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Abstract 

 

In the last decades, a novel class of optimisation techniques, namely metaheuristics, has been 

developed and essentially devoted to the solution of highly combinatorial discrete problems. The 

improvements provided by these methods were however extended to the continuous or mixed-integer 

optimisation area. This paper addresses the problem of adapting a Genetic Algorithm (GA) to a Mixed 

Integer Non Linear Programming (MINLP) problem. The support of the work is optimal batch plant 

design, which is of great interest in the framework of Process Engineering. This study deals with the 

two main issues for GAs, i.e. the treatment of continuous variables by specific encoding and the 

efficiently constraints handling in GA. Various techniques are tested for both topics and numerical 

results show that the use of a mixed real-discrete encoding and a specific domination based 

tournament method constitutes the most appropriate approach. 

 

Keywords :  Genetic Algorithms ; Variables encoding ; Constraint handling ; Batch plant design 

 

1. Introduction 

A large range of applications drawn from the Process Engineering framework can be 

expressed as optimisation problems. This application range consists of examples formulated 

as pure continuous problems – for instance the phase equilibrium calculation problem (see 

Teh and Rangaiah, 2003), as well as problems involving pure discrete variables – like the 

discrete job-shop batch plant design (Dedieu et al., 2003). Typically, for the former case, 

difficulties arise from non-linearities while they are due to the discontinuous nature of 

functions and search space for the latter one. Finally, a great variety of models from the 

Process Engineering area combines both kinds of problems and involves simultaneously 

(continuous) operation and (discrete) decision variables. Design problems represent good 
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examples of this complexity level, such as process network superstructure (Lee and 

Grossmann, 2000) or multiproduct batch plant design problems (Modi et Karimi, 1989). 

Obviously, a significant investigation effort was carried out to develop efficient and 

robust optimisation methods, at the beginning especially in the Operational Research and 

Artificial Intelligence areas, but subsequently within the Process Engineering community. 

Among the diversity of optimisation techniques, two great classes can be distinguished. The 

former consists of deterministic methods, which are based on a harsh mathematical study 

(derivability, continuity…) of the objective function and of the constraints to ensure an 

optimum. However, despite their ability to handle non-linear models, their performances 

might be strongly affected by non-convexities. This implies a great effort to get a proper 

formulation of the model. Grossmann (2002) proposes a review of the various Mixed Integer 

Non Linear Programming (MINLP) existing techniques but it is commonly accepted that 

these methods might be heavily penalised by the NP-hard nature of the problems, and will be 

then unable to solve large size instances. 

So, a rising interest was given to the development of methods of the second class, i.e. 

metaheuristics or stochastic methods. They work by evaluating the objective function at 

various points of the search space. These points are chosen by using a set of heuristics 

combined with the generation of random numbers. The stochastic techniques do not use any 

mathematical properties of the functions, so they cannot guarantee to obtain any optimum. 

Nevertheless, metaheuristics allow the solution of a large range of problems, particularly 

when the objective function is computed by a simulator embedded in an outer optimisation 

loop (Dietz et al., 2005). Furthermore, despite their computational greedy aspect, they are 

quite easily adaptable to highly combinatorial optimisation problems. A classification of 

metaheuristics and a survey of the main techniques is proposed in Hao et al. (1999). 

Actually, this study deals with the treatment of a problem drawn from the Chemical 

Engineering literature, i.e. optimal design of batch plants usually dedicated to the production 

of chemicals. The model, involving both real and integer variables, is solved with a Genetic 

Algorithm. This technique has already shown its efficiency for this problem class, especially 

when the objective function computation is carried out through the use of Discrete Event 

Simulators (DES) Dietz et al. (2005). Then, the aim of the paper consists in the adaptation of 

the Genetic Algorithm to the studied problem and will particularly focus on the two main 

issues inherent to the model formulation: constraint handling and continuous variables 
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encoding. The efficient management of these two GAs internal procedures constitutes the 

key-point to obtain good quality results within acceptable computational time. 

This paper is divided into six sections. The problem formulation and the methodology are 

presented in section 2, while section 3 is devoted to the model development of the Optimal 

Batch Plant Design problem. Section 4 describes the Genetic Algorithm implemented 

throughout the study. Some typical results are then analysed in section 5 and finally, 

conclusions and perspectives are given in section 6. 

 

2. Outline of the problem 

 

2.1. Outline on metaheuristics 

In the two last decades, major advances were carried out in the optimisation area through 

the use of metaheuristics. These methods are defined as a set of fundamental concepts that 

lead to design heuristics rules dedicated to the solution of an optimisation problem (Hao et al., 

1999). Basically, they can be divided into two classes : neighbourhood methods and 

evolutionary algorithms. The former is obviously based on the definition of neighbourhood 

notion. 

Definition : considering a set X and a string x = [x1, x2, …, xn]∈X. Let also f be an application 

that from x leads to y = [y1, y2, …, yn]∈X. Then the neighbourhood Yx⊂X of x is 

the set of all possible images y of string x for the application f. 

Then, a neighbourhood method typically proceeds by starting with an initial 

configuration and iteratively replacing the actual solution by one of its neighbours according 

to an appropriate evolution of the objective function. Consequently, neighbourhood methods 

differ one from another by the application that defines the neighbourhood of a configuration 

and by the strategy used to update the current solution. 

A great variety of neighbourhood optimisation techniques were proposed, such as 

Simulated Annealing (SA : see Triki et al., 2005), Tabu Search (TS : see Hedar and 

Fukushima, 2006), threshold algorithms (Ducek and Scheuer, 1990) or GRASP methods 

(Ahmadi and Osman, 2005)… SA and TS are indeed the most representative examples. 

Simulated Annealing mimics the physical evolution of a solid to thermal equilibrium, slowly 

cooling it until this one reaches its lower energy state. Kirkpatrick et al. (1982) studied the 

analogy between this process and an optimisation procedure. A new state, or solution, is 
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accepted if the cost function decreases or if not, according to a probability depending on the 

cost increase and the current temperature. 

Besides, Tabu Search tackles a group of neighbours of a configuration s and keeps the 

best one s’ even if it deteriorates the objective function. Then, a tabu list of visited 

configurations is created and updated to avoid cycles like s      s’     s… Furthermore, specific 

procedures of intensification or diversification allow respectively to concentrate the search on 

most promising zones or either to guide the search towards unexplored regions. 

The second class of metaheuristics consists of evolutionary algorithms. They are based on 

the principle of natural evolution as stated by Darwin and involve three essential factors : (i) a 

population of solutions to the considered problem ; (ii) an adaptation evaluation technique of 

the individuals ; (iii) an evolution process made up of operators reproducing elimination of 

some individuals and creation of new ones (through crossover or mutation). This leads to an 

increase in the average quality of the solutions in the last computed generations. 

The most used techniques are Genetic Algorithms (GAs), Evolutionary Strategies and 

Evolutionary Programming. Section 4 presents in detail the GA adopted within this 

investigation. It just must be pointed out at this level that until recently, a large number of 

contributions shows how their efficiency can be improved (André et al., 2001). The second 

technique, commonly said (µ+λ)-ES, generates λ children from µ parents and a selection step 

reduces the population to µ individuals for the following iteration (Beyer and Schwefel, 

2002). Finally, Evolutionary Programming is based on an appropriate coding of the problem 

to be solved and on an adapted mutation operator (Yang et al., 2006). 

To summarize, as regards to metaheuristics performances, their efficiency is generally 

balanced by two opposite considerations : on the one hand, their general procedures are 

powerful enough to search for an optimum without much specific information of the problem, 

like in a “black box” context. But the No Free Lunch theory shows that no general method 

can overtake performances of all the other ones and for all problems. So, on the other hand, 

metaheuristics performances can be improved by integrating particular knowledge of the 

studied problem and this specialization means, of course, an adaptation effort. 

 

2.2. Optimal Batch Plant Design problems 

Due to the growing interest for batch operating mode, a lot of studies deal with the batch 

plant design issue. Actually, the problem was already modelled under various forms for which 
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assumptions are more or less simplistic. Generally, the objective consists in the minimization 

of plant investment cost. 

Grossmann and Sargent (1979) proposed a simple posynomial formulation for 

multiproduct batch plant. Kocis and Grossmann (1988) then used the same approach to 

validate the good behaviour of a modified version of the Outer Approximation algorithm. 

This model involved only batch stages and was subjected to a constraint on the total 

production time. Modi and Karimi (1989) modified this MINLP model by taking into account, 

in addition, semi-continuous stages and intermediate finite storage with fixed location. They 

solved small size examples (up to two products and to eight operating stages) with heuristics. 

The same model was used again by Patel et al. (1991) who treated larger size examples with 

Simulated Annealing and by Wang et al. (1996, 1999, 2002) who tackled successively 

Genetic Algorithms, Tabu Search and an Ants Foraging Method. Nevertheless, Ponsich et al. 

(2005) showed that, for this mixed continuous and discrete formulation, and independently 

from the size of the studied instance, a Branch-and-Bound technique proves to be the most 

efficient option. This Mathematical Programming (MP) technique is implemented in the SBB 

solver which is available in the GAMS modelling environment (Brooke et al., 1998). 

Besides, the above mentioned formulations were further improved by taking into account 

continuous process variables (Pinto et al., 2001) or uncertainties on product demand modelled 

by normal probability distributions (Epperly et al., 1997) or by fuzzy arithmetic concepts 

embedded in a multiobjective GA (Aguilar-Lasserre et al., 2005). However, those 

sophistication levels were not considered in the framework of the presented study. 

 

2.3. Methodology 

This paper is dedicated to the treatment of MINLP problems by a Genetic Algorithm. The 

case study is a typical engineering problem, involving mixed integer variables and constraints. 

Even though the used stochastic technique is initially devoted to deal with discrete variables, 

it was applied yet to a large number of either continuous or mixed integer optimisation 

problems. But the crucial issue is the necessary adaptation effort to integrate the treatment of 

real variables and the efficient handling of the constraints. 

The support of this work consists in several instances of the optimal batch plant design 

problem and this investigation aims at testing and evaluating various operating modes of the 

GA. As shown in previous works, (deterministic) MP methods proved to be the most efficient 
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for the considered model. Thus, the results are compared with the optimal solutions provided 

by the above mentioned SBB solver. The variables encoding issue is studied on three different 

size examples : the first one is a small size example but quite difficult to solve to global 

optimality. The two other ones are larger size instances. The constraint handling problem is 

analysed by tackling a medium size example in order to force the Genetic Algorithm to cope 

with a quite complex problem, without being restricted by computational time. 

 

3. Optimal Batch Plant Design problems 

Within the Process Engineering framework, batch processes are of growing industrial 

importance because of their flexibility and their ability to produce high added-value products 

in low volumes. 

 

3.1. Problem presentation 

Basically, batch plants are composed of items operating in a discontinuous way. Each 

batch then visits a fixed number of equipment items, as required by a given synthesis 

sequence (so-called production recipe). Since a plant is flexible enough to carry out the 

production of different products, the units must be cleaned after each batch has passed into it. 

In this study, we will only consider multiproduct plants, which means that all the products 

follow the same operating steps. Only the operating times may be different from a recipe to 

another one. 

The objective of the Optimal Batch Plant Design (OBPD) problems is to minimize the 

investment cost for all items involved in the plant, by optimising the number and size of 

parallel equipment units in each stage. The production requirements of each product and data 

related to each item (processing times and cost coefficients) are specified, as well as a fixed 

global production time. 

 

3.2. Assumptions 

The model formulation for OBPD problems adopted in this paper is based on Modi’s 

approach (Modi and Karimi, 1989), modified by Xu et al. (1993). It considers not only 

treatment in batch stages, which usually appears in all types of formulation, but also 

represents semi-continuous units that are part of the whole process (pumps, heat 
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exchangers…). A semi-continuous unit is defined as a continuous unit working alternating 

idle times and normal activity periods. 

Besides, this formulation takes into account mid-term intermediate storage tanks. They 

are just used to divide the whole process into sub-processes in order to store an amount of 

materials corresponding to the difference of each sub-process productivity. This 

representation mode confers to the plant a better flexibility for numerical resolution : it 

prevents the whole process production from being paralysed by one limiting stage. So, a batch 

plant is finally represented by series of batch stages (B), semi-continuous stages (SC) and 

storage tanks (T) as shown in figure 1 for the sake of illustration. 
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Figure 1. Typical batch plant and modelling 

 

The model is based on the following assumptions: 

(i) The devices used in a same production line cannot be used again by the same product ; 

(ii) The production is achieved through a series of single product campaigns ; 

(iii) The units of the same batch or semi-continuous stage have the same type and size ; 

(iv) All intermediate tank sizes are finite ; 

(v) If a storage tank exists between two stages, the operation mode is “Finite Intermediate 

Storage”. If not, the “Zero-Wait” policy is adopted ; 

(vi) There is no limitation for utility ; 

(vii) The cleaning time of the batch items is included into the processing time ; 

(viii) The size of the items are continuous bounded variables. 

 

3.3. Model formulation 

The model considers the synthesis of I products treated in J batch stages and K semi-

continuous stages. Each batch stage consists of mj out-of-phase parallel items with same size 

Vj. Each semi-continuous stage consists of nk out-of-phase parallel items with same 

processing rate Rk (i.e. treatment capacity, measured in volume unit per time unit). The item 
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sizes (continuous variables) and equipment numbers per stage (discrete variables) are 

bounded. The S-1 storage tanks, with size Vs*, divide the whole process into S sub-processes. 

Following the above mentioned notations, a MINLP problem can be formulated, 

minimizing the investment cost for all items. This cost is written as an exponential function of 

the units size : 

∑∑∑
−

===

++=
1S

1j

ss

K

1j

kkk

J

1j

jjj *VcRnbVmaMinCost skj γβα            (1) 

where αj and aj, βk and bk, γs and cs are classical cost coefficients. Equation (1) shows that 

there is no fixed cost coefficient for any item. This may be few realistic and will not help to 

tend towards the minimization of the equipment number per stage. Nevertheless, this 

formulation was kept unchanged in order to compare our results with those found in literature 

(see table 1 in section 5.1). 

This problem is subjected to three kinds of constraints : 

(i) Variable bounding : 

{ }J,..,1j∈∀  maxjmin VVV ≤≤              (2) 

{ }K,..,1k∈∀  maxkmin RRR ≤≤              (3) 

(ii) Time constraint : the total production time for all products must be lower than a given 

time horizon H. 

∑∑
==

=≥
I

1i i

i
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i

odPr

Q
HH               (4) 

where Qi is the demand for product i. 

(iii) Constraint on productivities : the global productivity for product i (of the whole process) 

is equal to the lowest local productivity (of each sub-process s). 

{ }I,..,1i∈∀  [ ]is
Ss

i odlocPrMinodPr
∈

=            (5) 

These local productivities are calculated from the following equations : 

(a) Local productivities for product i in sub-process s : 

{ } { }S,..,1s;I,..,1i ∈∀∈∀  
L

is

is
is

T
BodlocPr =             (6) 

(b) Limiting cycle time for product i in sub-process s : 

{ } { }S,...,1s;I,...,1i ∈∀∈∀  [ ]ikij
Jj

L
is ,TMaxT

s

θ
∈

=           (7) 

where Js and Ks are respectively the sets of batch and semi-continuous stages in sub-process s. 

(c) Cycle time for product I in batch stage j : 
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where k and k+1 represent the semi-continuous stages before and after batch stage j. 

(d) Processing time of product i in batch stage j : 

{ } { } { }S,...,1s;J,...,1j;I,...,1i s ∈∀∈∀∈∀   ijd
isij

0
ijij Bgpp +=          (9) 

(e) Operating time for product i in semi-continuous stage k : 

{ } { } { }S,...,1s;K,...,1k;I,...,1i s ∈∀∈∀∈∀   
kk

ikis
ik

nR
DB=θ        (10) 

(f) Batch size of product i in sub-process s : 

{ } { }S,..,1s;I,..,1i ∈∀∈∀   
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Finally, the size of intermediate storage tanks is estimated as the highest size difference 

between the batches treated in two successive sub-processes : 

{ }1S,..,1s −∈∀    [ ])TT(odPrSMax*V )1k(iik
L

)1s(i
L

isiis
Ii

++
∈

−−+= θθ      (12) 

Then, the aim of OBPD problems is to find the plant structure that respects the 

production requirements within the time horizon while minimizing the economic criterion. 

The resulting MINLP problem proves to be non-convex and NP-Hard (Wang et al., 1996). 

 

4. Proposed Genetic Algorithm 

The aim of this section is not to present in detail the stochastic optimisation technique 

initiated by Holland (1975). The following comments just recall its basic principles and then 

focus on the specific parameters used in this study. 

 

4.1. General principles 

The principles of GAs just lie on the analogy between a population of individuals and a 

set of solutions of any optimisation problem. The algorithm makes the solution set evolve 

towards a good quality, or adaptation, and mimics the rules of natural selection stated by 

Darwin : the weakest individuals will disappear while the best ones will survive and be able to 

reproduce themselves. By way of genetic inheritance, the features that make these individuals 

“stronger” will be preserved generation after generation. 

The mechanisms implemented in the GAs reproduce this natural behaviour. Good 

solutions are settled by creating selection rules, that will state whether the individuals are 
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adapted or not to the considered problem. Crossover and mutation operators then contribute to 

the population evolution in order to obtain, at the end of the run, a population of good quality 

solutions. This heuristics set is mixed with a strong stochastic feature, leading to a 

compromise between exploration and intensification in the search space, which contributes to 

GAs efficiency. 

The algorithm presented in this study is adapted from a very classical implementation of 

a GA. A major difficulty for GAs use lies in its parameters tuning. The quality of this tuning 

greatly depends on the user’s experience and problem knowledge. A sensitivity analysis was 

performed to set parameters such as population size, maximal number of computed 

generations or survival and mutation rates, to an appropriate value. 

As mentioned before, two main features of GAs implementation are still being a 

challenge for GAs performances : constraint handling and variables encoding. These two 

points are presented in the following sub-sections. 

 

4.2. Constraint handling 

Since constraints cannot be easily implemented just by additional equations, as in MP 

techniques, their handling is a key-point of GAs. Indeed, an efficient solution will widely 

depend on the correct choice of the constraint handling technique, in terms of both result 

quality and computational time. 

In the framework of the studied problem, the constraint on variable bounds is intrinsically 

considered in the variable encoding while the constraint on productivities is implemented in 

the model. So the only constraint to be explicitly handled by the GA is the time constraint 

formulated in equation (4), which imposes the I products to be synthesized before a time 

horizon H. 

Actually, the most obvious approach would be to lay down the limits of the feasible space 

through the elimination all the solutions violating any constraint. That means that only 

feasible solutions should be generated for the initial population. Then, the more severe the 

constraints are, the more difficult it is to randomly find one feasible solution. So, the effect of 

this technique on the computational time is strongly penalizing. Furthermore, the search 

efficiency would greatly benefit from getting information of the infeasible space. Then, 

allowing some infeasible solutions to survive the selection step should be considered. 
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This was performed in various alternative constraint handling modes. Thorough reviews 

are proposed by Coello Coello (2002a) and Michalewicz et al. (1996). The most famous 

technique is the penalisation of infeasible individuals, which is typically carried out by 

adding, in the objective function, the quadratic constraint violation weighted by a penalty 

factor. This factor can be either static (i.e. set to a fixed value along the whole search), 

dynamic (increasing with the generation number), or set by analogy with simulated annealing 

(for more details see Michalewicz and Schoenauer, 1996). The drawback due to the necessity 

of tuning at least one parameter (the penalty factor or its initial value) can be overcome with 

self-adaptive penalty approaches (Coello Coello, 2002b), yet associated with high 

computational costs. Some alternative options for constraint handling are based on 

domination concepts, drawn from multiobjective optimisation. They are implemented either 

within roulette wheel (Deb, 2000) or tournament Coello Coello and Mezura Montes (2002) 

selection methods. 

According to these investigated literature references, the following methods were 

evaluated in this paper : 

• Elimination as a reference. 

• Penalisation of the feasible individuals objective function as shown in equation (13) : 

2

i

i )HH(onCostFunctiF ∑−+= ρ          (13) 

where ρ is a penalization factor. H and Hi are respectively the fixed horizon time and the 

production time for product i, from equation (4). 

A static penalty factor is used in this study, for implementation simplicity reasons. 

Obviously, this technique efficiency greatly depends on the value of the ρ factor in the 

added penalisation term. Its value was thus the object of a sensitivity analysis. 

• Relaxation of the discrete variables range. By setting the discrete upper bounds to a 

greater value, this technique just means an enlargement of the feasible space : the 

minimization should anyway make the variables tend within their bounds. 

• Tournament based on domination rules. This method, applied in the selection step of the 

GA, relies on domination rules stated in Coello Coello and Mezura Montes (2002) and 

Deb (2000). Basically, it is stated that : (i) a feasible individual dominates an infeasible 

one ; (ii) if two individuals are feasible, the one with the best objective function wins ; 

(iii) if two individuals are infeasible, the one with the smallest constraint violation wins. 

These rules enable the selection of the winners among some randomly chosen 
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competitors. Various combinations of competitors and winners were tested. A special 

case of this method, namely single tournament (ST), occurs when the number of 

competitors is equal to the population size while the number of winners is the survivor 

number : then, all survivors are determined in one single tournament realization for each 

selection step. 

Specific selection procedures were implemented according to the above mentioned 

techniques. For the elimination, penalisation and relaxation techniques, the selection is 

performed via Golberg’s roulette wheel (Goldberg, 1989). This procedure implies the 

evaluation of the adaptation or strength of each individual. This one is computed as being the 

difference between the highest value of the objective function in the current population and 

that of the considered individual i : strengthi=fmax-fi. This method shows the advantage of 

being adapted to the operating way of GA, i.e. maximizing the criterion. Besides, the last 

constraint handling method is applied in the selection step itself, which is carried out by 

tournament. 

 

4.3. Variables encoding 

The way the variables are encoded is clearly essential for GAs efficiency. In what 

follows, three kinds of encoding, which show an increasing adaptation to the continuous 

context but share some general features, are presented. The array representing the complete 

set of all variables is called a chromosome. It is composed of genes, each one encoding a 

variable by means of one or several locus. A difference will be made between genes encoding 

continuous variables from those encoding discrete ones. Since the formers are bounded, they 

can be written in a reduced form, like a real number α bounded within 0 and 1. Each integer 

variable is coded directly in a single-locus gene, keeping it unchanged. 

Therefore, the various encoding techniques differ one from another by the way the 

continuous variables are represented and by the gene location all along the chromosome. 

 

4.3.1. Rough discrete coding 

The first encoding method tested in this study consists in discretising the continuous 

variables, i.e. the above mentioned α. According to the required precision, a given number of 

decimals of α is coded. This will logically have an effect on the string length, and 

consequently on the problem size. The so-called weight box (Montastruc, 2003) was used in 
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this study (figure 2) : each decimal is coded by four bits b1, b2, b3, b4, weighting respectively 1 

2, 3, 3. As an example, the value of decimal d of α is given by the following expression : 

3*b3*b2*b1*bd 4321 +++=            (14) 

 

1 0 0 0 0 1 1 1 0 1 1 0 0 0 1 1

= 0 x 1 + 0 x 2 + 1 x 3 + 1 x 3 = 6   x 10-4

= 0 x 1 + 1 x 2 + 1 x 3 +0 x 3 = 5   x 10-3

= 0 x 1 + 1 x 2 + 1 x 3 +1 x 3 = 8   x 10-2

= 1 x 1 + 0 x 2 + 0 x 3 +0 x 3 = 1   x 10-1

= 0,1856

CONTINUOUS GENE

1 0 0 0 0 1 1 1 0 1 1 0 0 0 1 11 0 0 0 0 1 1 10 1 1 1 0 1 1 00 1 1 0 0 0 1 1

= 0 x 1 + 0 x 2 + 1 x 3 + 1 x 3 = 6   x 10-4

= 0 x 1 + 1 x 2 + 1 x 3 +0 x 3 = 5   x 10-3

= 0 x 1 + 1 x 2 + 1 x 3 +1 x 3 = 8   x 10-2

= 1 x 1 + 0 x 2 + 0 x 3 +0 x 3 = 1   x 10-1

= 0,1856

CONTINUOUS GENE

 

Figure2. Coding example with the weight box 

 

This method enables to prevent from bias since the sum of all weights is lower than ten. 

Besides, the duplication of threes in the weighted box means that there exists various ways to 

encode a same number. This means that probabilities to get a given number have a weight. 

Concerning the variable position, all the continuous variables are located in the first part of 

the string, while the discrete genes are positioned at the bottom. The resulting configuration of 

a chromosome is shown in figure 3, for a small size example. 

 

1

2

3

1

3

3

1 0 1 0 1 0 0 2 1 3

V1 V2
V3

Item 
number

1 0 10 1 11 1 0 0 0 1 1

1

2

3

1

3

3

1

2

3

1

3

3

1 0 1 0 1 0 0 2 1 3

V1 V2
V3

Item 
number

1 0 10 1 11 1 0 0 0 1 1

 

Figure 3. Variable location in the chromosome, Coding 1 
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Obviously, the crossover and mutation operators are to be adapted to the coding 

configuration. The crossover is implemented by a single cut-point procedure. But two distinct 

mutation operators must be used : (i) mutation by reversion of the bit value on the continuous 

part of the string ; (ii) mutation by subtraction of one unit of a bit value on the discrete part 

(when possible). The latter technique is not a symmetric mutation operator, thus it cannot 

prevent the algorithm from being trapped in some local optimum. However, it proved to lead 

efficiently towards minimization. 

 

4.3.2. Crossed discrete coding 

The discretisation of the continuous variables is unchanged with regard to the previous 

case, i.e. with the weight box method. The two methods only differ by the variables location. 

This change is suggested by the respective size of continuous and discrete parts of the 

chromosome. Indeed, because of the required precision for continuous variables, the former is 

much larger than the latter (in our case, the ratio equals 16 to 1). So, the crossover operator 

with a single cut-point procedure has it very difficult to act on the discrete variable, and, 

consequently, to allow a correct exploration of the search space. 

In order to deal with this contingency, the continuous and discrete variables were mixed 

up inside the string : since each processing stage induces one continuous and one discrete 

variable (respectively the size and number of items), the variables are encoded respecting the 

order of the operating stages in the recipe, as shown in figure 4 for the same illustrative 

example. 

 

1 0 1 0 1 1 0 0 1 1 1 0 1 0 0 1 12

V1 x 2 V2 x 1 V3 x 3

1 1 0 0 3

1

2

3

1

3

3

1 0 1 0 1 1 0 0 1 1 1 0 1 0 0 1 12

V1 x 2 V2 x 1 V3 x 3

1 1 0 0 31 0 1 0 1 1 0 0 1 1 1 0 1 0 0 1 12

V1 x 2 V2 x 1 V3 x 3

1 1 0 0 3

1

2

3

1

3

3

1

2

3

1

3

3

 

Figure 4. Variables position in the chromosome, Coding 2 
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Obviously, this new encoding method strengthens probabilities that discrete genes may 

be involved by the one cut-point crossover process. However, due to the size difference 

between continuous and integer genes, there is still much more opportunities that the former 

ones were directly concerned by crossover. 

 

4.3.4. Mixed real-discrete coding 

The last coding method seems to be the best fitted to the nature of the variables. The 

reduced form α of continuous variables is coded directly on a real-value locus while, as in the 

previous cases, the discrete variables are still kept unchanged for their coding. Therefore, both 

continuous and discrete genes have a one-locus size and occupy well-distributed lengths 

inside the chromosome (figure 5). A mixed real-discrete chromosome is obtained, that will 

require specific genetic operators. 

Firstly, the crossover methods applied in real-coded GAs works on each gene and not on 

the global structure of the chromosome. The simplest method relies on arithmetical 

combinations of parent genes, such as it is presented in equation (15) : 

  yk
(1)
 = α.xk(1) + (1–α).xk(2)         (15) 

  yk
(2)
 = (1–α).xk(1) + α.xk(2)  

where xk
(1)
 and xk

(2)
 are genes k of both parents and yk

(1)
 et yk

(2)
 those of the resulting 

children. α is a fixed parameter within 0 and 1. Then, different methods are implemented 

according to the way of determining the α parameter (Michalewicz and Schoenauer, 1996). 

The chosen technique is a simulated binary crossover (SBX), proposed by Deb and Agrawal 

(1995). The method consists in generating a probability distribution around parent solutions to 

create two offspring. 
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2

V1 x 2 V2 x 1 V3 x 3

0,167 10,832 30,563

1

2

3

1

3

3

2

V1 x 2 V2 x 1 V3 x 3

0,167 10,832 30,5632

V1 x 2 V2 x 1 V3 x 3

0,167 10,832 30,563

1

2

3

1

3

3

1

2

3

1

3

3

 

Figure 5. Configuration of the chromosome, Coding 3 

 

This probability distribution is chosen in order to mimic single-point crossover behaviour 

in binary coded GAs, and mainly involves the two following features : 

• The mean decoded parameter value of two parents strings is invariant among the 

resulting children strings. 

• If the crossover is applied between two children strings at the same cross site as used to 

create the children strings, the same parents strings will result. 

This feature generates higher probabilities to create offspring close to the parents than 

away from them, as illustrated in figure 6. The procedure for the generation of two children 

solutions from two parents solutions is fully explained in Deb and Agrawal (1995). It is to 

note that this crossover procedure is carried out for each locus of the chromosome and as a 

consequence, the disposal of the continuous and discrete along the string does not matter. 

However, even though the SBX crossover does not induce any problem for real variables, it 

may lead to a real value for the discrete genes of the resulting offspring. So, for the latter case, 

these real values were truncated in order to keep only their integer part. 

With respect to mutation, on the one hand, the method corresponding to discrete variables 

was kept unchanged from the previous cases. On the other hand, for real-coded genes, an 

inventory of the variety of techniques is proposed in Michalewicz and Schoenauer (1996) or 

Raghuwanshi and Kakde (2005). They usually rely on a noise added on the initial muted gene 

value, according a specific probability distribution. For the technique used in this study, a 

uniform distribution probability was chosen. 
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0

P1 P2

0

P1 P2  

Figure 6. Probability distribution for the location of an offspring, SBX crossover 

 

5. Numerical results and interpretation 

In this section, the two main issues, i.e. variables encoding and constraint handling, are 

treated on different size instances of Optimal Batch Plant Design problems. 

 

5.1 About variable encoding 

The above mentioned procedures for variable encoding were tested on three examples. 

Problem 1 is a quite small size example. The plant has to synthesize three products and is 

constituted of four batch stages, six semi-continuous stages, and one storage tank. Thus, the 

problem involves ten continuous and ten integer optimisation variables. It was previously 

studied with various techniques as shown in table 1, that highlights the fact that Mathematical 

Programming locates the best solution, for which optimality is proved. 

Despites its small size, this example turned out to be difficult to solve to optimality since 

some of the mentioned stochastic techniques were trapped in a local optimum, showing a set 

of discrete values different from the one of the global optimal solution. The optimal values of 

the discrete variables are actually mj = {1, 2, 2, 1} parallel items for batch stages, while those 

of the local optimum are mj = {1, 3, 3, 1}. 

The two other examples are larger size instances of batch plants, both manufacturing 3 

products. Problems 2 and 3 are constituted of respectively 7 and 18 batch stages, 10 and 24 

semi-continuous stages and 3 and 6 sub-processes. They were also solved to optimality by the 

SBB solver in this study. 
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Table 1 – Typical solutions obtained by various methods 

Reference Optimisation method Best solution 

Patel et al. (1991) Simulated Annealing 368883 

Wang et al. (1996) GA 362130 

Wang et al. (1999) Tabu Search 362817 

Wang et al. (2002 Ants Foraging Method 368858 

Ponsich et al. (2005) 
Mathematical Programming 

(SBB-GAMS environment) 
356610 

 

The parameters chosen for the Genetic Algorithm are the following ones : the survival 

(respectively mutation) rate is equal to 40 % (resp. mutation 30 %). The maximum generation 

number and the population size depend on the complexity of the example. Concerning the 

constraint handling, intuitive choices were adopted : elimination was chosen for problem 1 

due to its small size (not much expensive in term of computational time). For the two larger 

examples, the single tournament method was selected. Table 2 sums up the main features of 

each problem. 

The results were analysed in terms of quality and computational time. The number of 

function calls could also be studied, but the time criterion appeared to be more significant in 

order to check the influence of the variable encoding methods. The CPU time was measured 

for a Compaq Workstation W6000. 

 

Table 2 - Characteristics of the problems and solution by GA 

 Problem 1 Problem 2 Problem 3 

Cont. / Discrete variables 10 / 10 17 / 17 42 / 42 

Optimum 356610 766031 1925888 

GA Parameters    

Population size 200 200 500 

Generations number 200 500 500 

Cst. Handling Elim. Single Tour. Single Tour. 

 

Quality is evaluated, of course, by the distance between the best found solution and the 

optimal value. But, since GAs is a stochastic method, its results have to be analysed also in 

terms of repeatability. So, for each test, the GA was run 100 times. The criterion for 

repeatability evaluation is the dispersion of the runs around GA best solution F*GA. The 2%-

dispersion or 5%-dispersion are then defined as the percentage of runs providing a result lying 

respectively in the range [F*GA, F*GA+2%] or [F*GA, F*GA+5%]. 
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The results for problem 1 are presented in table 3. Coding 1, 2 and 3 represent 

respectively rough discrete, crossed discrete and mixed real-discrete coding. Clearly, the 

solution obtained with the mixed real-coding is much better than the other ones : indeed, the 

optimal solution previously determined by the SBB solver is almost exactly located. GA with 

coding 1 stays trapped in a local optimum and was not able to find the set of discrete variables 

corresponding to the global optimum. Although it finds a bit lower solution, GA with coding 

2 does not show much more efficiency. Besides, the 2% and 5%-dispersions seem to be really 

much superior for the two first encoding techniques but this trend is due to the high quality of 

the best solution found with coding 3. 

 

Table 3 - Comparison of variables encoding for Problem 1 

 Coding 1 Coding 2 Coding 3 

GA best solution 371957 369774 356939 

Gap to optimum (%) 4.30 3.69 0.09 

2%-dispersion 68 67 1 

5%-dispersion 100 98 79 

CPU time (sec.) 3 3 1 

 

Actually, the difference between relative and absolute results quality is stressed by the 

previous remark. A run set might show very good 2%- and 5%-dispersions, if the best result is 

far from the optimum, then we get a poor global quality of the runs. On the other hand, a run 

set with lower dispersions but a better final result may be more performing. This remark is 

illustrated in figure 7, in which case 1 shows a better relative quality than case 2, which is 

characterized by a better absolute quality. 

Thus, by considering now a 5%-dispersion with the optimal solution as a reference (this 

means calculating an absolute quality), the value is equal to 50 %, 48 % and 77 %, for codings 

1, 2 and 3 respectively. This clearly highlights the good global quality of the GA runs 

performed with coding 3. 
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Case 1 Case 2

Optimum

Best solution 
found by GA

2% -Dispersion

Absolute quality level

Optimum

2% -Dispersion

Best solution 
found by GA

Case 1 Case 2

Optimum

Best solution 
found by GA

2% -Dispersion

Absolute quality level

Optimum

2% -Dispersion

Best solution 
found by GA

 

Figure 7. Example of absolute and relative quality of numerical results 

 

The computational time is not significant on such a small example. The number of 

function evaluations lies around 5,5.10
4
 for all problems. The population size and generations 

number are both equal to 200, which would mean 4.10
4
 evaluations per run, this shows that 

more than 25 % of the search is spent in randomly looking for an initial population of feasible 

solutions. Finally, the conclusion for this small size but complex problem is the superiority of 

mixed real-discrete coding. 

The results for problems 2 and 3 are presented in table 4. It can be observed that the three 

coding methods find results very close to the optimum. With regard to dispersion evolution, 

figure 8 shows the increasing superiority of coding 3 from example 1 to example 3. This 

behaviour does not seem useful for such simple examples, since the final solutions are quite 

similar, but it may be interesting for more severely constrained problems, for which the 

feasible space is reduced : it might be assumed that better solutions could be found, or at least 

more easily. This would then mean a minor necessity to use large population sizes and 

generations number and consequently, a lower computational time. 

For codings 1 and 2, the quality of all the runs can be related to the percentage of feasible 

solutions in the last generation and to the number of failures of the GA runs. It is considered 

that a GA run fails when no feasible solution was found during the whole search. It is clear 

that, however, this failure number compensates slightly the dispersion fall for encoding 1 and 

2, since the percentage of runs finding a result close to the best found solution is based on the 

total number of runs and not on the number of unfailed runs. 

 

Table 4 - Comparison of variables encoding for Problems 2 and 3 

 Problem 2 Problem 3 
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 Cod. 1 Cod. 2 Cod. 3 Cod. 1 Cod. 2 Cod. 3 

GA best solution 770837 771854 767788 1986950 1997768 1975027 

Gap to optimum (%) 0.63 0.76 0.23 3.17 3.73 2.55 

% feas. solutions (end search) 65 67 54 41 59 52 

% failures 0 0 0 37 10 0 

CPU time (sec.) 17 17 3 126 126 22 

 

It is to note that for examples 1 and 2, coding 1 is more or less as performing as coding 2. 

With an increasing problem size, the difficulty to act on discrete variables – which are located 

at the bottom of the chromosome in coding 1 – increases but there is not a high difference 

between the results provided by the two encoding methods. Only the dispersions seem to 

slightly favour coding 2 for problem 3. 
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Figure 8. Dispersion evolution for the three problems, different coding methods 

 

Finally, the comparison criterion based on CPU time highlights coding 3 performances, 

since a run of this GA version lasts almost 6 times fewer than coding 1 or 2. As a conclusion 

on variable encoding selection, numerical results prove the superiority of the mixed real-

discrete encoding method. This one will be used in the following section. 

 

5.2 About constraint handling 

The constraint handling techniques described in Section 4 are now tested on problem 2. 

 

5.2.1. Elimination of infeasible individuals 

The results in table 5 present trends for GA with the elimination technique. These can be 

seen as a reference in order to evaluate the performance of different constraint handling 

methods : they show a very good quality in terms of both distance to the optimum and 
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dispersion of the runs. However, this technique looks really less performing considering the 

computational time : this feature could constitute a bottleneck for applications that would 

compute the objective function with a simulator. 

Actually, the comparison with the behaviour of other techniques that do not need a 

feasible initial population, like tournament or penalisation, highlights that the GA with the 

elimination method has spent most of the computing time randomly searching for feasible 

solutions. Indeed, for a 1000 generation run, involving a population constituted by 200 

individuals, the theoretical function evaluation number is 2.10
5
, but it turns out to be 

approximately 2.35 10
6
. So, it can be deduced that less than 10 % of the computing time is 

used for the GA normal sequence while the remaining is devoted to the initial population 

generation. For all the other techniques, the computational time has an order of magnitude of 

six seconds. 

 

Table 5 - Results for elimination technique 

GA best solution 767182 

Gap to optimum (%) 0.15 

2%-dispersion 95 

5%-dispersion 100 

Function evaluation nbr 2.346 10
6
 

CPU time (sec.) 56 

 

5.2.2. Penalisation of infeasible individuals 

This study was carried out for different values of the penalisation factor ρ. The results 

presented in table 6 underline the logical results of the method. On the one hand, for small 

values of ρ, priority is assigned to the minimisation of the economic term while the time 

constraint is severely violated. The best solution found is then widely infeasible. On the other 

hand, for higher values of the penalisation factor, the result is feasible while the dispersion 

and optimality gap criteria keeps being satisfying. 

 

Table 6 - Results for penalisation technique 

ρ factor  100 1 0.01 

GA best solution 769956 766520 592032 

Gap to optimum (%) 0.51 0.06 -22.71 

Constraint violation (%) 0 0.64 37.4 

2%-dispersion 44 54 68 

5%-dispersion 85 89 96 
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% feas. solutions (end search) 16 3 0 

 

Finally, a compromise solution can be reached with intermediate values of ρ. Actually, by 

giving the same weight to respect of the time constraint and to the minimisation of the 

investment cost, the global performances can be improved with solutions slightly exceeding 

the time horizon. Anyway, for all cases, the number of feasible solutions keeps being quite 

low. 

 

5.2.3. Relaxation of discrete upper bounds 

In this section, the upper bounds of discrete variables, i.e. the maximal number of parallel 

items per stage, is doubled and fixed to six. As shown in table 7, the best result is similar to 

that previously obtained with the elimination technique. The dispersions fall with regard to 

the elimination technique but keep being acceptable. The ratio of feasible solutions at the end 

of the search proves the good behaviour of GA, which makes the discrete variables to tend 

within their initial bounds. Moreover, the CPU time is considerably reduced with regard to the 

elimination technique, showing the efficiency of relaxation to avoid the wasted time spent in 

generating the initial solution. Indeed, the function evaluation number is almost equal to the 

standard number generation number x population size. 

So, the discrete upper bounds relaxation really appears to be well-suited technique for 

constraint handling. Actually, for larger size problems, the problem is how to determine the 

order of magnitude of the upper bound relaxation. On the one hand, the relaxation should be 

sufficient to easily create the initial population. On the other hand, a too high increase would 

cancel the necessary pressure that pushes the individuals towards the initial discrete feasible 

space, i.e. that leads to a minimization of the parallel item number. 

 

Table 7 - Results for relaxation technique 

GA best solution 767361 

Gap to optimum (%) 0.17 

2%-dispersion 58 

5%-dispersion 95 

% feas. solutions (end search) 53 

Function evaluation nbr 2.196 10
5
 

CPU time (sec.) 7 
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5.2.4. Domination based tournament 

This method was applied for various combinations of competitors Ncomp and survivors 

Nsurv, referred as (Ncomp, Nsurv)-tournaments in the following, except for the single 

tournament technique (ST). The tested combinations and their corresponding results are 

available in table 8. For all cases, the computational time is equal to 6 seconds, that is almost 

ten times faster than the elimination technique. 

 

Table 8 - Results for various tournament techniques 

Tournament 

version 
(2,1) (3,1) (3,2) (4,1) (4,2) (5,1) (5,2) (5,4) ST 

GA best 

solution 
767450 767334 767900 768228 767587 768907 767981 767955 767788 

Gap to 

optimum 
0.19 0.17 0.24 0.29 0.20 0.38 0.25 0.25 0.25 

% feas. 

solutions 
34 47 23 53 42 54 48 10 55 

% failures 0 0 1 0 0 0 0 15 0 

 

The best results are few significant since they are similar and near-optimal for all kinds of 

tested tournaments. But, due to the low number of feasible solutions obtained at the end of the 

search, the (2,1), (3,2) and (5,4)-tournaments can be discarded. This behaviour can be easily 

explained by the following assumption : the smaller the difference between Ncomp and Nsurv 

is, the easier it is to pass the selection step for weak individuals, with a poor objective 

function. This underlines the efficiency of a more severe selection pressure, which is 

furthermore confirmed by the important number of failures of the (5,4) version. 

To evaluate the other options, the remaining criteria are the evolution of feasible 

solutions ratio during the search and the dispersions of the runs. The corresponding numerical 

results are given respectively in figures 9 and 10. On the one hand, it can be deduced that the 

combinations visiting more feasible solutions are single tournament, (5,1) and (4,1)-

tournaments. 
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Figure 9. Evolution of the ratio of feasible solutions 

(Curves in the order of legend) 

 

On the other hand, figure 10 shows that (4,2) and (5,2)-tournaments as well as single 

tournament are the most performing combinations in terms of 2%- and 5%-dispersion. So, 

even though several combinations are very close in terms of result quality, the single 

tournament method proves to be the best compromise, closely followed by the (4,1) option. 

Finally, for this example, the single tournament and relaxation methods are the most well-

fitted constraint handling methods. It is must be yet pointed that the relaxation method needs 

the relaxed upper bound as a parameter that requires a relevant choice, achieved with some 

knowledge of the studied problem. So, to conclude this study and highlight the general trends, 

the single domination-based tournament technique appears to be the most efficient constraint 

handling technique for Genetic Algorithms. 
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Figure 10. Dispersions of the run for various tournament versions 

 

This conclusion is valid for medium and large size problems. Nevertheless, it is obvious 

that when the computational time is not a limiting factor, the preference will be given to an 

elimination technique. 

 

6. Conclusions 

A Genetic Algorithm was adapted to the solution of Optimal Batch Plant Design 

problems. This work considered several operating modes of classical GA operators in order to 

determine the best fitted to the studied problem. 

Since the problem involves an MINLP formulation, the first main issue was the 

evaluation of different variable encoding techniques, that deals efficiently with both 

continuous and integer variables. Computing tests were carried out on three different sizes 

bench problems, in order to compare the behaviour of rough discrete, crossed discrete and 

mixed real-discrete coding methods. The result quality was evaluated with regard to the 

optimum found by a MP technique. The mixed real-discrete method proved to be the most 

relevant option, since it provided nearly optimal results for all examples with a very 

performing computational time. Moreover, it overcame some local optimal difficulties while 

the two other techniques were trapped in sub-optimal solutions. 

The second investigation was devoted to constraint handling techniques, namely here, the 

production time constraint.. Four constraint handling methods were tested on a medium size 

problem, that are elimination, penalisation, relaxation of the discrete upper bounds and 
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dominance based tournament. Elimination, leading to very performing results in term of 

quality but fewer efficient in term of computational time, is recommended for small size 

example treatments. The use of a penalisation technique, severely depending on the 

appropriate choice of the penalisation factor, does not ensure feasible solutions in the whole 

search. Nevertheless, it could provide compromise solutions that improve the investment 

criterion, slightly violating the constraint. 

Finally, numerical results showed that the relaxation and tournament methods were the 

most efficient procedures. However, the relaxation technique depends on the variable physical 

meaning and may be viewed as less general since it is a parameter-based technique. 

Dominance rules implemented in the selection step for the single tournament thus reveal to be 

the best constraint handling technique in case of severely constrained problems. 

This contribution has thus proposed some guidelines to tackle the two operating mode 

issues that constitute limiting factors for GA. The use of these strategies should be appropriate 

to enable an efficient evolution of the algorithm on different instances of mixed continuous 

and integer problems. 
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