a
minute. The time interval between two electrical R waves is called
the R-R interval, and relates to the clinical interbeat interval. The
physiological R-R interval is not constant, and varies depending on
several factors, such as breathing, hormonal stimulation, or emotion
(e.g. stress).

More specifically, the researchers mentioned that there are inner-
vations of the ANS within the heart four chambers (i.e. two atria
and two ventricles). These innervations, play a major role on the
cardiac output. Indeed, they have an effect on both the physiological
pacemaker (sinus node), which controls the HR (chronotropic effect),
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and on the conduction of the electric signal running from this node
through the rest of the heart (dromotropic effect). The sympathetic
nervous system (SNS) has positive chronotropic and dromotropic
effects (increases HR and speed of electric signal conduction),
whereas the parasympathetic nervous system (PNS) has negative
effect on both functions (slows pace and delays electric conduction)
[32]. According to the intensity of a specific emotion, the sympathetic
system is stimulated to prepare the body against a strong activity
(fight-or-flight response). The parasympathetic system dominates in
calm, resting activities (rest-and-digest response). Moreover, the HRV
is very linked to the ANS and it is responsible for keeping the
balance between the two systems: parasympathetic branches which
are defined as the rest and digest response and sympathetic branches
which are defined as the “fight and flight” responses [33].

[1l. RELATED WORK

This section reviews previous works related presented in the
literature, to detect human emotion using ECG and EEG signals.
Furthermore, the different machine learning techniques conceived to
augment datasets, which are gathered from ECG are also presented
and discussed.

A. Emotion detection methods

Up to now, several techniques have been conceived to recognize
emotion in the basis of ECG signal and EEG signal. This section
presents and discusses these works.

1) ECG-based Emotion detection methods: In the past
decades, ECG-based emotion recognition was considered as one of
the most important branches of emotion recognition [5] [39],

In order to identify emotions in response to music, Kim et al. in
[35] used different physiological signals namely, ECG, EMG, respira-
tion, and skin conductivity. 110 features are calculated from various
analysis domains, including HRV/breathing rate variability (BRV),
geometric analysis, entropy, multiscale entropy, time/frequency, sub-
band spectra, etc. These calculated features have been used to detect
the best emotion-related features then to relate them to emotional
states using the backward feature selection method. Furthermore, a

novel scheme of emotion-specific multilevel dichotomous classifi-
cation (EMDC) was developed to ameliorate the accuracy of four
musical emotions in terms of arousal dimension such as positive/low
arousal, positive/high arousal, negative/low arousal and negative/high
arousal. As a classifier, the authors used an extended linear discrimi-
nant analysis (pLDA). After a set of experiments, the authors achieved
a recognition accuracy of 70% for subject-independent classification
against 95% for subject-dependent classification. Nardelli et al.
proposed a novel approach to identify emotions automatically, these
emotions being evoked by emotional sounds. The HRV features
extracted from ECG signals were used as input for the automatic
emotion detection system. In this study, the emotions are expressed
on valence with two classes and on arousal with four classes. The
results obtained using the quadratic discriminant classifier for arousal
and valence achieved a recognition accuracy rates of 84.26% and
84.72%, respectively [12].

Katsigiannis and Ramzan in [4] presented a multi-modal database
called DREAMER, this latter consists of various ECG signals to
recognize emotions that are evoked by audio-visual stimuli. The
authors considered HR and HRV as features to detect the emotion
in terms of valence, arousal and dominance using support vector
machine (SVM) classifier, where the classification accuracy achieved
are 62.37%, 62.37% and 61.57%, respectively.

In [40], Correa et al. presented a new dataset named A dataset
for Multimodal research of affect, personality traits and mood on
Individuals and GrOupS (AMIGOS). AMIGOS is conceived to
detect human emotions using neurophysiological signals. This dataset
contains different multimodal records of the participants as well as
their reaction emotional videos. The first set of videos is classified
into one to four quadrants of the valence-arousal (VA) space such as:
LVLA, LVHA, HVLA and HVHA (where: L/H: Low/high and V/A:
Valence/Arousal). However, the second set of videos contains eight
video extracts from movies according to their score in Internet Movie
Database (IMDb) Top Rated Movies 3 list. Those selected videos
from movies are affective multimedia content and do not demand a
prior knowledge of the participants to be understood. In this case,
the authors used short and long videos to generate different types of
emotions, this is in two social situations: one for individual viewing
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and the other for viewing with groups of viewers. Using the wearable
sensors, they collected participants’ physiological signals such as:
EEG, ECG and Galvanic Skin Response (GSR). The experimental
evaluation showed that there are important correlations between the
internal and external effect of valence and arousal which is good to
predict the affective state of participants.

Sarkar and Etemad in [5] [41] applied an existing self-supervised
deep multi-task learning framework on ECG recordings for emotion
detection. In this research activity, the authors used four public
datasets namely, SWELL, WESAD, DREAMER and AMIGOS.
Compared to a fully-supervised method, the results obtained showed
that the proposed method is able to improve classification perfor-
mance. Specifically, arousal and valence detection is performed on
DREAMER dataset, achieving an accuracy of 77.1% and 74.9%,
respectively, where the accuracy obtained by WESAD is 95.0% for
4 affective states: amused, meditated, stressed and neutral. Also,
AMIGOS has given an accuracy of 78.3% and 79.6% for valence and
arousal, respectively. Finally, with SWELL, the achieved accuracy is
of 92.6%, 93.8% and 90.2% for arousal, valence, and stress.

L.Granados et al. in [42] used a dataset of physiological signals
(ECG, GSR and galvanic skin response) from AMIGOS dataset. They
suggested a Convolutional Neural Network (CNN) as an automatic
feature extractor of GSR and ECG to detect valence and arousal.
The experimental results of this research activity showed a better
precision to classify different emotional states, compared with the
results obtained by [40], when using classic algorithms of machine
learning: Gaussian Naive Bayes and SVM. In [30], Nita et al. used
an ERF classification approach to detect and diagnose driver’s stress
level while driving on the road. This approach was tested on MIT-
BIH physioNet dataset [43]. The results proved that the ERF is more
efficient than SVM in terms of recognition accuracy.

Despite physiological signal analysis being considered as an effec-
tive method to recognize the emotion of humans using HRV of ECG
signal, the proposed techniques applied a short dataset like AMIGOS,
DREAMER, WESAD and SWELL in terms of size of ECG samples
and their diversity. This limitation is due to two main reasons; the first
one concerns the limited number of participants for measurement due
to some difficult conditions (e.g. persons in the cars), and the second
reason is that the only person authorized to interpret and annotate
each sample is the cardiologist; it is a very hard task.

2) EEG-based Emotion detection methods: As a physiological
signal, the EEG can provide important and complex information
about a person’s emotional state. In the past decades, EEG-based
emotion recognition has received great interest from researchers.

In order to detect autism spectrum disorder (ASD) in children,
Aslam et al [44] developed an emotion recognition processor, based
on an eight-channel EEG signal. This research activity combines
a patient special SVM classifier with a hardware-efficient feature
extraction engine realized to discriminate the emotions in real-time.
The accuracy results in valence and arousal were 63% and 60%,
respectively. Aslam et al [45], proposed a processor for Chronic
neurological disorders (CND’s) to detects human emotions using
eight EEG channels. Using linear SVM (LSVM) as a classifier, they
achieved an accuracy of 70.71% on SEED dataset for valence, in
addition, the classification accuracy achieved with DEAP dataset
is about 72.96% and 73.14% for valence and arousal, respectively.
To solve the problem of limited EEG data in order to use deep
learning methods to identify emotions from EEG signals, the authors
of [46] applied a simple data augmentation method on MAHNOB-
HCI dataset, aiming at generating more EEG training samples. The
obtained results showed the effectiveness of the data augmentation
method to improve the performance of deep models.

Table 1 summaries recent ECG and EEG-based emotion recogni-

tion studies proposed in the literature as well as various comparisons
classification criteria.

3) Data augmentation methods for ECG: As mentioned above,
ECG-based emotion recognition has received great interest from
researchers especially by machine learning community. However,
the success of the ECG analysis based on machine learning ap-
proaches depends mainly on a rich annotated dataset. Additionally,
generating an annotated ECG dataset with high quality remains a
major challenge. In fact, the model trained with small datasets does
not generalize well data from the validation and test sets then, the
study results will not be precise. Consequently, this type of models
suffers from the problem of overfitting occurred when a good fit is
achieved on the training data, while the model does not generalize
well on new and unseen data. Data augmentation is one of the best
solutions to reduce overfitting on models, it is based on increasing
the amount of training data. In the literature, there are several data
augmentation methods proposed to extend ECG dataset. For instance,
Cao et al. in [47] developed a new data augmentation method to
improve deep neural networks (DNN), conceived to detect atrial
fibrillation (AF) from ECG recordings. The principle of this method
is to concatenate the original ECG episode to the duplicated one, this
is based on some characteristic points. After that, this concatenated
signal is resampled at random. This algorithm makes a balance in the
number of samples between the different classes of the dataset and
also increases the variety of the dataset. The results of this work
ameliorate the performance of DNN for AF detection. Based on
generative adversarial networks (GANs), Haradal et al. [48] proposed
the use of a synthetic generation method for time series as well as
a related application to increase data for biosignal classification. In
order to generate data of time-series, the authors developed every
neural network in the GANs using Long short Short-term Term
Memories (LSTM) units this is done for its hidden layers based on
a Recurrent Neural Network (RNN). The experiment results showed
the capability of this method to generate synthetic biosignals using
the EEG and ECG datasets and to analyze with better precision the
studied system.

The authors of [49] used the permutation method combined with
Window Slicing (WS) for the first time as a data augmentation
method to monitor Parkinson’s disease using wearable sensor data.
This proposed method and CNN are applied in order to determine
the motor state of Parkinson’s Disease patients. The results obtained
reached an accuracy of 86.88%. Also, Nonaka al. [50] applied a
suitable method of data augmentation in a DNN model in order to
classify atrial fibrillation. Using ECG augmentation with a single
lead ECG data, the results showed that the proposed method improve
classification of atrial fibrillation with an accuracy of 84.27%.

Although the considerable success given by data augmentation
methods cited above and applied for various research areas like
medical image analysis tasks, this scheme was not applied yet to
human emotion recognition, known as a critical domain.

Therefore, we propose in this work a new data augmentation
convolutional neural network (CNN) for human emotion recognition
based on ECG signal, where the data obtained is further used as an
input for the new seven-layer CNN classifier to classify the different
types of human emotions.

IV. THE PROPOSED ECG DATA AUGMENTATION FOR

HUMAN EMOTION RECOGNITION USING SEVEN-LAYER
CNN MODEL

To recognize human emotion and to cope with the issue of limited

size and imbalanced samples used to ML approaches, we detail in this
section our proposal, presented in figure 3. We start with ECG signal
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TABLE I: Recent Emotion Recognition Studies based on ECG and EEG signals.

Ref Recorded Method Emotions Detection Detection Amount of
signals precision rate confusion used data
ECG signal
[5] SWELL Self-supervised Arousal High Medium Low
AMIGOS approach Valence
ECG signals Valence 62.37%
[4] from 23 subjects SVM Arousal 62.37% Low Low
DREAMER Dominance 61.57%
ECG signals Least squares SVM Positive/negative valence 82.78%
[39] from 27 subjects LS-SVM high/low arousal 72.91% Medium Low
AMIGOS 4 types of emotions 61.52%
ECG signals Gaussian Naive Bayes Valence 54.5%
[40]  from 40 subjects SVM Arousal 55.1% Medium Low
AMIGOS
EEG signal
Ref Recorded Method Emotions Detection Detection Amount of
signals precision rate confusion used data
DEAP Spectral and time features,
[51] database multiple-fusion-layer based Arousal 77.19% Medium Low
ensemble classifier of Valence 76.17%
stacked auto-encoder (MESAE)
EEG signals K-nearest Neighbour Sad, disgust, 82.32%
[52] from 57 subjects (KNN), Probabilistic fear, anger, only sad emotion Medium High
Neural Network (PNN) happy and surprise is highly perceived
EEG signals Positive
[53] from 12 subjects Linear Discrimination and 64.73 % Medium Low
Analysis (LDA) negative
EEG signals Regularized graph Neutral, sad,
[54] from 15 subjects neural network fear, 73.84 % Medium High
SEED dataset and happy

acquisition and preprocessing, then the augmented data are generated
to increase data samples using our novel approach. In order to extract
heart rate variabiliy, we apply a HRV analysis tool named HRV
Analysis Software (HRVAS). HRVAS extracts various HRV features
such as time-domain features (e.g. RMSSD: Root Mean Square of
the Successive Differences and SDNN: standard deviation of normal
to normal R-R intervals and), frequency-domain features (e.g. LF:
Low Frequency power, HF: High Frequency power and LF/HF) and
nonlinear domain features (e.g. Sample entropy (SampEn)). For more
details about how these features are calculated, please refer to [56].
According to these extracted features obtained from an ECG signal,
the classification is performed by the suggested CNN to recognize
the human emotion class such as valence, arousal, or dominance. In
the next subsections, we present a detailed description of each step.

A. Data acquisition and preprocessing of ECG signal

In data analysis science, the data used for learning are often
benchmark data, however, in this healthcare domain, this kind of
datasets is limited in records number (i.e. samples quantity) and in
diversity (i.e. different types of people like young or old people, men
or females, etc.). The data augmentation may shed to this issue. In
order to enrich the dataset by introducing unobserved and various
samples, we propose to start by the use of a publicly available ECG
dataset like DREAMER [4] expressing humans with valence, arousal,
or dominance emotions. This dataset is considered as a small ECG
datasets where the total size of the ECG for this dataset is 414
(for 23 persons exposed to 18 trials and each example of ECG
contain 2 channels) [55]. More specifically, the ECG DREAMER
dataset is a multi-modal database for analyzing emotions resulting
from a set of audio-visual stimuli which are in the form of movie
clips. Furthermore, this dataset includes ECG records collected only

from 23 participants, where each participant watches 18 videos
chosen to evoke nine special emotions namely calmness happiness,
excitement, fear, surprise, sadness, disgust and anger. Therefore, the
participant’s rated his emotional response in terms of valence, arousal
and dominance on a scale from 1-5.

We remind that emotions are recognized in the basis of HRYV,
which is in its turn detected using ECG R-peaks (i.e. R-R intervals)
[59]. It is worth noting that R-R interval corresponds to the interval
between two successive R peaks in an ECG. To do so, we used R-
wave detection algorithm from the input ECG signals to extract R-R
intervals series (see figure 4) [60].

B. Data augmentation strategy

In the aim generating many and balanced ECG samples, we suggest
a data augmentation process over four steps, presented in figure 3 and
illustrated as follows.

1) Step 1. Detecting R-waves: Based on the R-wave detection
algorithm, the R-waves of the QRS complex of the normalized ECG
signals are detected R1, R2,..., Rn, as shown in figure 5.

2) Step 2. Periods calculation of R-R intervals: Different peri-
ods between successive R-waves (R-R intervals) are then calculated,
(R-R interval(1), R-R interval(2),..., R-Rinterval(n)) as shown in
figure 6.

3) Step 3. Random selection of new R-R intervals: To extend
ECG samples and records, all the nn extracted R-R intervals from
each signal is arranged and resampled in one signal with a new order.
As shown in figure 6, RR1, RR2...., RRn are selected to be arranged
and resampled as following: RR7, RR6, RR1,..., RR4. These new
R-R intervals are put in the selected ECG signal at random as shown
in figure 7.
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4) Step 4. R-R intervals concatenation: In this step, the gener-
ated and selected R-R intervals are concatenated together and added
to previous ECG records which giving rise to a new ECG signal like:
RR7, RR6, RR1, RR2, RR3, RRS5, RR4, as depicted in figure 7.

Our system starts with the use of an ECG dataset benchmark like
DREAMER dataset to detect the human emotion, this dataset consists
of only 414 samples (records) of ECG signal. The number of samples

22 T T T T T T T T
7 R-R Interval (ms)
150~ ‘ 1

100

Amplitude (mv)

45 5 55 6 65 1 75 8 85 9 95 10
Time (sec)
Fig. 6: Periods calculation of R-R interval.
150 [~ R-R Interval (ms) 1
L RR1 RR2 RR3 ’ RRS J RR4 ‘
i B | ] Rl T i T !
: 776Mms | :_7_51"_‘5_" : 732ms | : 926ms | I 768ms | [

Amplitude (mv)

Time (sec)

Fig. 7: Random selection of new R-R interval.

of the different ECG signal, could be balanced by adding the same
number of samples in each signal of any of categories in order to
enrich each category. To do so, we randomly extracted 24 samples
from each ECG signal, the total number of samples is above 10000
samples. It should be noted that the resampled signals are the same
length as the original’s ECG recording. In this research activity, we
try to examine the effects of various values of dataset size (like dataset
containing 5000 or or 10000 samples, or more) on neural network
training phase.

C. HRV features extraction

Standard HRV Measures: In the literature, the ECG in specific
HRYV signals play a crucial role in research on emotion assessment. In
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Fig. 8: Heart Rate Variability. [68] .

fact, the HRV is a measure that indicates variation in the HR over time
as shown in figure 8. The ANS is responsible for control this variation
through the balance between the SNS and PNS, in order to react to the
daily stressors as well as to control the human body’s most important
systems such as respiration, digestion and heart rate. In summary,
HRYV is one of the most interesting and noninvasive way to recognize
the ANS imbalances of the human because it has a direct impact on
the activity of the heart [62] [63]. Standard HRV analysis is to extract
a variety of parameters that are specified in the frequency domain
and also in the time domain [64] [65] [66]. In the field of ECG-
based emotion recognition, Zhao et al. in [67] studied the differences
of HRV indices between six different emotions: happiness, sadness,
anger, disgust, fear and neutral, the obtained results proved that there
are important differences of HRV indices between these emotions. In
this work, we relied on ECG signals to extract a series of features as
well as its derived HRV features extracted from frequency-domain,
time-domain, and nonlinear domains. Measuring these features is
illustrated as follows:

¢ Time-Domain Features: in this domain, we measure the varia-
tion in heart rate over time (i.e. the intervals between successive
normal cardiac cycles). This variation reflects to do some easy
calculations such as: calculate the mean normal-to-normal (NN)
intervals, the variance between NN intervals, the standard devi-
ation of NN (SDNN) and the root mean square of differences
between adjacent R-R intervals (RMSSD).

o Frequency-Domain Features: it is a complex analysis tech-
nique, the role of this technique is to show the amount of
signal that lies one or more frequency bands (ranges). For
the HRV, the technique uses the frequency bands that could
tend to correlate with some physiological phenomenon (e. g.
Parasympathetic nervous system activity) [69]. In addition, the
influence of sympathetic and parasympathetic nerves on HRV
can be distinguished by this method very well. From the power
spectral density (PSD) analysis, several features are calculated
in the frequency domain analysis. However, the Power Spectral
Density (PSD) analysis is used to understand HRYV, furthermore,
there are three spectral bands of the PSD which are: Very Low
Frequency (VLF) with spectral components less than 0.04 Hz;
Low Frequency (LF) belongs to the interval [0.04, 0.15Hz] and
High Frequency (HF) defined in the interval [0.15, 0.4Hz].

o Nonlinear Features: In the nonlinear analysis, several features
are calculated, including ECG-derived respiration (EDR) related
parameters, nonlinear dynamics related parameters, Poincaré
plot related parameters, and self-correlation related parameters.

The extracted HRV features groups are listed in table 2. The use of
HRYV becomes an increasingly popular and important tool to identify
the emotion of a human. In this phase, we suggest the use of the
HRV Analysis Software (HRVAS) [70] which is a HRV analysis tool
developed using Matlab software [71]. It is used to extract HRV

features including the time-domain (e.g. SDNN and RMSSD, the
frequency-domain (ex: Low-Frequency power (LF), High-Frequency
power (HF) and LF/HF) and nonlinear domain (ex: SampEn), more
details about the calculation of these parameters are presented in [56].

D. Architecture of seven-layer CNN model for ECG emotion
recognition system

CNN is usually consisted of two main parts; the former is a
feature extractor, which is responsible for an automatic features
learning from raw input data, while the latter is considered as a fully
connected multi-layer perceptron (MLP). This MLP is responsible for
the classification according to the learned features, realized by the first
part. The architecture of seven-layer CNN model for ECG emotion
recognition system is presented in figure 9. The network consists of
seven layers, including four convolutional layers (Conv1D), two max
pooling layers, one fully connected layers, and one Softmax layer.
The convolution operations are performed by the convolutional layers
Cl1, C2, C3 and C4 according to equation 1, where each layer uses
the output of the previous one using the current convolution kernel.

g =0 2 wwg b)) (1)

i€ M),

Where, 3:5C is the output of the k-th neuron in layer I, M}, represents
the effective range of the convolution kernel, w;y, is the weight kernel
between the i-th neurons in layer [ — 1, by represents the bias of the
k-th neuron in layer ! and the k-th neuron in layer [, in addition, f()
is used as the activation function, we opt for a Rectified Linear Unit
(ReLU) as an activation function [57]. First of all, our system has as
an input the extracted features vector with a length of 104 features
(e.g. SDNN,...). This vector is sent to the first layer C1, which applies
a kernel size of 5 (i.e. filter) and 64 feature maps. So, the output of
C1 layer is calculated as follows: input_size - (kernel_size - 1) = 104
- (5 -1) = 100 features. Note that the relationship (feature maps-
reached features) are written (feature maps@reached features) such
as (64@100). The found 100 features are then presented to the next
layer C2 with convolution kernel size of 5, which in its turn (i.e. C2)
gives rise to 64@96 (as output). Next, max-pooling S1 is used to
reduce the number of computations with a kernel size of 2, so the
output is 64@48.

The subsampling layers (also called Pooling layers) (i.e. S1 and
S2) are used to minimize the input size of the next layer and to extract
more useful features. We suggest applying the Max pooling layers to
keep only the effective features from the Conv1D layer. The equation
2 calculates the output of the k-th neuron of the subsampling layers.

xiﬁ = subsample(xﬁc;istw) (2)
Where, ar:ﬁC is the output of the k-th neuron of layer [, which is
calculated by the down sampled operation performed on the output
of k-th cluster of layer 1 - 1.

Similarly, C3 layer is performed after the max pooling process
where the output is 128@46 (here, the filter size is 3). Next layer is
C4, having as output 128 @44. For the next step, S2 is applied and the
output pooling features of S2 (128@22) are rearranged as a feature
vector and input to the fully connected layer F1 for classification.

The vector resulting from ECG features extraction state is dis-
patched to the input neurons of the fully connected network layers
(FCN) F1, this might help to perform the training and testing process
of the model. The phase of prediction is performed by the final FCN.
The equation 3 is used to calculate the output of the neuron in fully
connected layer which is equal to 256.
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Fig. 9: Architecture of seven-layer CNN model for ECG emotion recognition system.

=IO vt b))

Where, xéc is the output of the k-th neuron in layer [, w;j is the
weight vector between the k-th neurons in layer [ and the i-th neuron
in layer | — 1, by represents the bias of the k-th neuron in layer .
However, the total number of neurons in layer [ — 1 is defined by N.

In the output layer, softmax activation function is used for the
final classification to obtain the five levels of the arousal, valence,
and dominance.

V. EXPERIMENTS AND RESULTS
A. Experiments

In this section, we describe the realized tests and obtained results of
a series of experiments including the phase of features extraction and
classification. In order to evaluate the effectiveness of the proposed
method for ECG data augmentation approach to detect the emotion,
comparative experiments are conducted in this work using different
classifiers; this is done with and without data augmentation. The data
generated from the proposed method will be used by the classifier
in the learning phase. For our contribution, an seven-layer CNN
classifier is adopted. The considered classifiers for comparisons are:
NN, and SVM. Additionally, we also study the influence of every
augmentation of samples on the classifiers by the use of 5000 and
more than 10000 samples. We have used R studio platform to train
the developed networks for emotion detection with and without data
augmentation. We used in this study, the public database DREAMER
containing 23 individuals’ ECG data (14 males and 9 females), this
data was elicited by audio-visual stimuli and using low-cost devices.
Moreover, 18 film clips with a duration of 65 — 393s are proposed
to tested persons in order to elicit different emotion. Note that the
ECG signals were recorded at 256 Hz. Next, the proposed method
is run to increase the number and the diversity of ECG dataset. For
the phase of extracting features, the HRV data from the ECG signal
based on the extracted peaks are measured using HRVAS Software
(HRV Analysis) to extract 104 features. After extracting and merging
features, CNN 1is launched to classify and detect emotions.

B. Results obtained and discussion

In order to evaluate any classifier in machine learning field, it
is common to divide the dataset into two separate sets: a training
set and a testing set [73]. To this end, there are different partition
schemes that could be applied on the dataset. In our study, we apply
both 70-30 technique and 10-fold cross-validation technique. 70-30
technique is performed to illustrate the importance of training data
and how vital training information is in the proposed classifier, in this
technique, the dataset is split into 70% train data and 30% test data
[74]. The 10-fold cross validation technique is used to estimate the
skill of a machine learning model on unseen data [74]. Specifically,
the 10-fold cross validation involves randomly dividing the dataset
into 10 folds or subsets of approximately equal size. Of the 10 folds,
a single fold is retained as the validation data for testing the model,
and the remaining 9 folds are used as training data. This process is
then repeated 10 times, with each of the 10 folds used for testing
and the rest for training.

This section describes the results obtained from the experiments
that were conducted in this research. Results of the classifiers to
recognize emotions in terms of valence, arousal, and dominance levels
are listed in the tables below.

1) Accuracy of arousal detection: Figure 10 depicts the accu-
racy of arousal detected by various machine learning approaches
(i.e. SVM, NN, and CNN) in both cases with and without data
augmentation. As shown in figure 10(a) and for CNN classifier,
we have fixed 75.84% samples for training and 24.16% for testing,
as user parameters selected in an experimental manner, leading to
the best found results. Therefore, for the case when is no data
augmentation, CNN records an accuracy of 35% to detect arousal,
outperforming NN and SVM, which have given an accuracy of
33.90% and 32.77%, respectively. However, in the figure 10(b), it
was observed that using 10-fold cross validation, the accuracy without
data augmentation is 32.16% for SVM, 31.7% for NN and 26.19%
for CNN. It is clear that these values are very moderate, it is due to
the limited number of recorders used to train each Machine Learning
(ML) approaches in addition to restricted diversity of these processed
samples. On the other side, when 5000 samples are considered to
augment data to enhance machine learning performance, figure 10(a)
showed that CNN obtained the best accuracy to detect the arousal
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TABLE Il: Notation of features extracted from ECG [72].

Features group Variable  Unit Description of the extracted features
SDNN ms standard deviation of all NN intervals
SDANN ms Standard deviation of the averages of NN intervals in all 5-minute segments of the entire
recording
RMSSD ms The square root of the mean of the sum of the squares of differences between adjacent NN
Time-Domain features intervals
SDNN ms Mean of the standard deviations of all NN intervals for all 5-minute segments of the entire
index recording
SDSD ms Standard deviation of differences between adjacent NN intervals
INN50 Number of pairs of adjacent NN intervals differing by more than 50 ms in the entire
count recording; three variants are possible counting all such NN intervals pairs or only pairs
in which the first or the second interval is longer
pNN350 % NNS50 count divided by the total number of all NN intervals
HRV Total number of all NN intervals divided by the height of the histogram of all NN
TINN ms Baseline width of the minimum square difference triangular interpolation of the highest peak
of the histogram of all NN intervals
Total ms? Variance of all NN intervals < (0.4 Hz
power
! . ULF ms? Ultra low frequency < 0.003 Hz
i b b VLF ms? Very low frequency < 0.003-0.04 H
LF ms? Low frequency power 0.04-0.15 Hz
HF ms? High frequency power 0.15-0.4 Hz
LF/HF / ratio of low-high frequency power
ratio
SD1 / The standard deviation of the Poincare plot perpendicular to the line-of-identity
SD2 / The standard deviation of the Poincare plot along the line-of-identity
Nonlinear features sDysp2  / Ratio of SD1/5D2
ApEn / Measures the complexity or irregularity of the RR series
SampleEn [/ Sample entropy : a tolerance (r) of 0.2 standard deviation of the R-R interval and an

embedding dimension (m) of 2.
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Fig. 10: Accuracy comparison between CNN and other machine learning with/without data augmentation (emotion expressed in terms of
arousal). (a: 70% for training, and 30% for test, b: the 10-fold cross validation)

with 61.46% compared to NN with 35.13%. Moreover, if we consider
more than 10000 samples, we remark that CNN (with 75,84% of
samples for training and 24,16% for testing) reached also the best
accuracy with 85.56% against the other ML approaches that have
given 37.96% for NN, and 43.52% for SVM. Even when we used
10-fold cross validation, the accuracy presented in figure 10(b) with
data augmentation is increased with 40.31%, 41.44% and 73.81%,
for SVM, NN, and CNN, respectively.

2) Accuracy of valence detection: Figure 11(a) presents the
accuracy comparison of valence dimension between NN, SVM and
CNN. For the CNN classifier, we used 63,76% of samples for training

and 36,24% for testing, as user parameters experimentally selected
given the best found results in this case. Besides, the figure 11(b)
compares these classifiers using 10-fold cross validation with and
without data augmentation. The results without data augmentation
showed low classification accuracy with all classifiers with 24.36%
for SVM classifier, 22.88% for NN and 22.00% for CNN. The reason
for these poor results is the limited number of samples as well as the
unbalanced number of each sample in the dataset. Also, figure 11(a)
showed that with an augmentation of a number of 5000 samples, the
CNN obtained the highest accuracy to detect valence dimension with
59.69% compared to the other classifiers such as SVM with 34.76%
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Fig. 11: Accuracy comparison between CNN and other machine learning with/without data augmentation (emotion expressed in terms of
valence). (a: 70% for training, and 30% for test, b: the 10-fold cross validation)

Dominance dimension Dominance dimension
100

77,54 o

80

70

© 41,06 41,06
39,48

m Without data

- | Without data
augmentation

56,83 augmentation
M using 5000 samples

41,68 M using 5000 samples
4

37,89

ACCURACY (%)
2

M using more than

39
3025 N 2
: . Zi [ :
30
20
20
10
10
0
svm NN CNN

CLASSIFIER

M using more than
10000

ACCURACY (%)

SVM NN
CLASSIFIER

(a) (b)

Fig. 12: Accuracy comparison between CNN and other machine learning with/without data augmentation (emotion expressed in terms of
dominance). (a: 70% for training, and 30% for test, b: the 10-fold cross validation)

TABLE Ill: Confusion matrix for CNN without data augmentation.

a: 70% for training and 30% for test

Valence dimension Arousal dimension Dominance dimension
Predicted Predicted Predicted
12374 5 1 2 3 4512374 5
1798|6110 0 0 0O(0]0f[O0O]O0]|O 0
2171665 3 6 | 12 4 414 14|51 1 1
Actual 3 | 4 | 5|7 |8 3 8 4 12 | 6| 6 | 6| 6|55 7
4 (9| 6| 6|8 8 4 3 3 9 (8|2 (2]|5]| 4 3
513|433 5 2 1 1 1{12]1]0]2]3 2
Accuracy 22.00% 35.00% 24.62%
b: 10-fold cross validation
Valence dimension Arousal dimension Dominance dimension
Predicted Predicted Predicted
12374 5 1 2 3 4512374 5
1|1 (133 2 0 1 1 21000110 0
2 (34|12 0 0 2 2 4 1113|114 3
Actual 3 | 1 (2|13 0 0 4 5 4 1210|063 1
4 2|1 113 1 0 1 1 3|1(0|3|2]5 2
511 1 1 1 2 1 2 1 211]0(2]2]0 2
Accuracy 26.83% 26.82% 39.02%
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TABLE IV: Confusion matrix for CNN with data augmentation.

a: 70% for training and 30% for test

Valence dimension Arousal dimension Dominance dimension
Predicted Predicted Predicted
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
1 | 482 5 3 1 1 195 0 0 0 1 0 0 0 0 0
2 5 480 3 3 16 140 | 487 7 5 4 45 336 0 3 2
Actual 3 1 3 482 9 14 114 6 490 6 9 228 2 341 8 1
4 10 11 11 484 28 50 5 3 489 8 52 11 9 339 6
5 2 1 1 3 451 1 2 0 0 478 25 1 0 0 341
Accuracy 95.16% 85.56 % 77.54 %
b: 10-fold cross validation
Valence dimension Arousal dimension Dominance dimension
Predicted Predicted Predicted
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
1 | 160 7 8 23 2 39 9 7 9 1 22 4 6 3 4
2 13 161 14 16 6 2 159 34 44 11 1 149 24 34 3
Actual 3 11 19 151 22 11 4 23 245 41 4 8 28 203 27 24
4 23 22 27 208 14 3 18 21 235 4 6 29 33 260 13
5 4 4 7 5 97 0 10 15 11 86 2 12 16 9 115
Accuracy 75.1% 73.81% 72.36 %
TABLE V: Confusion matrix for SVM without data augmentation.
a: 70% for training and 30% for test
Valence dimension Arousal dimension Dominance dimension
Predicted Predicted Predicted
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 1 0 0 1 2 0 0 1 1 2 2 0
Actual 3 7 6 8 7 4 1 5 8 7 3 2 8 9 13 5
4 [ 15|16 |22 |21 |11 |3 ] 17 [30 |30 | 12 |2 | 15|21 |26 | 12
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Accuracy 24.36% 32.77% 30.25%
b: 10-fold cross validation
Valence dimension Arousal dimension Dominance dimension
Predicted Predicted Predicted
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 1 0 2 0 0 2 1 4 0
Actual 3 2 5 3 1 3 1 1 5 4 3 1 3 2 5 3
4 4 6 7 5 2 0 7 7 6 2 1 6 3 8 2
5 1 0 1 0 1 0 0 0 0 2 0 0 0 0 0
Accuracy 21.95% 34.14% 30.0%

and NN with 27.53%. Moreover, the results with an augmentation of a
number of more than 10000 samples showed that CNN (with 75,75%
of samples for training and 24,25% for testing) performs better than
the other classifiers, with an accuracy of 95.16% compared to SVM
with 36.01% and NN with 31.02%. From figure 11(b) and for the case
of data augmentation, it can be clearly seen that the CNN performs
better than the other classifiers, with an accuracy of 75.1% compared
to SVM with 33.6% and NN with 36.32%.

3) Accuracy of dominance detection: Concerning the domi-
nance dimension in both cases without and with data augmentation,
we used 84,30% of samples for training and 15,70% for testing,
as user parameters. Figure 12(a) depicts the accuracy obtained for
each model (i.e. SVM, NN and CNN), where figure 12(b) presents
the accuracy obtained using 10-fold cross validation. The results
presented in this figure using the original dataset (i.e without data
augmentation) showed that the accuracy of various classifiers is low
due to the use of a small and unbalanced dataset, except for SVM,

giving a classification accuracy equal to 30.25% to detect dominance,
however, CNN has an accuracy of only 24.62% and NN achieved
27.12%. On the other hand, when the number of samples increases,
as presented in figure 12(a), the accuracy of the classifiers increases
gradually. It can be seen that with an augmentation with 5000
samples, the CNN achieved the best accuracy with 56.83% compared
with SVM with 39% and NN with 37%. Additionally, the accuracy
of the network is also improved with an increase of more than 10000
samples, where the accuracy of the CNN using 83,10% of samples
for training and 16,90% for testing is much higher than that of the
other classifiers with 77.54% compared to SVM with 41.68% and
NN with 37.89%. Moreover, the accuracy presented in figure 12 (b)
using 10-fold cross validation showed that with data augmentation,
CNN achieved highest accuracy with 72.36%, compared to SVM with
40.77% and NN with 41.06%.

4) The confusion matrices: classification correctness: To il-
lustrate the quality of the proposed classifier against SVM and NN for
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TABLE VI: Confusion matrix for SVM with data augmentation.

a: 70% for training and 30% for test

Valence dimension Arousal dimension Dominance dimension
Predicted Predicted Predicted
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
1 75 28 9 17 26 1 0 0 0 0 1 0 0 0 0
2 92 191 63 95 21 39 | 188 77 92 64 12 29 9 5 8
Actual 3 | 167 | 143 | 250 | 183 82 25 96 339 | 126 73 54 | 289 | 536 | 274 | 204
4 | 239 | 225 | 339 | 497 | 163 | 65 | 414 | 479 | 759 | 170 | 42 | 281 | 330 | 675 | 269
5 27 5 12 15 85 0 2 0 0 40 0 0 1 0 30
Accuracy 36.01% 43.52% 41.68 %
b: 10-fold cross validation
Valence dimension Arousal dimension Dominance dimension
Predicted Predicted Predicted
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
1 42 9 10 15 14 1 0 0 0 0 1 0 0 0 0
2 15 56 11 34 11 24 58 52 31 19 7 10 2 1 13
Actual 3 49 50 92 55 39 9 47 115 45 38 13 90 194 88 68
4 69 95 97 147 63 21 117 | 156 | 233 53 10 | 105 | 105 | 213 | 108
5 10 6 7 9 30 0 1 1 0 14 0 0 0 0 7
Accuracy 35.45% 40.67 % 41.06 %
TABLE VII: Confusion matrix for NN without data augmentation.
a: 70% for training and 30% for test
Valence dimension Arousal dimension Dominance dimension
Predicted Predicted Predicted
1 2 3 4 511 2 3 4 51 2 3 4 5
1|3 3 3 4 110 0 2 1 210 0 0 0 0
210 0 3 1 110 2 0 0 1 1 0 2 5 4
Actual 3 | 9 (17 | 14 | 20 | 8 | 2 7 9 1510 | 4 7 19 | 21 | 6
4 |3 2 6 3 1|3 14 (21 |27]|6]0]10 8 9 9
515 3 0 4 4|0 2 1 1 210 2 3 4 4
Accuracy 22.88% 33.90% 27.12%
b: 10-fold cross validation
Valence dimension Arousal dimension Dominance dimension
Predicted Predicted Predicted
1 2 3 4 511 2 3 4 51 2 3 4 5
11 0 1 4 01 0 0 0 0|2 0 0 0 0
210 1 0 1 00 0 0 0 0|1 3 1 2 0
Actual 3 | 2 2 2 3 311 4 1 2 0|1 1 2 2 1
4 | 4 2 6 4 1|3 5 8 10 | 5|1 3 10 6 4
510 2 0 1 1|0 0 0 0 1|0 0 0 0 1
Accuracy 21.96 % 31.70% 34.14%

valence, arousal and dominance, tables 3, 4, 5, 6, 7 and 8 present the
confusion matrices for both cases without/with data augmentation. It
is worth noting that the correct classifications (i.e. true positives) are
shown in the diagonals of each dimension (i.e. valence, arousal and
dominance). Each column of the each matrix represents the instances
in a predicted class (i.e. valence, arousal, and dominance), while each
row represents the instances in the actual class. In this study, we
mention that the total number of the original dataset is 414 and we
note that the choice of training or test samples percentages was done
in an experimental fashion, with approximately to 70% / 30% splits
between training and test data, leading to the best found results.
o Without data augmentation case:

The table 3:a shows the confusion matrix of the training results

on the test set for CNN. For this, we have used a roughly

equal number of samples for each class of valence, arousal

and dominance in training; this number is equal to 30 samples

per class. So, in terms of valence, a total of 264 samples is

used for training with 63.76% and 150 samples for the test with
36.24%. About the arousal, the total of 314 samples is selected
for training with 75.84% and 100 samples for test with 24.16%,
however, for dominance, we have opted for 349 samples for
training with 84.30% and 65 samples for test with 15.70%.
When we used the SVM classifier, we have applied the same per-
centages of dataset partition (training/test) for arousal, valance
or dominance as follows: 71% of dataset is reserved for training
and 29% for the test. Consequently, 295 samples are devoted for
training and 119 samples for testing, as depicted in the Table
S:a.

Also for the NN classifier (see table 7:a), the same percentages
of dataset partition is considered; 71.50% of data are used for
training and 28.50% for the test, which means that 296 samples
are devoted for training and 118 samples for testing.

When we analyze table 3:a, we can see that the CNN is confused
when there are no data augmentation with an accuracy of
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TABLE VIII: Confusion matrix for NN with data augmentation.

a: 70% for training and 30% for test

Valence dimension Arousal dimension Dominance dimension
Predicted Predicted Predicted
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
1| 161 95 75 150 51 1 0 2 0 0 5 0 0 0 0
2 47 160 | 109 | 122 53 28 99 58 39 20 4 46 30 43 8
Actual 3 149 149 | 269 | 201 83 21 102 185 120 26 52 172 | 386 | 243 165
4 | 193 | 219 | 230 | 319 | 145 | 101 | 432 | 564 | 778 | 247 | 43 | 331 | 390 | 602 | 234
5 25 15 12 16 53 0 9 13 11 34 5 23 28 24 56
Accuracy 31.02% 37.96 % 37.89%
b: 10-fold cross validation
Valence dimension Arousal dimension Dominance dimension
Predicted Predicted Predicted
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
1 51 31 26 34 17 5 0 1 1 0 16 0 1 1 0
2 21 53 30 36 16 7 62 25 25 10 5 59 28 27 10
Actual 3 39 61 115 69 39 11 46 105 71 37 14 50 106 71 30
4 68 53 63 113 26 19 83 112 | 213 43 22 98 97 205 43
5 10 7 5 8 44 12 21 48 34 44 13 21 49 30 39
Accuracy 36.32% 41.44% 41.06%
TABLE IX: Precision, recall and Fl-score of CNN without data augmentation.
Valence Arousal Dominance
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
Precision | 0.170 | 0.222 | 0.259 | 0.216 | 0.277 / 0.400 | 0.333 | 0.333 | 0.285 / 0.416 | 0.172 | 0.250 | 0.250
Recall 0.233 | 0.200 | 0.233 | 0.266 | 0.166 | 0.000 | 0.600 | 0.600 | 0.450 | 0.100 | 0.000 | 0.384 | 0.384 | 0.307 | 0.153
Fl-score | 0.197 | 0.210 | 0.245 | 0.238 | 0.208 / 0.480 | 0.428 | 0.383 | 0.148 / 0.400 | 0.238 | 0.275 | 0.190
Accuracy 22.00% 35.00% 24.62%
TABLE X: Precision, recall and F1-score of CNN with data augmentation.
Valence Arousal Dominance
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
Precision | 0.979 | 0.946 | 0.965 | 0.889 | 0.984 | 0.994 | 0.757 | 0.784 | 0.881 | 0.993 / 0.870 | 0.587 | 0.812 | 0.929
Recall 0.964 | 0.960 | 0.964 | 0.968 | 0.902 | 0.390 | 0.974 | 0.980 | 0.978 | 0.956 | 0.00 | 0.960 | 0.974 | 0.968 | 0.974
Fl-score | 0971 | 0.953 | 0.965 | 0.927 | 0.941 | 0.560 | 0.852 | 0.871 | 0.927 | 0.974 / 0913 | 0.733 | 0.884 | 0.951
Accuracy 95.16% 85.56 % 77.54%

TABLE XI: The results of K-Fold Cross-Validat

ion of CNN (With and without data augmentation).

Without data augmentation With data augmentation

Valence  Arousal Dominance | Valence Arousal Dominance
MAE 1.439 1.261 1.119 0.443 0.413 0.449
RMSE 1.893 1.640 1.535 0.985 0.885 0.934
R-squared 0.001 0.003 0.001 0.519 0.439 0.392

actual/predicted valence equal to 22.00%, 35.00% for arousal,
and 24.62% for dominance. We can also see in table 5:a that the
SVM records only an accuracy of 24.36% for valence, 32.77%
for arousal, and 30.25% for dominance. A close outcome is also
seen in table 7:a, which is given by the NN with only 22.88%,
33.90% and 27.12% for valence, arousal and dominance, respec-
tively.

In addition, we have performed 10 fold cross validation on a

training data, the results reached are presented in tables 3:b, 5:b
and 7:b, as confusion matrices of optimal model from the 10
generated models, according to CNN, SVM, and NN classifiers,
respectively. We can clearly see that all these classifiers records
low accuracy, we cite for instance CNN that gives an accuracy
of 26.83% for valence, 26.82% for arousal and 39.02% for
dominance.
« With data augmentation case:
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Fig. 13: Valence dimension: (a: PR curve, b: ROC curve [without data augmentation]), (c: PR curve, d: ROC curve [with data augmentation])

Considering the total number of original dataset which is 414,
the proposed data augmentation increases the number to be
10350, which is calculated as follows: (Total number of original
dataset * x) + (Total number of original dataset). Where, x is
the number of copies generated from each ECG signal to be
added to the original dataset. In our study, x is fixed at 24
(as an experimental parameter), then the new dataset (with data
augmentation) will contain: (414%24) + (414) = 10350 samples.
To evaluate the classification accuracy of the proposed CNN
for the case of valence, we have chosen the total of 7840
samples for training with 75.75% and 2510 samples for test
with 24.25%. About the arousal, a total of 7850 samples is
selected for training with 75.84% and 2500 samples for test
with 24.16%, however, for dominance, we have chosen the total
of 8600 samples for training with 83.10% and 1750 samples
for test with 16.90%. About the SVM, We have selected for all
emotion levels, the same sampling as follows: 7301 samples (i.e
70.54%) devoted for training and 3049 samples (i.e 29.46%) for
testing, as depicted in table 6:a.

Concerning the NN and for valence, we have used 70.04% for

training which represents 7249 samples and 29.96% of dataset
for test with 3101 samples, however, for arousal and dominance,
we consider 7460 samples (i.e. 72.06%) for training and 2890
samples (i.e. 27.94%) for test, see table 8:a.

When analyzing different confusion matrices (case of data
augmentation), we can see that CNN classifier records the best
classification precision with very low confusion. For instance,
the results given by table 4:a showed that the CNN is able
to label and classify correctly each class with accuracy of
actual/predicted valence equal to 95.16%, 85.56% for arousal,
and 77.54% for dominance.

Nevertheless, the accuracy achieved by SVM presented in table
6:a is only 36.01% for valence, 43.52% for arousal, and 41.68%
for dominance. Also, the table 8:a expressed low accuracy values
of NN classifier equal to 31.02%, 37.96% and 37.89% for
valence, arousal and dominance, respectively.

As depicted in tables 4:b, 6:b and 8:b that found from the
10 cross validation, it has been clearly demonstrated that the
accuracy is obviously improved especially for CNN, which
performs better than the other classifiers (SVM and NN), with an
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Fig. 14: Arousal dimension: (a: PR curve, b: ROC curve [without data augmentation]), (c: PR curve, d: ROC curve [with data augmentation])

accuracy of 75.1% for valence, 73.81% for arousal and 72.36%
for dominance.

5) Precision, recall, and F1-Score: As seen in table 10, and for
all the three dimensions valence, arousal and dominance the CNN
reaches high precision with a high recall which means that each
result restored by a search was relevant. Additionally, a high recall
corresponds that the search retrieved all the true positives. Indeed, the
F1-score is also calculated using both precision and recall, confirming
the highest CNN precision and recall. In contrary, the results obtained
without data augmentation in table 9, the CNN has low precision with
low recall (and low Fl-score) which means that CNN returns a lot
of false positives and returns so few results.

6) K-Fold Cross Validation: In this subsection, we tested the
proposed model to check the effectiveness of the CNN classifier on
a dataset (with and without data augmentation) with the K-Cross-
validation technique, using three statistical metrics which are:

e RMSE: Root means square error, that is, how far apart the
predicted values are from the observed values in a dataset.

e MAE: The mean absolute error, it corresponds to the average
absolute error between the model prediction and the actual

observed data.
o R-squared: The measure of the correlation between the predic-
tions made by the model and the actual observations.

The results obtained using 10-fold cross validation showed that
the lower values of RMSE and MAE reflect the good ability of the
model to accurately predict the data, conversely, the high value of
R-squared means that the model can predict the actual observations
and the model performance is good.

7) PR and ROC curves: We also evaluate Precision-Recall
(PR) Curve and Receiver Operating Characteristic (ROC) curve.
PR and ROC curves are considered as metric tools to evaluate
the performance of the CNN classifier. The PR curve is a graph
that represents Precision values against the Recall values, where
ROC curve is a graph, representing true positives rate (TPR) values
depending on false positive rate values (FPR). On the one hand,
figures 13(a,b), 14(a,b) and 15(a,b) display PR and ROC curves, of
valence, arousal, and dominance given by the CNN classifier without
data augmentation, respectively. In these cases the CNN is not able
to differentiate between the positive and negative classes.

On the other hand, the PR and ROC curves of figures 13(c,d),
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Fig. 15: Dominance dimension: (a: PR curve, b: ROC curve [without data augmentation]), (c: PR curve, d: ROC curve [with data

augmentation])

14(c,d) and 15(c,d) given by the CNN classifier with data augmenta-
tion, yield an excellent performance in order to distinguish between
positive and negative classes.

VI. CONCLUSION

Detecting human emotion using ECG signal is an important
research domain with promising application future. However, the
existing methods to detect emotion using ECG are not able to identify
accurately the emotion of a human. Consequently, it is very important
to make this process automatic and to predict human emotion more
precisely. Moreover, training CNN to be able to perform the task of
detecting emotion using ECG signal needs a huge amount of ECG
data. Furthermore, it is very difficult to provide this large number of
data due to the sensitive nature of this medical data. To deal with this
problem, we proposed, a novel ECG data augmentation strategy, this
strategy is capable of generating artificial data in a way that resembles
existing ones. Then, we have developed a predictive model using an
CNN as a classifier compared to other machine learning models.

Our proposal extracts RR intervals and randomly concatenates
them from ECG episode intervals to form new samples of ECG

signals. Using the DREAMER database, the emotions are expressed
in terms of valence, arousal and dominance. Additionally, the HRV
features were extracted from RR interval series time. As shown in the
experimental results, we came to the conclusion that the performances
of all the classifiers used are affected and improved differently from
each other by the proposed method of ECG data augmentation. The
CNN classifier achieved the best performance in terms of valence,
arousal and dominance with a recognition accuracy rates of 95.16%,
85.56% and 77.54%, respectively. In this research, we focus on the
data augmentation strategy, whose goal is to improve the classification
performance as well as to increase the size and diversity of the
dataset. According to the results obtained, the datasets with a great
number of samples are the best and optimal to improve classification
performance and therefore to the emotion prediction, it is obtained
when the number of instances is increased.

As a future research direction, we suggest to conduct a new study
aiming at conceiving an embedded system that could be integrated in
different tiny devices and machines like smart watches, smartphones,
on-board computer, etc. This could help to make concrete this
proposal as a real-world application. To do that, some real-time and
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operating concerns could be tackled like respecting time constrain
and task scheduling to ensure an integrated functioning of this system
within a complicate computational device.
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