A Ponsich

C Azzaro-Pantel

S Domenech

L Pibouleau

Pibouleau

Some guidelines for Genetic Algorithm implementation in MINLP Batch Plant Design problems

Keywords: Genetic Algorithms, Variables encoding, Constraint handling, Batch plant design

In the last decades, a novel class of optimisation techniques, namely metaheuristics, has been developed and essentially devoted to the solution of highly combinatorial discrete problems. The improvements provided by these methods were however extended to the continuous or mixed-integer optimisation area. This paper addresses the problem of adapting a Genetic Algorithm (GA) to a Mixed Integer Non Linear Programming (MINLP) problem. The support of the work is optimal batch plant design, which is of great interest in the framework of Process Engineering. This study deals with the two main issues for GAs, i.e. the treatment of continuous variables by specific encoding and the efficiently constraints handling in GA. Various techniques are tested for both topics and numerical results show that the use of a mixed real-discrete encoding and a specific domination based tournament method constitutes the most appropriate approach.

Introduction

A large range of applications drawn from the Process Engineering framework can be expressed as optimisation problems. This application range consists of examples formulated as pure continuous problems -for instance the phase equilibrium calculation problem (see [START_REF] Teh | Tabu search for global optimization of continuous functions with application to phase equilibrum calculations[END_REF], as well as problems involving pure discrete variables -like the discrete job-shop batch plant design [START_REF] Dedieu | Design and retrofit of multiobjective batch plants via multicriteria genetic algorithm[END_REF]. Typically, for the former case, difficulties arise from non-linearities while they are due to the discontinuous nature of functions and search space for the latter one. Finally, a great variety of models from the Process Engineering area combines both kinds of problems and involves simultaneously (continuous) operation and (discrete) decision variables. Design problems represent good encoding. The efficient management of these two GAs internal procedures constitutes the key-point to obtain good quality results within acceptable computational time.

This paper is divided into six sections. The problem formulation and the methodology are presented in section 2, while section 3 is devoted to the model development of the Optimal Batch Plant Design problem. Section 4 describes the Genetic Algorithm implemented throughout the study. Some typical results are then analysed in section 5 and finally, conclusions and perspectives are given in section 6.

Outline of the problem

Outline on metaheuristics

In the two last decades, major advances were carried out in the optimisation area through the use of metaheuristics. These methods are defined as a set of fundamental concepts that lead to design heuristics rules dedicated to the solution of an optimisation problem [START_REF] Hao | Métaheuristiques pour l'optimisation combinatoire et l'affectation sous contrainte[END_REF]. Basically, they can be divided into two classes : neighbourhood methods and evolutionary algorithms. The former is obviously based on the definition of neighbourhood notion.

Definition : considering a set X and a string x = [x 1 , x 2 , …, x n]∈X. Let also f be an application that from x leads to y = [y 1 , y 2 , …, y n]∈X. Then the neighbourhood Y x ⊂ X of x is the set of all possible images y of string x for the application f. Then, a neighbourhood method typically proceeds by starting with an initial configuration and iteratively replacing the actual solution by one of its neighbours according to an appropriate evolution of the objective function. Consequently, neighbourhood methods differ one from another by the application that defines the neighbourhood of a configuration and by the strategy used to update the current solution.

A great variety of neighbourhood optimisation techniques were proposed, such as Simulated Annealing (SA : see [START_REF] Triki | A theoretical study on the behaviour of simulated annealing leading to a new cooling schedule[END_REF], Tabu Search (TS : see Hedar and Fukushima, 2006), threshold algorithms [START_REF] Ducek | Threshold accepting : a general purpose optimization algorithm[END_REF] or GRASP methods [START_REF] Ahmadi | Greedy random adaptive memory programming search for the capacitated clustering problem[END_REF]… SA and TS are indeed the most representative examples. Simulated Annealing mimics the physical evolution of a solid to thermal equilibrium, slowly cooling it until this one reaches its lower energy state. [START_REF] Kirkpatrick | Optimization by Simulated Annealing[END_REF] studied the analogy between this process and an optimisation procedure. A new state, or solution, is A. Ponsich, C. Azzaro-Pantel, S. Domenech, and L. Pibouleau Some guidelines for Genetic Algorithm implementation in MINLP Batch Plant Design problems, sous presse dans Springer volume, intitulé "Advances in Metaheuristics for Hard Optimization". edited by Z. Michalewicz and P. Siarry in the Natural Computing series. 4 accepted if the cost function decreases or if not, according to a probability depending on the cost increase and the current temperature.

Besides, Tabu Search tackles a group of neighbours of a configuration s and keeps the best one s' even if it deteriorates the objective function. Then, a tabu list of visited configurations is created and updated to avoid cycles like s s' s… Furthermore, specific procedures of intensification or diversification allow respectively to concentrate the search on most promising zones or either to guide the search towards unexplored regions.

The second class of metaheuristics consists of evolutionary algorithms. They are based on the principle of natural evolution as stated by Darwin and involve three essential factors : (i) a population of solutions to the considered problem ; (ii) an adaptation evaluation technique of the individuals ; (iii) an evolution process made up of operators reproducing elimination of some individuals and creation of new ones (through crossover or mutation). This leads to an increase in the average quality of the solutions in the last computed generations.

The most used techniques are Genetic Algorithms (GAs), Evolutionary Strategies and Evolutionary Programming. Section 4 presents in detail the GA adopted within this investigation. It just must be pointed out at this level that until recently, a large number of contributions shows how their efficiency can be improved (André et al., 2001). The second technique, commonly said (µ+λ)-ES, generates λ children from µ parents and a selection step reduces the population to µ individuals for the following iteration [START_REF] Beyer | Evolution Strategies, a comprehensive introduction[END_REF]. Finally, Evolutionary Programming is based on an appropriate coding of the problem to be solved and on an adapted mutation operator [START_REF] Yang | An evolutionary programming algorithm for continuous global optimization[END_REF].

To summarize, as regards to metaheuristics performances, their efficiency is generally balanced by two opposite considerations : on the one hand, their general procedures are powerful enough to search for an optimum without much specific information of the problem, like in a "black box" context. But the No Free Lunch theory shows that no general method can overtake performances of all the other ones and for all problems. So, on the other hand, metaheuristics performances can be improved by integrating particular knowledge of the studied problem and this specialization means, of course, an adaptation effort.

Optimal Batch Plant Design problems

Due to the growing interest for batch operating mode, a lot of studies deal with the batch plant design issue. Actually, the problem was already modelled under various forms for which assumptions are more or less simplistic. Generally, the objective consists in the minimization of plant investment cost. [START_REF] Grossmann | Optimum design of multipurpose plants[END_REF] proposed a simple posynomial formulation for multiproduct batch plant. [START_REF] Kocis | Global optimisation of nonconvex mixed-integer non linear programming (MINLP) problems in process synthesis[END_REF] then used the same approach to validate the good behaviour of a modified version of the Outer Approximation algorithm.

This model involved only batch stages and was subjected to a constraint on the total production time. [START_REF] Modi | Design of multiproduct batch processes with finite intermediate storage[END_REF] The same model was used again by [START_REF] Patel | Preliminary design of multiproduct non-continuous plants using simulated annealing[END_REF] who treated larger size examples with Simulated Annealing and by [START_REF] Wang | Optimal design of multiproduct batch chemical process using genetic algorithms[END_REF][START_REF] Wang | Optimal design of multiproduct batch chemical process using tabu search[END_REF][START_REF] Wang | Ants foraging mechanism in the design of batch chemical process[END_REF] who tackled successively Genetic Algorithms, Tabu Search and an Ants Foraging Method. Nevertheless, [START_REF] Ponsich | About the relevance of Mathematical Programming and stochastic optimisation methods : application to optimal batch plant design problems[END_REF] showed that, for this mixed continuous and discrete formulation, and independently from the size of the studied instance, a Branch-and-Bound technique proves to be the most efficient option. This Mathematical Programming (MP) technique is implemented in the SBB solver which is available in the GAMS modelling environment [START_REF] Brooke | GAMS User's Guide[END_REF].

Besides, the above mentioned formulations were further improved by taking into account continuous process variables [START_REF] Pinto | Process performance models in the optimization of multiproduct protein production plants[END_REF] or uncertainties on product demand modelled by normal probability distributions [START_REF] Epperly | On the global and efficient solution of stochastic batch plant design problems[END_REF] or by fuzzy arithmetic concepts embedded in a multiobjective GA [START_REF] Aguilar-Lasserre | Modélisation des imprécisions de la demande en conception optimale multicritère d'ateliers discontinus[END_REF]. However, those sophistication levels were not considered in the framework of the presented study.

Methodology

This paper is dedicated to the treatment of MINLP problems by a Genetic Algorithm. The case study is a typical engineering problem, involving mixed integer variables and constraints.

Even though the used stochastic technique is initially devoted to deal with discrete variables, it was applied yet to a large number of either continuous or mixed integer optimisation problems. But the crucial issue is the necessary adaptation effort to integrate the treatment of real variables and the efficient handling of the constraints.

The support of this work consists in several instances of the optimal batch plant design problem and this investigation aims at testing and evaluating various operating modes of the GA. As shown in previous works, (deterministic) MP methods proved to be the most efficient

6

for the considered model. Thus, the results are compared with the optimal solutions provided by the above mentioned SBB solver. The variables encoding issue is studied on three different size examples : the first one is a small size example but quite difficult to solve to global optimality. The two other ones are larger size instances. The constraint handling problem is analysed by tackling a medium size example in order to force the Genetic Algorithm to cope with a quite complex problem, without being restricted by computational time.

Optimal Batch Plant Design problems

Within the Process Engineering framework, batch processes are of growing industrial importance because of their flexibility and their ability to produce high added-value products in low volumes.

Problem presentation

Basically, batch plants are composed of items operating in a discontinuous way. Each batch then visits a fixed number of equipment items, as required by a given synthesis sequence (so-called production recipe). Since a plant is flexible enough to carry out the production of different products, the units must be cleaned after each batch has passed into it.

In this study, we will only consider multiproduct plants, which means that all the products follow the same operating steps. Only the operating times may be different from a recipe to another one.

The objective of the Optimal Batch Plant Design (OBPD) problems is to minimize the investment cost for all items involved in the plant, by optimising the number and size of parallel equipment units in each stage. The production requirements of each product and data related to each item (processing times and cost coefficients) are specified, as well as a fixed global production time.

Assumptions

The model formulation for OBPD problems adopted in this paper is based on Modi's approach [START_REF] Modi | Design of multiproduct batch processes with finite intermediate storage[END_REF], modified by [START_REF] Xu | Optimized design of multiproduct batch chemical process -A heuristic approach[END_REF] The model is based on the following assumptions:

(i) The devices used in a same production line cannot be used again by the same product ;

(ii) The production is achieved through a series of single product campaigns ;

(iii) The units of the same batch or semi-continuous stage have the same type and size ;

(iv) All intermediate tank sizes are finite ;

(v) If a storage tank exists between two stages, the operation mode is "Finite Intermediate Storage". If not, the "Zero-Wait" policy is adopted ;

(vi) There is no limitation for utility ;

(vii) The cleaning time of the batch items is included into the processing time ;

(viii) The size of the items are continuous bounded variables.

Model formulation

The model considers the synthesis of I products treated in J batch stages and K semicontinuous stages. Each batch stage consists of m j out-of-phase parallel items with same size 8 sizes (continuous variables) and equipment numbers per stage (discrete variables) are bounded. The S-1 storage tanks, with size V s *, divide the whole process into S sub-processes.

V j . Each semi-
Following the above mentioned notations, a MINLP problem can be formulated, minimizing the investment cost for all items. This cost is written as an exponential function of the units size :

∑ ∑ ∑ - = = = + + = 1 S 1 j s s K 1 j k k k J 1 j j j j * V c R n b V m a MinCost s k j γ β α (1)
where α j and a j , β k and b k , γ s and c s are classical cost coefficients. Equation (1) shows that there is no fixed cost coefficient for any item. This may be few realistic and will not help to tend towards the minimization of the equipment number per stage. Nevertheless, this formulation was kept unchanged in order to compare our results with those found in literature (see table 1 in section 5.1). This problem is subjected to three kinds of constraints :

(i) Variable bounding : { } J ,.., 1 j∈ ∀ max j min V V V ≤ ≤ (2) { } K ,.., 1 k∈ ∀ max k min R R R ≤ ≤ (3)
(ii) Time constraint : the total production time for all products must be lower than a given time horizon H.

∑ ∑

= = = ≥ I 1 i i i I 1 i i od Pr Q H H (4)
where Q i is the demand for product i.

(iii) Constraint on productivities : the global productivity for product i (of the whole process) is equal to the lowest local productivity (of each sub-process s).

{ }

I ,.., 1 i∈ ∀ [] is S s i odloc Pr Min od Pr ∈ =
(5)

These local productivities are calculated from the following equations :

(a) Local productivities for product i in sub-process s :

{ } { } S ,.., 1 s ; I ,.., 1 i ∈ ∀ ∈ ∀ L is is is T B odloc Pr = (6) (b) Limiting cycle time for product i in sub-process s : { } { } S ,..., 1 s ; I ,..., 1 i ∈ ∀ ∈ ∀ [] ik ij J j L is , T Max T s θ ∈ = (7)
where J s and K s are respectively the sets of batch and semi-continuous stages in sub-process s.

(c) Cycle time for product I in batch stage j :

A.

{ } { } J ,..., 1 j ; I ,..., 1 i ∈ ∀ ∈ ∀ j ij) 1 k (i ik ij m p T + + = + θ θ (8)
where k and k+1 represent the semi-continuous stages before and after batch stage j.

(d) Processing time of product i in batch stage j :

{ } { } { } S ,..., 1 s ; J ,..., 1 j ; I ,..., 1 i s ∈ ∀ ∈ ∀ ∈ ∀ ij d is ij 0 ij ij B g p p + = (9)
(e) Operating time for product i in semi-continuous stage k :

{ } { } { } S ,..., 1 s ; K ,..., 1 k ; I ,..., 1 i s ∈ ∀ ∈ ∀ ∈ ∀ k k ik is ik n R D B = θ (10) (f) Batch size of product i in sub-process s : { } { } S ,.., 1 s ; I ,.., 1 i ∈ ∀ ∈ ∀       = ∈ ij j J j is S V Min B s (11)
Finally, the size of intermediate storage tanks is estimated as the highest size difference between the batches treated in two successive sub-processes :

{ } 1 S ,.., 1 s - ∈ ∀ []) T T (od Pr S Max * V) 1 k (i ik L) 1 s (i L is i is I i + + ∈ - - + = θ θ (12)
Then, the aim of OBPD problems is to find the plant structure that respects the production requirements within the time horizon while minimizing the economic criterion.

The resulting MINLP problem proves to be non-convex and NP-Hard [START_REF] Wang | Optimal design of multiproduct batch chemical process using genetic algorithms[END_REF].

Proposed Genetic Algorithm

The aim of this section is not to present in detail the stochastic optimisation technique initiated by [START_REF] Holland | Adaptation in natural and artificial systems[END_REF]. The following comments just recall its basic principles and then focus on the specific parameters used in this study.

General principles

The principles of GAs just lie on the analogy between a population of individuals and a set of solutions of any optimisation problem. The algorithm makes the solution set evolve towards a good quality, or adaptation, and mimics the rules of natural selection stated by Darwin : the weakest individuals will disappear while the best ones will survive and be able to reproduce themselves. By way of genetic inheritance, the features that make these individuals "stronger" will be preserved generation after generation.

The mechanisms implemented in the GAs reproduce this natural behaviour. Good solutions are settled by creating selection rules, that will state whether the individuals are 10 adapted or not to the considered problem. Crossover and mutation operators then contribute to the population evolution in order to obtain, at the end of the run, a population of good quality solutions. This heuristics set is mixed with a strong stochastic feature, leading to a compromise between exploration and intensification in the search space, which contributes to GAs efficiency.

The algorithm presented in this study is adapted from a very classical implementation of a GA. A major difficulty for GAs use lies in its parameters tuning. The quality of this tuning greatly depends on the user's experience and problem knowledge. A sensitivity analysis was performed to set parameters such as population size, maximal number of computed generations or survival and mutation rates, to an appropriate value.

As mentioned before, two main features of GAs implementation are still being a challenge for GAs performances : constraint handling and variables encoding. These two points are presented in the following sub-sections.

Constraint handling

Since constraints cannot be easily implemented just by additional equations, as in MP techniques, their handling is a key-point of GAs. Indeed, an efficient solution will widely depend on the correct choice of the constraint handling technique, in terms of both result quality and computational time.

In the framework of the studied problem, the constraint on variable bounds is intrinsically considered in the variable encoding while the constraint on productivities is implemented in the model. So the only constraint to be explicitly handled by the GA is the time constraint formulated in equation (4), which imposes the I products to be synthesized before a time horizon H.

Actually, the most obvious approach would be to lay down the limits of the feasible space through the elimination all the solutions violating any constraint. That means that only feasible solutions should be generated for the initial population. Then, the more severe the constraints are, the more difficult it is to randomly find one feasible solution. So, the effect of this technique on the computational time is strongly penalizing. Furthermore, the search efficiency would greatly benefit from getting information of the infeasible space. Then, allowing some infeasible solutions to survive the selection step should be considered.

11

This was performed in various alternative constraint handling modes. Thorough reviews are proposed by Coello Coello (2002a) and Michalewicz et al. (1996). The most famous technique is the penalisation of infeasible individuals, which is typically carried out by adding, in the objective function, the quadratic constraint violation weighted by a penalty factor. This factor can be either static (i.e. set to a fixed value along the whole search), dynamic (increasing with the generation number), or set by analogy with simulated annealing (for more details see Michalewicz and Schoenauer, 1996). The drawback due to the necessity of tuning at least one parameter (the penalty factor or its initial value) can be overcome with self-adaptive penalty approaches (Coello Coello, 2002b), yet associated with high computational costs. Some alternative options for constraint handling are based on domination concepts, drawn from multiobjective optimisation. They are implemented either within roulette wheel [START_REF] Deb | An efficient constraint handling method for genetic algorithms[END_REF] or tournament [START_REF] Coello Coello | Constraint-handling in genetic algorithms through the use of dominance-based tournament selection[END_REF] selection methods.

According to these investigated literature references, the following methods were evaluated in this paper :

• Elimination as a reference.

•

Penalisation of the feasible individuals objective function as shown in equation (13) :

2 i i) H H (on CostFuncti F ∑ - + = ρ (13)
where ρ is a penalization factor. H and H i are respectively the fixed horizon time and the production time for product i, from equation (4).

A static penalty factor is used in this study, for implementation simplicity reasons.

Obviously, this technique efficiency greatly depends on the value of the ρ factor in the added penalisation term. Its value was thus the object of a sensitivity analysis.

•

Relaxation of the discrete variables range. By setting the discrete upper bounds to a greater value, this technique just means an enlargement of the feasible space : the minimization should anyway make the variables tend within their bounds.

•

Tournament based on domination rules. This method, applied in the selection step of the GA, relies on domination rules stated in [START_REF] Coello Coello | Constraint-handling in genetic algorithms through the use of dominance-based tournament selection[END_REF] and [START_REF] Deb | An efficient constraint handling method for genetic algorithms[END_REF]. Basically, it is stated that : (i) a feasible individual dominates an infeasible one ; (ii) if two individuals are feasible, the one with the best objective function wins ;

(iii) if two individuals are infeasible, the one with the smallest constraint violation wins.

These rules enable the selection of the winners among some randomly chosen 12 competitors. Various combinations of competitors and winners were tested. A special case of this method, namely single tournament (ST), occurs when the number of competitors is equal to the population size while the number of winners is the survivor number : then, all survivors are determined in one single tournament realization for each selection step.

Specific selection procedures were implemented according to the above mentioned techniques. For the elimination, penalisation and relaxation techniques, the selection is performed via Golberg's roulette wheel (Goldberg, 1989). This procedure implies the evaluation of the adaptation or strength of each individual. This one is computed as being the difference between the highest value of the objective function in the current population and that of the considered individual i : strength i =fmax-f i . This method shows the advantage of being adapted to the operating way of GA, i.e. maximizing the criterion. Besides, the last constraint handling method is applied in the selection step itself, which is carried out by tournament.

Variables encoding

The way the variables are encoded is clearly essential for GAs efficiency. In what follows, three kinds of encoding, which show an increasing adaptation to the continuous context but share some general features, are presented. The array representing the complete set of all variables is called a chromosome. It is composed of genes, each one encoding a

variable by means of one or several locus. A difference will be made between genes encoding continuous variables from those encoding discrete ones. Since the formers are bounded, they can be written in a reduced form, like a real number α bounded within 0 and 1. Each integer variable is coded directly in a single-locus gene, keeping it unchanged.

Therefore, the various encoding techniques differ one from another by the way the continuous variables are represented and by the gene location all along the chromosome.

Rough discrete coding

The first encoding method tested in this study consists in discretising the continuous variables, i.e. the above mentioned α. According to the required precision, a given number of decimals of α is coded. This will logically have an effect on the string length, and consequently on the problem size. The so-called weight box [START_REF] Montastruc | Développement d'un pilote automatisé, fiable et sûr pour la dépollution d'effluents aqueux d'origine industrielle[END_REF]

13

this study (figure 2) : each decimal is coded by four bits b 1 , b 2 , b 3 , b 4 , weighting respectively 1 2, 3, 3. As an example, the value of decimal d of α is given by the following expression : 1 0 0 0 0 1 1 1 0 1 1 0 0 0 1 1 1 0 0 0 0 1 1 1 0 1 1 1 0 1 1 0 0 1 1 0 0 0 1 1 = 0 x 1 + 0 x 2 + 1 x 3 + 1 x 3 = 6 x 10 -4 = 0 x 1 + 1 x 2 + 1 x 3 +0 x 3 = 5 x 10 -3 = 0 x 1 + 1 x 2 + 1 x 3 +1 x 3 = 8 x 10 -2 = 1 x 1 + 0 x 2 + 0 x 3 +0 x 3 = 1 x 10 -1 = 0,1856

3 * b 3 * b 2 * b 1 * b d 4 3 2 1 + + + = (14) 1 0 0 0 0 1 1 1 0 1 1 0 0 0 1 1 = 0 x 1 + 0 x 2 + 1 x 3 + 1 x 3 = 6 x 10 -4 = 0 x 1 + 1 x 2 + 1 x 3 +0 x 3 = 5 x 10 -3 = 0 x 1 + 1 x 2 + 1 x 3 +1 x 3 = 8 x 10 -2 = 1 x 1 + 0 x 2 + 0 x 3 +0 x 3 = 1 x 10 -1 = 0,1856 CONTINUOUS GENE

CONTINUOUS GENE

Figure2. Coding example with the weight box

This method enables to prevent from bias since the sum of all weights is lower than ten.

Besides, the duplication of threes in the weighted box means that there exists various ways to encode a same number. This means that probabilities to get a given number have a weight.

Concerning the variable position, all the continuous variables are located in the first part of the string, while the discrete genes are positioned at the bottom. The resulting configuration of a chromosome is shown in figure 3, for a small size example.

1 2 3 1 3 3 1 0 1 0 1 0 0 2 1 3 V 1 V 2 V 3
Item number

1 0 1 0 1 1 1 1 0 0 0 1 1 1 2 3 1 3 3 1 2 3 1 3 3 1 0 1 0 1 0 0 2 1 3 V 1 V 2 V 3
Item number 14 Obviously, the crossover and mutation operators are to be adapted to the coding configuration. The crossover is implemented by a single cut-point procedure. But two distinct mutation operators must be used : (i) mutation by reversion of the bit value on the continuous part of the string ; (ii) mutation by subtraction of one unit of a bit value on the discrete part (when possible). The latter technique is not a symmetric mutation operator, thus it cannot prevent the algorithm from being trapped in some local optimum. However, it proved to lead efficiently towards minimization.

1 0 1 0 1 1 1 1 0 0 0 1 1 Figure 3.

Crossed discrete coding

The discretisation of the continuous variables is unchanged with regard to the previous case, i.e. with the weight box method. The two methods only differ by the variables location.

This change is suggested by the respective size of continuous and discrete parts of the chromosome. Indeed, because of the required precision for continuous variables, the former is much larger than the latter (in our case, the ratio equals 16 to 1). So, the crossover operator with a single cut-point procedure has it very difficult to act on the discrete variable, and, consequently, to allow a correct exploration of the search space.

In order to deal with this contingency, the continuous and discrete variables were mixed up inside the string : since each processing stage induces one continuous and one discrete variable (respectively the size and number of items), the variables are encoded respecting the order of the operating stages in the recipe, as shown in figure 4 for the same illustrative example. 15

1 0 1 0 1 1 0 0 1 1 1 0 1 0 0 1 1 2 V 1 x 2 V 2 x 1 V 3 x 3 1 1 0 0 3 1 2 3 1 3 3 1 0 1 0 1 1 0 0 1 1 1 0 1 0 0 1 1 2 V 1 x 2 V 2 x 1 V 3 x 3 1 1 0 0 3 1 0 1 0 1 1 0 0 1 1 1 0 1 0 0 1 1 2 V 1 x 2 V 2 x 1 V 3 x 3 1 1 0 0 3
Obviously, this new encoding method strengthens probabilities that discrete genes may be involved by the one cut-point crossover process. However, due to the size difference between continuous and integer genes, there is still much more opportunities that the former ones were directly concerned by crossover.

Mixed real-discrete coding

The last coding method seems to be the best fitted to the nature of the variables. The reduced form α of continuous variables is coded directly on a real-value locus while, as in the previous cases, the discrete variables are still kept unchanged for their coding. Therefore, both continuous and discrete genes have a one-locus size and occupy well-distributed lengths inside the chromosome (figure 5). A mixed real-discrete chromosome is obtained, that will require specific genetic operators.

Firstly, the crossover methods applied in real-coded GAs works on each gene and not on the global structure of the chromosome. The simplest method relies on arithmetical combinations of parent genes, such as it is presented in equation (15) :

y k (1) = α.x k (1) + (1-α).x k (2) (15) y k (2) = (1-α).x k (1) + α.x k (2)
where x k (1) and x k (2) are genes k of both parents and y k (1) et y k (2) those of the resulting children. α is a fixed parameter within 0 and 1. Then, different methods are implemented according to the way of determining the α parameter (Michalewicz and Schoenauer, 1996).

The chosen technique is a simulated binary crossover (SBX), proposed by [START_REF] Deb | Simulated binary crossover for continuous search space[END_REF]. The method consists in generating a probability distribution around parent solutions to create two offspring. This probability distribution is chosen in order to mimic single-point crossover behaviour in binary coded GAs, and mainly involves the two following features :

2 V 1 x 2 V 2 x 1 V 3 x 3 0,167 1 0,832 3 0,563 1 2 3 1 3 3 2 V 1 x 2 V 2 x 1 V 3 x 3 0,167 1 0,832 3 0,563 2 V 1 x 2 V 2 x 1 V 3 x 3 0,167 1
• The mean decoded parameter value of two parents strings is invariant among the resulting children strings.

•

If the crossover is applied between two children strings at the same cross site as used to create the children strings, the same parents strings will result.

This feature generates higher probabilities to create offspring close to the parents than away from them, as illustrated in figure 6. The procedure for the generation of two children solutions from two parents solutions is fully explained in [START_REF] Deb | Simulated binary crossover for continuous search space[END_REF]. It is to note that this crossover procedure is carried out for each locus of the chromosome and as a consequence, the disposal of the continuous and discrete along the string does not matter.

However, even though the SBX crossover does not induce any problem for real variables, it may lead to a real value for the discrete genes of the resulting offspring. So, for the latter case, these real values were truncated in order to keep only their integer part.

With respect to mutation, on the one hand, the method corresponding to discrete variables was kept unchanged from the previous cases. On the other hand, for real-coded genes, an inventory of the variety of techniques is proposed in Michalewicz and Schoenauer (1996) or [START_REF] Raghuwanshi | Survey on multiobjective evolutionary and real coded genetic algorithms[END_REF]. They usually rely on a noise added on the initial muted gene value, according a specific probability distribution. For the technique used in this study, a uniform distribution probability was chosen.

Numerical results and interpretation

In this section, the two main issues, i.e. variables encoding and constraint handling, are treated on different size instances of Optimal Batch Plant Design problems.

About variable encoding

The above mentioned procedures for variable encoding were tested on three examples.

Problem 1 is a quite small size example. The plant has to synthesize three products and is constituted of four batch stages, six semi-continuous stages, and one storage tank. Thus, the problem involves ten continuous and ten integer optimisation variables. It was previously studied with various techniques as shown in table 1, that highlights the fact that Mathematical

Programming locates the best solution, for which optimality is proved.

Despites its small size, this example turned out to be difficult to solve to optimality since some of the mentioned stochastic techniques were trapped in a local optimum, showing a set of discrete values different from the one of the global optimal solution. The optimal values of the discrete variables are actually m j = {1, 2, 2, 1} parallel items for batch stages, while those of the local optimum are m j = {1, 3, 3, 1}.

The two other examples are larger size instances of batch plants, both manufacturing 3 products. Problems 2 and 3 are constituted of respectively 7 and 18 batch stages, 10 and 24 semi-continuous stages and 3 and 6 sub-processes. They were also solved to optimality by the SBB solver in this study. The parameters chosen for the Genetic Algorithm are the following ones : the survival (respectively mutation) rate is equal to 40 % (resp. mutation 30 %). The maximum generation number and the population size depend on the complexity of the example. Concerning the constraint handling, intuitive choices were adopted : elimination was chosen for problem 1 due to its small size (not much expensive in term of computational time). For the two larger examples, the single tournament method was selected. Table 2 sums up the main features of each problem.

The results were analysed in terms of quality and computational time. The number of function calls could also be studied, but the time criterion appeared to be more significant in order to check the influence of the variable encoding methods. The CPU time was measured for a Compaq Workstation W6000. 19

The results for problem 1 are presented in table 3. Coding 1, 2 and 3 represent respectively rough discrete, crossed discrete and mixed real-discrete coding. Clearly, the solution obtained with the mixed real-coding is much better than the other ones : indeed, the optimal solution previously determined by the SBB solver is almost exactly located. GA with coding 1 stays trapped in a local optimum and was not able to find the set of discrete variables corresponding to the global optimum. Although it finds a bit lower solution, GA with coding 2 does not show much more efficiency. Besides, the 2% and 5%-dispersions seem to be really much superior for the two first encoding techniques but this trend is due to the high quality of the best solution found with coding 3. Actually, the difference between relative and absolute results quality is stressed by the previous remark. A run set might show very good 2%-and 5%-dispersions, if the best result is far from the optimum, then we get a poor global quality of the runs. On the other hand, a run set with lower dispersions but a better final result may be more performing. This remark is illustrated in figure 7, in which case 1 shows a better relative quality than case 2, which is characterized by a better absolute quality.

Thus, by considering now a 5%-dispersion with the optimal solution as a reference (this means calculating an absolute quality), the value is equal to 50 %, 48 % and 77 %, for codings 1, 2 and 3 respectively. This clearly highlights the good global quality of the GA runs performed with coding 3. The computational time is not significant on such a small example. The number of function evaluations lies around 5,5.10 4 for all problems. The population size and generations number are both equal to 200, which would mean 4.10 4 evaluations per run, this shows that more than 25 % of the search is spent in randomly looking for an initial population of feasible solutions. Finally, the conclusion for this small size but complex problem is the superiority of mixed real-discrete coding.

The results for problems 2 and 3 are presented in table 4. It can be observed that the three coding methods find results very close to the optimum. With regard to dispersion evolution, figure 8 shows the increasing superiority of coding 3 from example 1 to example 3. This behaviour does not seem useful for such simple examples, since the final solutions are quite similar, but it may be interesting for more severely constrained problems, for which the feasible space is reduced : it might be assumed that better solutions could be found, or at least more easily. This would then mean a minor necessity to use large population sizes and generations number and consequently, a lower computational time.

For codings 1 and 2, the quality of all the runs can be related to the percentage of feasible solutions in the last generation and to the number of failures of the GA runs. It is considered that a GA run fails when no feasible solution was found during the whole search. It is clear that, however, this failure number compensates slightly the dispersion fall for encoding 1 and 2, since the percentage of runs finding a result close to the best found solution is based on the total number of runs and not on the number of unfailed runs. It is to note that for examples 1 and 2, coding 1 is more or less as performing as coding 2.

With an increasing problem size, the difficulty to act on discrete variables -which are located at the bottom of the chromosome in coding 1 -increases but there is not a high difference between the results provided by the two encoding methods. Only the dispersions seem to slightly favour coding 2 for problem 3. Finally, the comparison criterion based on CPU time highlights coding 3 performances, since a run of this GA version lasts almost 6 times fewer than coding 1 or 2. As a conclusion on variable encoding selection, numerical results prove the superiority of the mixed realdiscrete encoding method. This one will be used in the following section.

About constraint handling

The constraint handling techniques described in Section 4 are now tested on problem 2.

Elimination of infeasible individuals

The results in table 5 present trends for GA with the elimination technique. These can be seen as a reference in order to evaluate the performance of different constraint handling methods : they show a very good quality in terms of both distance to the optimum and 22 dispersion of the runs. However, this technique looks really less performing considering the computational time : this feature could constitute a bottleneck for applications that would compute the objective function with a simulator.

Actually, the comparison with the behaviour of other techniques that do not need a feasible initial population, like tournament or penalisation, highlights that the GA with the elimination method has spent most of the computing time randomly searching for feasible solutions. Indeed, for a 1000 generation run, involving a population constituted by 200 individuals, the theoretical function evaluation number is 2.10 5 , but it turns out to be approximately 2.35 10 6 . So, it can be deduced that less than 10 % of the computing time is used for the GA normal sequence while the remaining is devoted to the initial population generation. For all the other techniques, the computational time has an order of magnitude of six seconds. This study was carried out for different values of the penalisation factor ρ. The results presented in table 6 underline the logical results of the method. On the one hand, for small values of ρ, priority is assigned to the minimisation of the economic term while the time constraint is severely violated. The best solution found is then widely infeasible. On the other hand, for higher values of the penalisation factor, the result is feasible while the dispersion and optimality gap criteria keeps being satisfying. So, the discrete upper bounds relaxation really appears to be well-suited technique for constraint handling. Actually, for larger size problems, the problem is how to determine the order of magnitude of the upper bound relaxation. On the one hand, the relaxation should be sufficient to easily create the initial population. On the other hand, a too high increase would cancel the necessary pressure that pushes the individuals towards the initial discrete feasible space, i.e. that leads to a minimization of the parallel item number. dominance based tournament. Elimination, leading to very performing results in term of quality but fewer efficient in term of computational time, is recommended for small size example treatments. The use of a penalisation technique, severely depending on the appropriate choice of the penalisation factor, does not ensure feasible solutions in the whole search. Nevertheless, it could provide compromise solutions that improve the investment criterion, slightly violating the constraint.

Finally, numerical results showed that the relaxation and tournament methods were the most efficient procedures. However, the relaxation technique depends on the variable physical meaning and may be viewed as less general since it is a parameter-based technique. Dominance rules implemented in the selection step for the single tournament thus reveal to be the best constraint handling technique in case of severely constrained problems.

This contribution has thus proposed some guidelines to tackle the two operating mode issues that constitute limiting factors for GA. The use of these strategies should be appropriate to enable an efficient evolution of the algorithm on different instances of mixed continuous and integer problems.

A

 . Ponsich, C. Azzaro-Pantel, S. Domenech, and L. Pibouleau Some guidelines for Genetic Algorithm implementation in MINLP Batch Plant Design problems, sous presse dans Springer volume, intitulé "Advances in Metaheuristics for Hard Optimization". edited by Z. Michalewicz and P. Siarry in the Natural Computing series.

Figure 4 .

 4 Figure 4. Variables position in the chromosome, Coding 2

Figure 5 .

 5 Figure 5. Configuration of the chromosome, Coding 3

Figure 6 .

 6 Figure 6. Probability distribution for the location of an offspring, SBX crossover

Figure 8 .

 8 Figure 8. Dispersion evolution for the three problems, different coding methods

 The dispersions fall with regard to the elimination technique but keep being acceptable. The ratio of feasible solutions at the end of the search proves the good behaviour of GA, which makes the discrete variables to tend within their initial bounds. Moreover, the CPU time is considerably reduced with regard to the elimination technique, showing the efficiency of relaxation to avoid the wasted time spent in generating the initial solution. Indeed, the function evaluation number is almost equal to the standard number generation number x population size.

 modified this MINLP model by taking into account, in addition, semi-continuous stages and intermediate finite storage with fixed location. They solved small size examples (up to two products and to eight operating stages) with heuristics.

 A.Ponsich, C. Azzaro-Pantel, S. Domenech, and L. Pibouleau Some guidelines for Genetic Algorithm implementation in MINLP Batch Plant Design problems, sous presse dans Springer volume, intitulé "Advances in Metaheuristics for Hard Optimization". edited by Z. Michalewicz and P. Siarry in the Natural Computing series.

 S. Domenech, and L. Pibouleau Some guidelines for Genetic Algorithm implementation in MINLP Batch Plant Design problems, sous presse dans Springer volume, intitulé "Advances in Metaheuristics for Hard Optimization". edited by Z. Michalewicz and P. Siarry in the Natural Computing series.

A. Ponsich, C. Azzaro-Pantel,

 S. Domenech, and L. Pibouleau Some guidelines for Genetic Algorithm implementation in MINLP Batch Plant Design problems, sous presse dans Springer volume, intitulé "Advances in Metaheuristics for Hard Optimization". edited by Z. Michalewicz and P. Siarry in the Natural Computing series.

was used in A. Ponsich, C. Azzaro-Pantel,

 S. Domenech, and L. Pibouleau Some guidelines for Genetic Algorithm implementation in MINLP Batch Plant Design problems, sous presse dans Springer volume, intitulé "Advances in Metaheuristics for Hard Optimization". edited by Z. Michalewicz and P. Siarry in the Natural Computing series.

Variable location in the chromosome, Coding 1 A. Ponsich, C. Azzaro-Pantel,

Table 1 -

 1 S. Domenech, and L. Pibouleau Some guidelines for Genetic Algorithm implementation in MINLP Batch Plant Design problems, sous presse dans Springer volume, intitulé "Advances in Metaheuristics for Hard Optimization". edited by Z. Michalewicz and P. Siarry in the Natural Computing series. Typical solutions obtained by various methods

	18

A. Ponsich, C. Azzaro-Pantel,

Table 2 -

 2 Characteristics of the problems and solution by GA Quality is evaluated, of course, by the distance between the best found solution and the optimal value. But, since GAs is a stochastic method, its results have to be analysed also in terms of repeatability. So, for each test, the GA was run 100 times. The criterion for repeatability evaluation is the dispersion of the runs around GA best solution F* GA . The 2%dispersion or 5%-dispersion are then defined as the percentage of runs providing a result lying respectively in the range [F* GA , F* GA +2%] or [F* GA , F* GA +5%]. . Ponsich, C. Azzaro-Pantel, S. Domenech, and L. Pibouleau Some guidelines for Genetic Algorithm implementation in MINLP Batch Plant Design problems, sous presse dans Springer volume, intitulé "Advances in Metaheuristics for Hard Optimization". edited by Z. Michalewicz and P. Siarry in the Natural Computing series.

		Problem 1	Problem 2	Problem 3
	Cont. / Discrete variables	10 / 10	17 / 17	42 / 42
	Optimum	356610	766031	1925888
	GA Parameters			
	Population size	200	200	500
	Generations number	200	500	500
	Cst. Handling	Elim.	Single Tour.	Single Tour.

A

Table 3 -

 3 Comparison of variables encoding for Problem 1

		Coding 1	Coding 2	Coding 3
	GA best solution	371957	369774	356939
	Gap to optimum (%)	4.30	3.69	0.09
	2%-dispersion	68	67	1
	5%-dispersion	100	98	79
	CPU time (sec.)	3	3	1

Table 4 -

 4 Comparison of variables encoding for Problems 2 and 3 S. Domenech, and L. Pibouleau Some guidelines for Genetic Algorithm implementation in MINLP Batch Plant Design problems, sous presse dans Springer volume, intitulé "Advances in Metaheuristics for Hard Optimization". edited by Z. Michalewicz and P. Siarry in the Natural Computing series.

	Problem 2	Problem 3

A. Ponsich, C. Azzaro-Pantel,

 S. Domenech, and L. Pibouleau Some guidelines for Genetic Algorithm implementation in MINLP Batch Plant Design problems, sous presse dans Springer volume, intitulé "Advances in Metaheuristics for Hard Optimization". edited by Z. Michalewicz and P. Siarry in the Natural Computing series.

A. Ponsich, C. Azzaro-Pantel,

Table 5 -

 5 Results for elimination technique

	GA best solution	767182
	Gap to optimum (%)	0.15
	2%-dispersion	95
	5%-dispersion	100
	Function evaluation nbr	2.346 10 6
	CPU time (sec.)	56
	5.2.2. Penalisation of infeasible individuals	

Table 6 -

 6 Results for penalisation techniqueFinally, a compromise solution can be reached with intermediate values of ρ. Actually, by giving the same weight to respect of the time constraint and to the minimisation of the investment cost, the global performances can be improved with solutions slightly exceeding the time horizon. Anyway, for all cases, the number of feasible solutions keeps being quite low.5.2.3. Relaxation of discrete upper boundsIn this section, the upper bounds of discrete variables, i.e. the maximal number of parallel items per stage, is doubled and fixed to six. As shown in table 7, the best result is similar to that previously obtained with the elimination technique.

	ρ factor	100	1	0.01
	GA best solution	769956	766520	592032
	Gap to optimum (%)	0.51	0.06	-22.71
	Constraint violation (%)	0	0.64	37.4
	2%-dispersion	44	54	68
	5%-dispersion	85	89	96

Table 7 -

 7 Results for relaxation technique

	GA best solution	767361
	Gap to optimum (%)	0.17
	2%-dispersion	58
	5%-dispersion	95
	% feas. solutions (end search)	53
	Function evaluation nbr	2.196 10 5
	CPU time (sec.)	

A. Ponsich, C. Azzaro-Pantel, S. Domenech, and L. Pibouleau

Some guidelines for Genetic Algorithm implementation in MINLP Batch Plant Design problems, sous presse dans Springer volume, intitulé "Advances in Metaheuristics for Hard Optimization". edited by Z. Michalewicz and P. Siarry in the Natural Computing series. Some guidelines for Genetic Algorithm implementation in MINLP Batch Plant Design problems, sous presse dans Springer volume, intitulé "Advances in Metaheuristics for Hard Optimization". edited by Z. Michalewicz and P. Siarry in the Natural Computing series.

24

Domination based tournament

This method was applied for various combinations of competitors Ncomp and survivors Nsurv, referred as (Ncomp, Nsurv)-tournaments in the following, except for the single tournament technique (ST). The tested combinations and their corresponding results are available in table 8. For all cases, the computational time is equal to 6 seconds, that is almost ten times faster than the elimination technique. The best results are few significant since they are similar and near-optimal for all kinds of tested tournaments. But, due to the low number of feasible solutions obtained at the end of the search, the (2,1), (3,2) and (5,4)-tournaments can be discarded. This behaviour can be easily explained by the following assumption : the smaller the difference between Ncomp and Nsurv is, the easier it is to pass the selection step for weak individuals, with a poor objective function. This underlines the efficiency of a more severe selection pressure, which is furthermore confirmed by the important number of failures of the (5,4) version.

To evaluate the other options, the remaining criteria are the evolution of feasible solutions ratio during the search and the dispersions of the runs. The corresponding numerical results are given respectively in figures 9 and 10. On the one hand, it can be deduced that the combinations visiting more feasible solutions are single tournament, (5,1) and (4,1)tournaments.

A. On the other hand, figure 10 shows that (4,2) and (5,2)-tournaments as well as single tournament are the most performing combinations in terms of 2%-and 5%-dispersion. So, even though several combinations are very close in terms of result quality, the single tournament method proves to be the best compromise, closely followed by the (4,1) option. Finally, for this example, the single tournament and relaxation methods are the most wellfitted constraint handling methods. It is must be yet pointed that the relaxation method needs the relaxed upper bound as a parameter that requires a relevant choice, achieved with some knowledge of the studied problem. So, to conclude this study and highlight the general trends, the single domination-based tournament technique appears to be the most efficient constraint handling technique for Genetic Algorithms. This conclusion is valid for medium and large size problems. Nevertheless, it is obvious that when the computational time is not a limiting factor, the preference will be given to an elimination technique.

Conclusions

A Genetic Algorithm was adapted to the solution of Optimal Batch Plant Design problems. This work considered several operating modes of classical GA operators in order to determine the best fitted to the studied problem.

Since the problem involves an MINLP formulation, the first main issue was the evaluation of different variable encoding techniques, that deals efficiently with both continuous and integer variables. Computing tests were carried out on three different sizes bench problems, in order to compare the behaviour of rough discrete, crossed discrete and mixed real-discrete coding methods. The result quality was evaluated with regard to the optimum found by a MP technique. The mixed real-discrete method proved to be the most relevant option, since it provided nearly optimal results for all examples with a very performing computational time. Moreover, it overcame some local optimal difficulties while the two other techniques were trapped in sub-optimal solutions.

The second investigation was devoted to constraint handling techniques, namely here, the production time constraint.. Four constraint handling methods were tested on a medium size problem, that are elimination, penalisation, relaxation of the discrete upper bounds and