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Unraveling the connections between microscopic structure, emergent physical properties, and
slow dynamics has long been a challenge when studying the glass transition. The absence of clear
visible structural order in amorphous configurations complicates the identification of the key physical
mechanisms underpinning slow dynamics. The difficulty in sampling equilibrated configurations at
low temperatures hampers thorough numerical and theoretical investigations. This perspective
article explores the potential of machine learning (ML) techniques to face these challenges, building
on the algorithms that have revolutionized computer vision and image recognition. We present recent
successful ML applications, as well as many open problems for the future, such as transferability and
interpretability of ML approaches. We highlight new ideas and directions in which ML could provide
breakthroughs to better understand the fundamental mechanisms at play in glass-forming liquids.
To foster a collaborative community effort, this article also introduces the “GlassBench” dataset,
providing simulation data and benchmarks for both two-dimensional and three-dimensional glass-
formers. We propose critical metrics to compare the performance of emerging ML methodologies,
in line with benchmarking practices in image and text recognition. The goal of this roadmap is to
provide guidelines for the development of ML techniques in systems displaying slow dynamics, while
inspiring new directions to improve our theoretical understanding of glassy liquids.

I. INTRODUCTION

When supercooled liquids undergo a glass transition,
a dramatic slowdown of transport properties is observed
and the resulting material dynamically resembles a crys-
talline solid — yet one of the main characteristic of
glasses is that they maintain their amorphous liquid
structure [1]. While glasses and other amorphous mate-
rials have been used since prehistoric times, their techno-
logical applications have blossomed in recent years [2], in-
cluding, e.g., metallic glasses for biomedical implants [3]
and vapor-deposited organic films used extensively in vi-
sual displays [4]. Despite several decades of research in-
volving experiments, theory and computer simulations,
many fundamental mechanisms remain to be elucidated,
such as macroscopic mechanical properties, highly coop-
erative stress relaxation in glasses, and the statistical me-
chanics nature of the glass transition itself [5].

The raise of deep learning in the last decade [6] was ini-
tially driven by applications in computer vision, in partic-
ular image recognition and feature detection, which soon

outperformed traditional techniques [7]. These original
breakthroughs are now starting to revolutionize several
other areas in technology and science. Our aim here is to
address the potential of ML methods to boost research
on fundamental aspects of glassy dynamics, in particular
the ones that are playing an important role in advancing
theories of the glass transition.

One of the main challenges in developing a fundamen-
tal microscopic theory of glasses is the absence of any
simple and visible structural order. While crystalline de-
fects in the otherwise well-ordered structures are easily
detectable, it is an open problem to find analogous struc-
tural features in amorphous materials. Over the years,
many different proposals for “defects” or locally pre-
ferred structures have been proposed and developed [8–
11]. This seems to indicate that, even in amorphous con-
figurations, it could be possible to detect the emergence
of some kind of short- and medium-range order. However,
these identifications usually only apply to specific sys-
tems, and they are often only weakly correlated with local
dynamical relaxations. There is therefore a clear need for
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new and more powerful system-independent ways to sys-
tematically find preferred structures in amorphous con-
figurations. This is a challenge for which new ML meth-
ods could be a great asset, in particular thanks to the
progress in unsupervised learning. Several approaches
have been developed recently towards this goal [12–15].

Another long-standing challenge has been understand-
ing and characterizing the fundamental mechanisms un-
derpinning slow and glassy dynamics, which are respon-
sible for the glass transition. To this aim, there has been
a substantial effort to identify the microscopic properties
that lead to dynamical relaxation. Given a snapshot (an
equilibrium configuration), several local properties have
been proposed to pinpoint the regions more likely to relax
within a window of, say, some fraction of the relaxation
time. Examples include the local Debye-Waller factor,
eigenvectors of the Hessian of inherent structures, etc.
[16, 17]. There is no consensus on what are the best pre-
dictors of future dynamics. Moreover, they could change
with temperature or be system-specific, according to sev-
eral theories of the glass transition [18]. Thanks to the
advances in numerical simulations of glass-forming liq-
uids we can now produce large datasets of initial con-
figurations and subsequent dynamical trajectories. This
provides a natural playground to apply supervised learn-
ing techniques in order to identify the local predictors
of dynamical relaxation. Several researchers have taken
up this challenge and developed ML methods to predict
where local relaxations are more likely to take place given
an initial snapshot [19–30].

Finally, the ultimate goal of the research efforts de-
voted to the theory of glassy dynamics would be to com-
bine the solutions of the previous problems to develop an
effective theory of the glass transition. Until now, this
challenge has been tackled starting from some theoreti-
cal assumptions driven by experimental and simulation
results [18]. Also in this challenge ML methods can make
a difference; they can assist in this quest by providing a
complementary identification of the mechanisms induc-
ing relaxation, as first shown in [31].

Clearly, the time is ripe for investigating the ability of
the new ML methods to advance our fundamental under-
standing of glass-forming liquids. In this roadmap, focus-
ing on the three main goals described above, we present
respectively in Secs. II, III, IV the recent contributions in
this endeavor, discussing the main difficulties ahead and
the possible paths to circumvent them. In Fig. 1, we give
a visual overview over the different ML concepts that will
be discussed within the individual sections. In Sec. V we
provide a framework “GlassBench” to enable, encourage
and structure a broader community effort to further de-
velop such ML approaches. It consists in (i) a dataset
including simulation data for a two-dimensional [30] and
a three-dimensional glass-former [25, 32], (ii) benchmarks
on different tasks associated to predicting local dynamics
from a given initial configuration, (iii) an assessment of
the current state of the art. Our purpose is to fuel and
organize new developments of advanced ML techniques,
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FIG. 1. Visual summary of the roadmap. The individual
sections at the center are connected to the big questions in
the field of glass physics. They are surrounded by the various
machine learning concepts used to answer them.

as done in the field of image and text recognition, as
well as generative modelling [33]. Finally, we close this
roadmap by discussing in Sec. VI exciting new concepts
and directions in ML which have the potential to play a
very important role in future research on the theory of
glassy dynamics.

II. MACHINE LEARNING LOCALLY FAVORED
STRUCTURES

Although glass-forming liquids and glasses lack long-
range order, close inspection of their atomic structure
reveals particle arrangements that are more regular, sym-
metric, and of lower (free-)energy than the average.
Icosahedral local structures are the best known exam-
ple of such favorable arrangements and they are found
in several metallic alloys, colloidal suspensions as well as
in computer models of glassy liquids [8]. Such locally
favored structures (LFS), distinct from the bulk of the
particle arrangements and yet incompatible with crys-
talline order, are also key ingredients of some theoretical
approaches to glass formation [18, 34].
Despite the importance of structural analysis in glassy

materials [8, 9], there is at present no generally accepted
operational definition of LFS. Standard approaches, such
as Voronoi tessellation [35], topological cluster classifi-
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cation [36] and other related methods [37, 38], provide
a detailed classification of the possible local geometric
arrangements. These methods may indicate what are
the most frequent or most stable local arrangements, but
they are sensitive to thermal fluctuations and tend to
provide a too fine-grained classification, which is difficult
to exploit in a theoretical setting. Bond-order param-
eters (BOP) [39] provide yet another route to charac-
terize the local structure of dense particle systems [9].
While this approach offers in principle a systematic de-
scription of the local arrangements, the choice of the rel-
evant BOP has been traditionally guided by physical in-
tuition [9], which requires specific and system-dependent
a priori knowledge about the relevant symmetries of the
local arrangements.

Unsupervised learning methods offer natural system-
independent ways to tackle the above issues [40–42].
Along with automated identification of phase transi-
tions [43–45], characterization of the properties of com-
plex materials from high-dimensional datasets is indeed
one of the key applications of unsupervised learning in
condensed matter physics [41]. The general idea is to
first characterize a faithful, high-dimensional represen-
tation of the particle local environment based for in-
stance on a systematic bond-order expansion of the local
density [46] (see Ref. [47] for a recent review on struc-
tural descriptors). Unsupervised ML methods are then
used to identify a small number of collective coordinates,
X̃i, that account for the relevant fluctuations of the lo-
cal structure, thereby reducing the dimensionality of the
descriptors. Dimensionality reduction techniques range
from simple principal component analysis (PCA), or its
kernel variant, to more sophisticated statistical learning
methods, like neural network auto-encoders (AE) [40].
These methods may be combined in the future with more
advanced approaches, such as self-supervised learning or
pre-training (see Sec. VIB), possibly exploiting the in-
trinsic symmetries of the system [48]. Clustering meth-
ods can be finally applied to this reduced structural rep-
resentation of the material structure, to pinpoint its het-
erogeneity [41].

The studies highlighted in Ref. [41] focus mostly on
ordered materials or disordered systems with covalent
or hydrogen bonding, such as amorphous carbon [49] or
liquid water [50], where the preferred geometrical order
is easy to identify thanks to low coordination numbers.
Dense amorphous systems are characterized instead by
close-packed arrangements, which provide a challenging
benchmark for this kind of structural analysis. In a series
of recent papers [12, 13, 51–53], dimensionality reduction
and clustering have been applied to models of closed-
packed glass-forming liquids. In particular, Boattini et
al. [12] have used BOP, Gaussian mixture models and
a neural network AE to study glassy binary mixtures.
Their work revealed a significant structural heterogene-
ity, suggesting that in these systems, we can distinguish
fluctuating regions displaying two different types of local
disorder. These regions display a connection with the
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FIG. 2. Principal component analysis maps of the first
two principal component projections X̃1 and X̃2 of the
smooth bond-order parameter around (a) Cu atoms in glassy
Cu64Zr36 and (b) around small particles in the Kob-Andersen
binary mixture around its mode-coupling temperature [51].
Note the contrast between the bimodal structure in (a) due
to icosahedral local structures [51] and the homogeneous dis-
tribution of the projections in (b). The bottom panels show
the marginal distribution of the first principal component pro-
jection.

temporal fluctuations of dynamics, which will be further
discussed in Sec. III.
A related study by Paret et al. [13] addressed the is-

sue of clustering of local structural arrangements using a
different, information-theoretic approach. At a qualita-
tive level, the results of Refs. [12] and [13] appear con-
sistent with one another. However, a more recent in-
vestigation [51] revealed a significant system-dependence
of structural heterogeneity in glassy liquids. The gist of
these findings is illustrated in Fig. 2, which shows repre-
sentative PCA maps obtained from a smooth bond-order
(SBO) descriptor (see supplemental material (SM) for
technical details [54]). The distribution of the first two
principal components is bimodal for an embedded-atom
model of Cu64Zr36, which has a well-defined icosahedral
LFS, while it is less heterogeneous for the canonical Kob-
Andersen (KA) mixture (see also Sec. V), whose local
arrangements display clearly different geometrical states.
While these differences question the universality of the
concept of LFS, the first few principal component projec-
tions always correlate with physically-motivated struc-
tural measures [51]. We expect that more information
could be harvested by looking at chemically-resolved de-
scriptors [55] and on larger length scales (medium range
order). Moreover, computing the intrinsic dimension of
structural datasets [45, 56] may provide additional in-
sight into the nature of structural order and its system
dependence.
One of the striking observations of Ref. [51] is that

neural network AE and PCA yield identical reductions of
the BOP descriptors. This suggests that either the local
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structure in dense glassy mixtures is simple: it displays a
broad continuous spectrum of geometrical arrangements,
possibly decorated by features like LFS, crystallites or
structural defects, or that the current identification of
LFS is missing some crucial ingredient (e.g. informa-
tion about dynamics). The outcome of PCA is also easy
to interpret, as the principal component directions pro-
vide direct insight into the dominant structural parame-
ters [57]. On the one hand, these results question the util-
ity of complex deep learning methods in studying glass
structure. On the other hand, the descriptors used in
Refs. [12, 13, 51] do not exhaust all forms of structural
heterogeneity and some may be affected by some deeper
shortcomings [58]. Development of structural descriptors
is still very active [59, 60] and these advances wait for ap-
plications in the context of glassy materials. Addressing
the above issues may become crucial in future studies of
more demanding benchmarks for structural characteriza-
tion, such as compositional order in polydisperse glassy
models [61, 62], medium-range order in oxides or metal-
lic glasses [63, 64], and orientational order in glassy wa-
ter [65, 66]. Computational studies of these complex sys-
tems represent exciting opportunities to gain insight into
the nature and role of local structure in glassy materials
and to provide solid grounds for predictive theoretical
approaches based on structure.

Another research line where structure-based ML ap-
proaches are making progress aims at predicting macro-
scopic properties of glasses relevant for applications, such
as oxides or chalcogenide glasses, over a wide range
of chemical compositions [67, 68]. Recent work on
sodium-silicate glasses shows that physics-informed ma-
chine learning models can reliably interpolate and extrap-
olate these properties on the basis of structural informa-
tion only [69]. These findings indicate that, despite the
apparent complexity of the feature space, the relationship
between local structure and macroscopic glass properties
is often linear, which makes it easy for machine learn-
ing models to generalize outside their training set. See
Ref. [70] for a recent roadmap covering this topic.

Having characterized amorphous structure, a crucial
question is whether the structural descriptors are con-
nected to emergent relaxation dynamics in the glass-
forming liquid [71–74]. As will be clear in Sec. V, current
unsupervised methods provide only limited insights into
the heterogeneity of the dynamics, except in specific sys-
tems dominated by strong icoshaedral order [12, 13, 51].
Whether this is a technical limitation of the unsuper-
vised methods used to date or rather an intrinsic feature
of supercooled dynamics remains to be clarified.

III. PREDICTION OF STRUCTURAL
RELAXATION AND DYNAMIC

HETEROGENEITIES

One of the central challenges for both computational
and theoretical studies of glass-forming liquids is to pre-

Input: Structure

SVC, GNN,
MLP, CNN,
and others

Model

Labels: Dynamics

Training

Prediction

FIG. 3. Typical supervised ML procedure in condensed mat-
ter. The raw input is encoded using structural descriptors
or graphs. A model is trained using labels which describe
structural relaxation obtained, e.g., from molecular dynam-
ics simulations. Colors indicate frozen (blue) or rearranging
(red) particles. ML techniques range from support vector
classification (SVC) to graph neural networks (GNNs), multi-
layer perceptrons (MLPs), and convolutional neural networks
(CNNs). After training, structural relaxation is predicted for
previously unseen structures.

dict future dynamics of a configuration from an initial
snapshot. Note that one is not interested in predicting
the whole future evolution, but only the dynamical pro-
cesses leading to microscopic irreversible motion. Super-
vised ML provides a natural tool to perform such pre-
diction, essentially by fitting high-dimensional structural
input to the relaxation dynamics, similar in spirit to clas-
sification in image recognition. In general, three choices
need to be made to design a model: i) which structural
descriptors to use to characterize the input configura-
tion; ii) which labels to use to quantify structural micro-
scopic relaxation; and iii) what model and ML algorithm
to use to fit the input to the labels. A large variety of
techniques have already been introduced to tackle this
problem, ranging from ridge regression using complex
and coarse-grained structural descriptors to graph neural
networks using raw particles positions, as illustrated in
Fig. 3.

In 2015, Cubuk et al. [20] demonstrated that sup-
port vector classifiers (SVC) [75] could be used to classify
soft spots relaxing fast against slowly-relaxing regions in
glasses. Here, soft spots are defined as regions that had a
high likelihood of rearranging within a short time scale.
As input to this algorithm, each particle was assigned a
vector of local structural descriptors that captured the
local density and angular structure within shells at dif-
ferent distances from its center. From the trained SVC
a continuous structural descriptor called softness, S, can
be extracted which correlates with the likelihood for the
particle to rearrange in the near future. Softness has
been used to gain insight into a variety of glass prob-
lems encompassing many different types of glassy liquids
and disordered solids, ranging from strong to fragile and
ductile to brittle with constituent particles ranging from
atomic to granular, studied in bulk and in thin films
[19, 76–84]. Further, this approach also led to a series
of papers [31, 85, 86] aiming at the construction of an
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effective model for the dynamics in glassy fluids built
around the evolution of the softness field, which will be
discussed in more detail in Sec. IV.

Whereas softness is associated to prediction on short
time scales, several subsequent works have focused on
predicting the dynamics, or more precisely the dynamic
propensity [87], on longer time scales t ∼ τα. Here, τα
is the typical structural relaxation time scale on which
each particle moves on average roughly one particle di-
ameter (see SM [54]). Dynamic propensity quantifies the
local dynamics of a glass-forming liquid by capturing the
typical behaviour of each particle in a structure using the
isoconfigurational ensemble [87]. This ensemble is formed
by a set of trajectories which start from the same initial
structure but with different initial velocities drawn from
a Maxwell-Boltzmann distribution. By calculating the
mean distance travelled by a given particle in this ensem-
ble, one arrives at the dynamic propensity ⟨|∆ri(t)|⟩iso.
Due to this averaging, the dynamic propensity captures
the part of the dynamics encoded in the initial structure,
leaving out the part stemming from the initial velocities
which cannot be captured by any structural descriptor.
While some dynamical information is necessarily lost [88],
the dynamic propensity, which fluctuates from one par-
ticle to the other, is an important measure for dynamic
heterogeneity in supercooled liquids. At the end of the
section, we will also discuss ways to reintroduce the fluc-
tuations around the isoconfigurational average using dif-
ferent labels or new ML designs.

In 2020, Bapst et al. [21] introduced a graph neural
network (GNN) that could predict the dynamic propen-
sity significantly better than a support vector machine
(SVM) (where the input for the SVM was angular and
radial functions similar to Ref. [20]). In contrast to
the SVM, the input to the GNN was a graph structure
where each particle in the initial configuration was rep-
resented by a vertex, and edges were drawn between par-
ticles within a cutoff radius of each other. In addition to
the structure of this graph, the vertices and edges also
carry information: the particle species (as vertex data)
and the vectors connecting neighbours (as edge data).
The GNN model then consists of several multilayer per-
ceptrons (MLP) that iteratively update the features con-
tained at the edges and nodes, with each iteration pass-
ing information along the nodes and edges of the net-
work. After the final iteration, the features at the nodes
are passed through a final MLP that predicts the dy-
namic propensity. As all vertices are updated in parallel,
the network predicts mobilities of all particles simulta-
neously. This network was then optimized to minimize
the squared difference between the predicted and true
propensity using the L2 norm. Recently, two improve-
ments to this GNN approach were proposed. Shiba et
al. [25] demonstrated that a significantly higher accu-
racy could be reached over nearly all time scales by not
only considering single particle dynamics but also pair-
wise dynamics. Specifically, they trained the GNN to
predict not only the dynamic propensity but also the iso-

configurational change in the distance between pairs of
particles sharing an edge in the graph — a modification
called BOnd TArgeting Network (BOTAN) [25]. Intrigu-
ingly, even with the same overall architecture, BOTAN
finds a better prediction for the single particle dynam-
ics, showing that the extra edge information improves
the performance of the GNN. Pezzicoli et al. explored
an alternative improvement by explicitly requiring the
GNN to enforce the rotational symmetry, an idea some-
times referred to as geometric deep learning or rotation
equivariant network (SE(3), [28]). This adaptation also
improved on the original work of Ref. [21] over nearly all
considered time scales.

In addition to the development of increasingly sophis-
ticated ML methods to predict the dynamic propensity,
significant efforts have been made to better capture im-
portant local features of the structural input. Shortly
after the seminal work on GNNs [21], Boattini et al. in-
corporated the recursive updating properties of GNNs
into a set of locally coarse-grained structural descriptors.
They found that fitting just three generations of descrip-
tors with a linear regression algorithm was sufficient to
essentially reach the accuracy of the GNN — leading to
a much simpler and more interpretable algorithm for fit-
ting glassy dynamics. Interestingly, learning the dynamic
propensity using these descriptors with non-linear models
(MLP and GNN) did not improve the ability to predict
the dynamics, as quantified by the Pearson correlation
coefficient [24].

This approach has been further developed by includ-
ing physics-inspired descriptors which have been identi-
fied as important structural proxies in the past thirty
years of glass research (GlassMLP, [30]). These addi-
tional structural descriptors include potential energy and
properties of the Voronoi cells, as well as the choice of
describing the system in terms of its inherent state [30].
The inherent state corresponds to the energy minimum
configuration that is closest to the actual input struc-
ture. These modifications improve the performance of
the network. GlassMLP further uses MLP for super-
vised learning, which enables the precise representation
of non-linear or non-Gaussian features such as probability
distributions of propensities [30]. Using transferability in
system size, the network has been applied to determine
dynamic correlation lengths and the geometry of rear-
ranging clusters over a wide range of temperatures. The
GlassMLP model was recently enhanced to improve the
transferability across time scales and temperatures and
to explore physical regimes where direct training cannot
be performed [89]. In a vein similar to GlassMLP, struc-
tural descriptors have been improved by going beyond
inherent states and using cage states (CAGE, [26]). Cage
states are extracted from restricted ensemble averages of
the local structure using Monte Carlo simulations and
thus better describe the local environment, which also
helps improving the performance of the model.

By construction, all methods perform best at the tem-
perature at which they are trained. However, it is pos-



6

sible to apply a trained network to other temperatures,
and test how predictions correlate with true dynamics
there [20, 21, 28, 83, 89]. Good performance in such
transfer experiments indicates that the model captures
relevant universal features in the structure-dynamics re-
lationship of glass-forming liquids. Transferability has,
for example, been used in Ref. [83] to investigate links be-
tween amorphous structure and fragility and in Ref. [89]
to predict features of dynamic heterogeneity for temper-
atures comparable to the experimental glass transition
temperature. In Sec. V, we show additional transferabil-
ity experiments for several models.

In future work, it will be interesting to further ex-
ploit the transferability of supervised ML techniques to
robustly extract information on structural relaxation at
very low temperatures. One particular goal would con-
cern the evolution of dynamic heterogeneity upon ap-
proaching the glass transition, and make the connec-
tion with experimental results [90]. One possible strat-
egy to improve transferability of trained models to low-
temperature regimes in which dynamics cannot be run
for long enough (i.e., no or little labeled data is avail-
able) would be to use self-supervised learning [91]. More
generally, self-supervised learning could also be used to
enhance performance of the deep approaches (see also
Sec. VIB).

To better capture the physical phenomena underpin-
ning glassy dynamics, it seems necessary that the ML
models not only faithfully predict the dynamics at the
single particle level, but also correctly reproduce all sta-
tistical features of the propensity field, including spatial
and temporal correlations, such as those measured by the
four-point susceptibility χ4(t) [92]. For GNNs, a known
problem is over-smoothing, i.e., the predicted propensity
field tends to be smoother than the ground truth. Jung et
al. [30] introduced additional correlations-related terms
in the loss function to avoid over-smoothing, and could
show that the predictions indeed display more realistic
correlation functions, even in a rather simple MLP archi-
tecture. An open direction for future works is the devel-
opment of such improved loss functions, which could also
be used in deep architectures.

A related idea is to learn not only the isoconfigura-
tional average of the displacement, ⟨∆ri(t)⟩iso, but its full
statistical distribution, Piso(∆ri(t)). This could be ac-
complished either by additionally fitting higher moments
of the distribution, or by taking a generative model ap-
proach, in which one would attempt to generate realistic
single-instance dynamical fields (not averaged in the iso-
configurational ensemble). This task could be achieved
using a variational auto-encoder approach [93]. The spa-
tial correlations of the isoconfigurational average being
a priori different from the spatial correlations of single
instances, the hope is that such generative models would
reproduce these statistics more faithfully than conven-
tional ones. To train such models, one should probably
use single-instance configurations, which can also be used
to regress the average. Finally, this approach might then

be usable to propose new configurations on the struc-
tural relaxation time scale τα, with the long-term goal to
be able to develop a Monte Carlo algorithm which com-
pletely avoids the critical slowing down of the dynamics
on the approach to the glass transition. Similarly, the
predictions could be used to create ultra-stable glasses
by generating prototypical hard neighborhoods and re-
move structural “defects” [94]. In Sec. VIC we discuss
in more detail generative models and their applications
for sampling low-temperature glassy structures.
In physics, explaining complex behavior builds on the

ability of theories and models to substantially compress
the inherent information of a natural phenomenon [95].
From this standpoint, large machine learning models,
involving several hundreds or thousands of directly fit-
ted parameters, do not qualify as a physical theory
in the traditional sense of the term. Moreover, due
to their non-linearity, neural-networks models are still
rather difficult to interpret, although some progress is
being made [96, 97]. This does not mean, however, that
large “black-box” ML models are useless in this context:
their predictions can be instrumental as part of an euris-
tic process, eventually leading to a simple solution to an
outstanding problem [98]. This is nicely demonstrated
by the results presented in this section: building on the
insight of Ref. [21], Filion and coworkers achieved about
the same prediction accuracy as graph neural networks
using a much simpler and transparent linear regression
method [24]. Linear models thus retain a strong ap-
peal for fundamental research in glass physics, because
of their simplicity and their direct mapping to the un-
derlying structural descriptor. Interpreting the outcome
of machine learning models also hinges on the ability of
identifying the most relevant features – a process known
as “feature selection”. Analysis of the so-called “infor-
mation imbalance” has emerged as a general and elegant
approach to feature selection [99]. This method has been
very recently applied to identify the most relevant struc-
tural features for glassy dynamics [100].
Finally, a natural aim for future investigations is to

enlarge the ML studies described above to encompass
diverse glass-forming materials with complex dynam-
ics, including active glasses as model for biological tis-
sues [101, 102]. Although it is generally accepted that
equilibrium microscopic dynamics do not influence long-
time structural relaxation it is unclear which signa-
ture activity plays on structural descriptors in active
glasses [103]. Similarly, very little information exists on
the dynamical properties of glasses during aging [104],
and whether similarly strong structure-dynamics rela-
tionships can be found as for equilibrium relaxation.

IV. MACHINE LEARNING
PHENOMENOLOGICAL GLASS MODELS

In this section, we demonstrate the potential of com-
bining ML methods with physical insights to develop ef-
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fective models and phenomenological theories of slow and
glassy dynamics. The starting point are the ML meth-
ods, already described in Sec. III, that identify the local
structure responsible for local relaxations on short time
scales. The aim is now to use this structural field as
a building block to construct a phenomenological model
for how structural relaxation proceeds. This approach
is built upon two useful classes of models to understand
dynamics in glass-forming liquids and amorphous solids
subjected to mechanical strain, namely trap and elasto-
plastic models.

Trap models start from the high-temperature liquid,
describing the system as a distribution of energy barri-
ers for rearrangements. A recent implementation [105]
adds a facilitation mechanism: in response to a rear-
rangement, all the energy barriers are subject to a small
random drift. This facilitated trap model has been used
to explain the emergence of excess wings in the relax-
ation spectra [106]. Elasto-plastic models start instead
from the low-temperature solid, describing the system
in terms of thermally-induced rearrangement events that
can trigger other rearrangements via long-ranged strain
fields [107–109]. Both of these approaches have given
insights into glassy dynamics, and include facilitation ef-
fects in some manner, but both describe the local struc-
ture of the liquid in a very coarse-grained, simplistic man-
ner. As a result, both classes of models must make ad hoc
assumptions on the nature of the local relaxation events.
In the case of the trap model, facilitation is assumed to
lead to a shift of energy barriers, while in elasto-plastic
models the distribution of yield stress is imposed.

A recent approach unites the trap and elasto-plastic
models by extending them to include the local struc-
ture in the form of a machine-learned microscopic struc-
tural descriptor, the softness S, as introduced in Sec. III.
Softness is sufficiently accurate that the probability of
rearranging for particles of a given softness S, PR(S),
has an Arrhenius temperature dependence: P (R|S) =
exp [−∆E(S)/T +∆Σ(S)], where ∆E is the energy bar-
rier and ∆Σ is the entropic one, ∆F = ∆E−T∆Σ. This
suggests that particles of softness S have a well-defined
free energy barrier for rearrangements, ∆F (S). The spa-
tial variation of the softness then leads to a free-energy
barrier field that couples to the stress and strain fields.
Note that any local structural measure that predicts rear-
rangements or local yield stress [110] (whether extracted
using ML, as described here or in other sections of this
paper, or by other means [11]) could in principle be ex-
ploited in a similar manner to construct phenomenologi-
cal models of glassy dynamics or plasticity.

Thanks to this ability to extract a free energy bar-
rier estimate ∆F (S), the softness can naturally be used
to construct a phenomenological trap model. However,
softness allows one to go further by considering spatial
correlations. When a rearrangement occurs, it alters the
softness of rearranging particles as well as that of nearby
particles through near-field facilitation [111]. It also al-
ters the softness of more distant particles by creating a

strain field that decays away from the rearrangement.
Because the strain field changes the local structural en-
vironment of particles, it alters their softness. This far-
field form of facilitation is well-captured by elasto-plastic
models [108].

There is an interplay between rearrangements (strain),
changes in softness and elasticity, with each one affecting
the other two. A systematic approach to disentangling all
of these effects has been introduced in Ref. [85] and imple-
mented in a lattice structuro-elasto-plasticity model [31]
for athermal systems under load. It has been applied
successfully to a number of systems of varying ductil-
ity [31, 86] and used to extract insights into the micro-
scopic factors that control ductility, such as the strength
of near-field facilitation [86].

These results pave the way towards models of struc-
tural relaxation dynamics in glassy liquids. A simple trap
model built upon the barriers ∆F (S) and assuming an
underlying distribution of softness, ρ(S), as in Ref. [112],
was developed in Ref. [113]. One can also construct a
version of the facilitated trap model of Ref. [105] that
incorporates S. Generalising such models to supercooled
liquids, however, is more challenging since one must in-
clude time-reversal invariance. Above the mode-coupling
temperature, Tc, near-field facilitation should be suffi-
cient. The hypotheses that ρ(S) is nearly Gaussian [19]
and that the near-field distribution of the change in soft-
ness ∆S(r) due to a rearrangement at the origin is also
nearly Gaussian, are important simplifications that al-
lows formulation of a closed theory [114]. For systems
below Tc, however, it has been shown that long-ranged
facilitation via strain occurs [111]. The inclusion of time-
reversal invariance in a model such as a thermal elasto-
plastic model [108] or structuro-elasto-plasticity model
with long-ranged facilitation is a challenging open prob-
lem that needs to be solved. A precise predictor of future
dynamics, as discussed in Sec. III, would be a very use-
ful tool to adjust such models. Additionally, it would
be interesting to explore whether the free energy barriers
∆F for local relaxation, extracted from the amorphous
structure using softness, could be learned more directly
and used to improve effective glasss models.

Another path forward is to switch from a field picture
to a defect picture. Most predictors of rearrangements
yield particle-based quantities that are easily converted
to fields, but highlight localised regions that are suscep-
tible to rearrangement [11]. These regions can be viewed
as structural defects that interact with each other and
are created and destroyed by strain and rearrangements.
ML could be used to learn these interactions and rules,
to help build defect theories of plasticity and glassy dy-
namics.

In this respect, a direction that has been recently ex-
plored consists in letting a glass-forming liquid evolve via
the usual thermal motion (e.g., using molecular dynam-
ics). During such exploration, the energy is periodically
minimized in order to extract a library of mechanically
stable zero-temperature configurations (inherent struc-
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tures). The idea is then to use ML to classify pairs of
inherent structures, instead of single configurations, and
check whether the pair is connected by a low-energy exci-
tation corresponding to a localised structural defect. For
example, in Ref. [115], a large library of inherent struc-
tures was constructed by such an exploration at very low
temperature inside a glass basin. By means of supervised
learning techniques, it was possible to train a machine
that inputs a pair of inherent structures and outputs,
with good precision, the classical energy barrier sepa-
rating them. This allowed for a speed up in the search
for glass defects by more than one order of magnitude,
which is significant given the complexity of these kind of
calculations.

While this preliminary study was mostly focused on
very low-energy defects that are associated with ther-
modynamic and transport anomalies of the glass at
cryogenic temperatures [115], it should in principle be
straightforward to extend the techniques to detect other
kinds of defects, such as those associated with plastic
events under shear [11, 116] of relaxation events under
equilibrium thermal motion [117]. This is a promising
direction for further research.

V. PERFORMANCE METRICS AND
BENCHMARKING

An essential ingredient to fuel further development
of ML techniques are detailed benchmarks for existing
datasets, which may allow every researcher to indepen-
dently develop and test newML approaches without com-
plex production and preprocessing of data [33]. We pro-
vide such benchmarks for ML glass-forming liquids for
different systems, different dynamical observables, and
different metrics.

The benchmarks are based on the dataset “Glass-
Bench” that we have created and made publicly available
(https://doi.org/10.5281/zenodo.10118191). The whole
dataset is separated into a training set which, as the name
suggests, can be used to train the neural network, and
a test set which should be used only for benchmarking.
In addition to initial amorphous structures and trajecto-
ries, we provide precalculated dynamical descriptors and
propensities, as introduced in Sec. III. We have also up-
loaded sample python code for reading and processing.
Additional technical information on the data format is
provided with the dataset.

The tasks identified for “GlassBench” are directly re-
lated to the open questions highlighted in the intro-
duction: (A) Train a model to predict single particle
propensity purely from structural properties. Accuracy
will be quantified using the Pearson correlation coeffi-
cient. Higher accuracy in the prediction indicates that
the learned structural descriptor is indeed an important
precursor for future relaxation but it can also become
essential when using the model to generate new configu-
rations. (B) Train a transferable model such that it can

be accurately applied to different temperatures. This is
an important task to enable investigation of structural
relaxation at temperatures that are unreachable for nu-
merical simulations. (C) Train a model which correctly
predicts spatial dynamic heterogeneity (DH) as quanti-
fied by the dynamic susceptibility. The length scale of
DH is growing with decreasing temperature such that at
very low temperatures some regions in the system ac-
tively rearrange while others are completely frozen. DH
are not only important for properties of glass-forming
materials but are also core to fundamental theories of
the glass transition [90, 118].
The ML techniques used for the benchmarking are

summarized in Tab. I. In the following, we will refer to
them just as models. A large variety of different mod-
els is represented, with very different numbers of fitting
parameters and training time. Furthermore, the models
use various ways to physically preprocess the structural
input, either by using inherent states [30], or even by
performing a Monte Carlo averaging of local cages [26].
These different factors, combined with the benchmarking
provided below, should help choosing the most suitable
method for a given purpose, with focus on either the
highest-scoring predictions, computational efficiency, or
interpretability. In addition to these ML techniques, we
also include the performance of traditional structural de-
scriptors based on physical intuition [9, 30, 119]. The
model of glass-forming liquid that we selected to develop
GlassBench is the very popular Kob-Andersen (KA) mix-
ture, that we study both in two and in three dimensions.
Task A. The aim for the models is to learn correla-

tions between the amorphous structure and the dynamic
propensity of displacements, Ri(t) ≡ ⟨∆ri(t)⟩iso, as in-
troduced in Sec. III. A common metric used to assess the
performance of different techniques is the Pearson corre-
lation coefficient,

ρP =
cov(RMD

i ,XML
i )√

var(RMD
i )var(XML

i )
, (1)

between the labels RMD
i for each particle i of type 1 in

the entire dataset as obtained from molecular dynam-
ics (MD) simulations, and the ML output XML

i [120].
The results are shown in Fig. 4a, with full symbols cor-
responding to supervised ML techniques (introduced in
Sec. III) and open symbols to unsupervised techniques or
physically-motivated structural descriptors (Sec. II). All
technical details are provided in the SM [54]. From this
figure, it can be concluded that supervised techniques
nearly approach the maximal achievable correlation over
the entire range of time scales. CAGE performs best
for shorter times, which appears reasonable as it uses
extensive Monte-Carlo simulations to characterize the
local cage structure at short times. For longer times,
the SE(3) GNN extension has the strongest correlation,
closely trailed by the other advanced techniques. We can
also observe that there is a pronounced gap between the
supervised and the unsupervised techniques, indicating
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Training ML approach free parameters states training time training hardware app. time
BOTAN [25] supervised GNN 54200 th. ∼ hours NVIDIA A100 ∼ s
CAGE [26] supervised Ridge regression 2775 th.+cage ∼ min CPU ∼ hours

GlassMLP [30] supervised MLP 615 th.+inh. ∼ min CPU ∼ s
SE(3) [28] supervised GNN 52660 th.+inh. ∼ hours NVIDIA Tesla V100 ∼ s
SBO [51] unsupervised PCA 0 th. – CPU ∼ s

TABLE I. Overview of the different techniques benchmarked in this roadmap. The column “states” refers to the usage of
thermal (th.), inherent (inh.) or cage states. The training time corresponds to the time required to train one model at a
specific temperature and time for the KA system in three dimensions. The application time corresponds to the time required
to calculate the prediction for a single configuration, including preparation such as calculation of inh./cage states.
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FIG. 4. Benchmark task (A) Pearson correlation ρP be-
tween various structural indicators with the ground truth. (a)
3D KA model at T = 0.44, (b,c) KA2D system at T = 0.3.
The dynamical variable is (a,b) the propensity of displace-
ments R and (c) the bond-breaking propensity CB . The ver-
tical line marks the structural relaxation time τα, the typical
time scale on which particles rearrange, as defined in Eq. (1)
in the SM [54]. The exclusion zone on the top marks the high-
est achievable correlation given the finite number of replicas.

that the amorphous structural features that are predic-
tive for dynamics do not stand out in a purely structural
analysis, as discussed in Sec. II.

To asses the generality of these findings, we also pro-
vide benchmarks for a two-dimensional ternary mixture
of Lennard-Jones particles (KA2D) in Fig. 4b. We find
that, apart from minor differences, the performance of
the individual techniques is very similar to the 3D sys-
tem. The most noteworthy difference is perhaps that
BOTAN performs best of all methods at the structural
relaxation time t ≈ τα while in the 3D KA system, the
trend is reversed. While there might be subtle differ-
ences between structural relaxation across spatial dimen-
sions the above observation implies that the problem of
learning correlations between structure and dynamics is
essentially independent of the spatial dimension.

The propensity of displacements Ri is only one specific
choice to characterise relaxation dynamics among many
others. One alternative is to use the bond-breaking corre-
lation, Ci

B , which quantifies how many nearest neighbours
particle i has lost during the relaxation process [30, 117].
As shown in Fig. 4c, the models also successfully learn
correlations between the bond-breaking propensity and
the amorphous structure. The performance of the models
in the short-time predictions, however, is significantly re-
duced compared to the propensity of displacements. This
implies that predicting the exact nature and position of
the first rearrangement events appears more difficult than
simply predicting short-time displacements. Around the
structural relaxation time τα and beyond, the correla-
tions shown in Fig. 4c for Ci

B are stronger than for Ri

in Fig. 4b. This seemingly surprising result is connected
to the growing dynamic heterogeneity at longer times
(see also Fig. 6), which simplifies the prediction of larger
rearranging clusters from coarse-grained structural prop-
erties, as discussed in Ref. [30]. Additionally, at times
t ≥ τα, we observe that the propensity of displacement
Ri has slowly decaying tails which are not captured by
the models (see Fig. S2 in the SM) and thus likely reduce
the Pearson correlation.

Task B. An important property of supervised ML
techniques is their transferability, in particular towards
lower temperatures, with the goal to predict the dynam-
ics at very low temperatures that are inaccessible by di-
rect computer simulations [28, 89]. In Fig. 5, we evaluate
the capabilities of the models to transfer their structure-
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FIG. 5. Benchmark task (B) Transferability in temper-
ature T of trained networks in the KA system (3D) at the
structural relaxation time τα. Each network is trained at
Ttrain (marked by the full symbol) and applied to all four dif-
ferent temperatures (marked by open symbols). The color
codes for Ttrain which changes smoothly from red (T = 0.64,
high temperature) to blue (T = 0.44, low temperature).

dynamics relationships learnt at a given temperature to
make predictions at a different temperature. The results
are actually quite remarkable as transferability is generi-
cally quite good for all models. This shows that these re-
lationships only evolve quite smoothly across the range of
temperatures investigated here. In particular, the mod-
els trained at 1/T = 2.0 (τα = 210) perform nearly as
good in predicting propensity at 1/T = 2.25 (τα = 4100)
as the models trained directly on 1/T = 2.25. The
SE(3) method seems to be particularly suited to transfer
to lower temperatures, opening the possibility to study
structural relaxation at much lower temperatures.

Task C. Finally, we investigate the performance of the
models to predict the correct extent of dynamic hetero-
geneity. A time-dependent scalar that quantifies hetero-
geneities is the dynamic susceptibility

χ4(t) = N
(
⟨C̄2

R(t)⟩ − ⟨C̄R(t)⟩2
)

(2)

calculated from the system-averaged overlap function
C̄R(t) = (1/N)

∑
i∈N Θ(0.3−Ri(t)). Here, N is the

number of particles in the system, and Θ(x) the Heaviside
function. This definition separates particles into active
(Ri > 0.3) and frozen (Ri ≤ 0.3). The threshold value of
0.3 is a common choice [121, 122] and corresponds to val-
ues slightly larger than the plateau in the mean-squared
displacement [121], implying that particles identified as
active have typically left their initial cages. In Fig. 6,
we compare the results of the predictions to the ground
truth MD simulations. Despite the overall good perfor-
mance in the Pearson correlation, we now observe strong
differences between the various techniques. For exam-
ple, the improvement in performance of SE(3) compared
to BOTAN shown in Fig. 4 can be connected to their
different learning of the correct dynamic heterogeneity.
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FIG. 6. Benchmark task (C) Dynamic susceptibility χ4(t)
for different temperatures (T = 0.44, 0.5, 0.56, 0.64), as pre-
dicted from ML techniques (dashed lines), compared to the
ground truth (full lines) in the KA system (3D). The color
code is as in Fig. 5.

In a recent attention-based GNN extension, this hetero-
geneity has been explicitly targeted during the training
procedure to improve the performance of the deep net-
work [123]. The best overall performance in predicting
χ4(t) is achieved by GlassMLP, which was specifically
constructed to learn and predict dynamic heterogene-
ity [30]. This analysis shows that the Pearson correlation
is not entirely sufficient to quantify the performance of
a model. Additional dynamical observables, such as the
dynamic susceptibility χ4(t), should be investigated to
better characterize the ability of models to realistically
describe structural relaxation in glass-forming liquids.

In the SM [54] we provide further benchmarking, by
investigating: (a) the coefficient of determination R2, an-
other popular measure to study the performance of ML
models; (b) the probability distributions of the predicted
propensities, which correspond to a second contribution
to dynamic heterogeneity; (c,d) the scatter plots and
the snapshots directly comparing the true and predicted
propensities; (e) the cross-correlations between the dif-
ferent structural descriptors and the models investigated
in this section. We also provide additional information
on (f) learning curves, (g) transferability to lower tem-
peratures T = 0.4, and (h) bond-breaking propensity.

Another conclusion of additional benchmarks, which
goes beyond the scope of this roadmap, is that correlation
coefficients display some system dependence [73]. Hard
sphere glasses and systems with strong icosahedral or-
der, for example, show systematically higher correlation
coefficients between structural and dynamical descriptors
than Kob-Andersen mixtures [24, 51]. The same state-
ment holds true for different dynamical descriptors and
coarse-grained quantities. We therefore strongly encour-
age the use of identical datasets and labels (i.e., dynam-
ical descriptors) to enable comparability.

Among possible extensions of GlassBench, it would
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be particularly worth including a diverse set of models
of glass-formers: fragile molecular glass-formers, strong
network-forming glasses and potentially metallic glasses.
The first step in creating a new dataset is the sam-
pling of independent configurations at a given temper-
ature or density. This step could leverage enhanced
sampling techniques such as parallel tempering [124] or
swap Monte Carlo [125]. Subsequently, for each struc-
ture, molecular dynamics or ab-initio dynamics simula-
tions will have to be performed to study the structural
relaxation of the systems and calculate the isoconfigura-
tional average [87].

It would also be interesting to broaden the tasks. For
example, other ML models, such as the softness de-
rived from SVC, target predicting local energy barriers
for short-time rearrangements instead of long-time struc-
tural relaxation [19, 85] (see Sec. IV). For this class of ML
techniques, it would be preferable that the descriptor can
effectively separate the particles by their probability of
rearrangement, PR(S). To encourage further develop-
ment in this area, it would be desirable to perform a
similar benchmarking and investigate whether modern
ML models can outperform the state of the art.

Similarly, there is much interest in understanding plas-
tic events and failure of glassy materials under exter-
nal load. Contrarily to equilibrium structural relaxation,
this protocol takes place far from equilibrium, but dis-
plays similar characteristics. Recently, this field has
been reviewed and benchmarked in a collaborative pub-
lication [11]. The focus, however, was not yet on ad-
vanced ML techniques, which further demonstrates the
very quick development of this field. It would be interest-
ing to analyse whether the techniques presented in this
roadmap can help investigating glass deformation under
shear [21, 126–128].

VI. SUMMARY AND FURTHER DIRECTIONS

One of the main challenges in understanding glass-
forming liquids is connecting their structural properties
to emergent relaxation dynamics and plastic deforma-
tion. Since the amorphous structure lacks apparent long-
range order, machine learning techniques are potentially
useful to extract important information from simulations
or experimental measurements and eventually generate
new data. We therefore anticipate that machine learning
will have a decisive influence on the field of glass physics
in the upcoming years.

We have given both an overview of recent achievements
in using machine learning to advance our fundamental
understanding of glass physics, and discussed important
research questions for the future. We identified three
main fields in which machine learning could impact re-
search on glass physics: (i) automatic feature detection
to better understand locally favored amorphous struc-
tures, (ii) forecasting of future microscopic dynamics and
investigation of dynamical heterogeneities, and (iii) the

construction of data-driven effective models of glassy dy-
namics. For each of these fields we have proposed con-
crete methodology that could be used to answer some of
the identified research questions. Finally, we have pro-
vided a dataset and benchmarking to provide a common
ground to compare ML methods for glassy dynamics and
enable reproducibility. This work will hopefully provide
inspiration and guidelines to researchers on how to fur-
ther develop the field with the ultimate goal to better
understand universal properties of glass-forming liquids
and, eventually, the glass transition itself.
The number of potential applications of ML techniques

for studies of glass-forming liquids and glasses goes of
course much further than what we covered in this arti-
cle, focusing on fundamental aspects of glassy dynamics.
This includes investigation of specific material properties
[69, 70, 129, 130] or material discovery [67, 131, 132],
machine learning force fields [133], and particle identi-
fication in experimental data [134, 135]. Furthermore,
the connection between ML and glassy physics has also
gone in the reverse direction, by borrowing methods de-
veloped for the study of disordered systems to analyze
central theoretical ML problems. In fact, the connection
between the rough energy landscape of amorphous ma-
terials and optimization defined by loss functions with
many local minima has been used to better understand
and optimize learning of neural networks [136–141].
We anticipate that modern ML frameworks will con-

tinue to impact glass research and lead to the develop-
ment of new major directions in the field. We close this
roadmap by discussing exciting new concepts that have
the potential to play an important role in future research.

A. Attention and transformers

An important advance in recent ML architectures is
the “attention mechanism” [142]. Using it in ML meth-
ods for glassy dynamics has a lot of potential. The funda-
mental concept behind attention is to assign a learnable
level of importance to specific parts of the input or inter-
mediate representation. This could be distinct words in
sentences (see, e.g., ChatGPT), amorphous structures’
specific features, channels in a deep representation or
neighboring atoms in a graph representation. Broadly
speaking, this can be achieved by making learned weights
themselves dependent on the input.
Salient examples of successful applications of attention

are AlphaFold v2 and RoseTTAFold [143, 144], which
both use a rotation-equivariant attention-based trans-
former to predict the three-dimensional structure of pro-
teins. This architecture differs from the graph network
architectures discussed earlier by the dense character
of its computation mechanism: all atoms in the input
can exchange information with all other atoms (with a
learned modulation as a function of the distance), allow-
ing for a more flexible computation. Variants of these ar-
chitectures tend to obtain results which are competitive
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with sparse graph networks on benchmark tasks [145].
Recently, a network with a self-attention mechanism was
developed for predicting glassy dynamics [123], showing
that the curse of overfitting can be avoided. The broader
concept of input-dependent weights was also used in a
similar context to learn dynamic heterogeneities over a
wide range of temperatures at which attention must be
paid to temperature-dependent length scales [89]. Both
of the approaches are, however, rather direct applications
of the idea of positional encoding for learning attention
weights, and more complex networks, such as full-fledged
transformers [142] are expected to be used in future re-
search.

Going in the opposite direction from transformers, at-
tention mechanisms can also be used to make models
more interpretable. For example, they can help identify
the task-relevant sectors in the input data [146]. Ad-
ditionally, attention can also be incorporated into other
architectures, for example in combination with a tempo-
ral encoding in time-series forecasting [147], to identify
relevant parts of past trajectories.

B. Self-supervised, semi-supervised and
reinforcement learning

So far, we have mainly focused on “traditional” unsu-
pervised and supervised learning techniques since they
are better established in the field. However, there are
several other learning paradigms which are potentially
useful for future projects, some of which have started to
be used in glass research.

To learn the connection between structural order and
structural relaxation in a way that reconciles the unsu-
pervised and supervised approaches, a possibility is to use
semi-supervised learning [148]. Concretely, the idea is to
perform self-supervised learning using only unlabeled in-
put configurations by designing a pretext task, such as
reinserting a particle which has been artificially removed
from a configuration, denoising particles’ positions, or
predicting local quantities (such as the potential energy
of each particle or its distance to its quenched position)
[91]. Once a representation has been learned to perform
this mock task, one can fine-tune only a handful of pa-
rameters to correlate the learned representation to the
relevant dynamical variable. Such self-supervised pre-
training has proven effective in increasing performance
for various downstream tasks that are similar in spirit
to glassy dynamics prediction, such as molecular prop-
erties [149], crystalline material properties [150] or or-
ganic semiconductors optoelectronic properties predic-
tion [151]. In the application to glasses, the key element
of this approach is to build most of the network with-
out looking at labels, so the output of such a method
may be more acceptable as a bona fide structural de-
scriptor, as opposed to heavy networks relying purely
on supervised learning. Additionally, it requires fewer
labeled data which becomes very important at low tem-

peratures at which sampling becomes difficult. The de-
scribed methodology could therefore also be used to im-
prove transferability of pre-trained models.
Although reinforcement learning is a well established

tool in the field of machine learning [152] only very re-
cently it has found applications in physics for improved
sampling [153, 154] or structure optimization [155, 156].
The general idea behind reinforcement learning is to learn
taking specific actions when reaching certain states. The
goal is to find the policy of actions leading to optimal
results, as quantified by a reward function. Applying
this approach to the example of searching ground states
in spin glasses, the state would be the observed struc-
ture, action would be a spin-flip and reward the energy
change after several spin flips [154]. Along these lines,
Bojesen [157] has formulated the Metropolis-Hastings al-
gorithm in a reinforcement learning setting suitable for
simulations of spin systems. Recent work by Galliano
et al. has extended this approach to learn novel Monte
Carlo moves that accelerate sampling of supercooled liq-
uids [158], establishing connections with related adap-
tive Monte Carlo methods [159, 160]. One of the goals
of this line of research is to improve and generalize the
swap Monte Carlo algorithm, which demonstrated an im-
pressive performance for specifically adapted glass mod-
els [125, 161] and has led to a series of exciting new
insights into supercooled liquids [106, 117]. Devising
general-purpose enhanced sampling algorithms to sim-
ulate glassy systems represents an exciting challenge for
future research [162].

C. Generative models

Another promising emerging direction for applying ML
techniques to problems relevant to fundamental aspects
of glass physics is the use of generative models (GM).
One of the key problems in theoretical studies of glassy
dynamics is that of sampling. In fact, sampling efficiently
configurations xi from a Gibbs distribution of the form
P (xi) = exp[−βU(xi)]/Z, where β−1 = kBT is the target
inverse temperature, and U(xi) is the known potential
energy is very challenging for systems exhibiting glassy
dynamics. Different from generative modelling of images,
in which one estimates an unknown probability distribu-
tion from data, here the target distribution is therefore
known from the start and sampling from it is the chal-
lenge.
A first line of research was proposed independently by

Noé et al. under the name of Boltzmann generators [163]
and by Wu et al. [164] using variational autoregressive
networks. The idea is to consider a much simpler distri-
bution P̂ (z), such that one can easily sample zi in a single
shot. This can, for example, be a Gaussian model, an au-
toregressive model, or a Gibbs distribution at very high
temperatures at which we can sample efficiently. After
learning, independent samples x can then be generated
using the invertible map xi = f(zi) of the model. By
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computing the biased distribution PGM(x) of the genera-
tive model enables unbiasing xi in a last post-processing
step [163]. This ensures that we are precisely sampling
from P (x).

In practice the method is only efficient if the weights
are almost uniformly distributed. This requires that the
generative distribution is as close as possible to the target
distribution. To this aim, the machine is trained to min-
imize the Kullback-Leibler (KL) divergence between the
generative and target distributions. Because the KL di-
vergence between two distributions is not symmetric, two
choices can be made: (i) Maximum likelihood training, in
which one minimizes DKL(P ||PGM). This approach has
the advantage that PGM has to cover well all the sup-
port of P (x). However, it also requires existing samples
from P (x), which renders training impractical: we want
to train a machine to sample from the target, but for this
we need to be able to sample from the target. (ii) Vari-
ational or energy-based training, where one minimizes
DKL(PGM||P ), which corresponds to the free energy of
the generative model. While this choice does not require
sampling from PGM it has the important drawback that
the generative model might only cover part of the support
of the target, which is known as mode collapse.

To deal with these problems, several architectures and
training strategies have been proposed. To sample a two-
state protein model Noé et al. [163] focused on a normal-
izing flow architecture to represent the map f(z), and
a training strategy based on mixing the variational ap-
proach with maximum likelihood, for which experimen-
tal structures and short molecular dynamics simulations
were used. In subsequent work, the group introduced
equivariant flows to implement physical symmetries [165],
and used a higher-temperature Boltzmann distribution
as a prior [166, 167] (see also Refs. [168, 169]). To
sample crystalline structures, it was recently proposed
to generate displacements from a reference lattice struc-
ture instead of absolute particle positions [170]. Gabrié
et al. [171] introduced a more efficient training strategy
based on mixing standard Monte Carlo moves with moves
proposed by the generative model. Applying Boltzmann
generators to sample supercooled liquids yields perfor-
mances in the same magnitude as previously known en-
hanced sampling techniques [172].

Several studies have focused on other models in which
sampling is challenging, e.g. spin-glasses, hard optimiza-
tion problems and lattice field theories [154, 164, 173–
185]. It remains unclear how these methods compare to
standard ones, or whether the efficiency is universal or

model dependent [186–189].
Finally, it could be worth combining the ML models

discussed in Sec. III, which can precisely predict future
dynamics, with generative models. The former can be
used to detect active regions or even particles which are
likely to rearrange, while the latter can subsequently pro-
pose new configurations based on local rearrangements.
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F. Noé, and A. Laio, Unsupervised Learning Methods
for Molecular Simulation Data, Chem. Rev. 121, 9722
(2021).

[43] W. Hu, R. R. P. Singh, and R. T. Scalettar, Discov-
ering phases, phase transitions, and crossovers through
unsupervised machine learning: A critical examination,
Phys. Rev. E 95, 062122 (2017).

[44] J. F. Rodriguez-Nieva and M. S. Scheurer, Identifying
topological order through unsupervised machine learn-
ing, Nat. Phys. 15, 790 (2019).

[45] T. Mendes-Santos, X. Turkeshi, M. Dalmonte, and
A. Rodriguez, Unsupervised Learning Universal Criti-
cal Behavior via the Intrinsic Dimension, Phys. Rev. X
11, 011040 (2021).
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Supplemental material: Roadmap on machine learning glassy dynamics

In this supplemental material (SM) we provide the
technical details necessary to reproduce the data shown
in the benchmarking section V of the main manuscript.
Additionally, we present further benchmarking.

I. SYSTEMS AND METHODS

A. KA system (3D)

Most benchmarks were performed for the Kob-
Andersen binary mixture (KA) in three dimensions [S1].
The basic potential used in KA is the Lennard-Jones po-
tential,

Vαβ(rij) =




4ϵαβ

[(
σαβ

rij

)12

−
(

σαβ

rij

)6
]

rij < rcutαβ

0 otherwise,

where rij = |ri − rj | is the distance between particles i
and j, of type α and β, respectively. The KA mixture is
characterized by its non-additive interactions, ϵ11 = 1.0,
ϵ12 = 1.5, ϵ22 = 0.5 and σ11 = 1.0, σ12 = 0.8, σ22 = 0.88,
between the two particles types. The cutoff is rcutαβ =
2.5σαβ .

All details on the specific KA mixture and the dataset
used in this roadmap are given in Ref. [S2]. The system,
for example, includes additional contributions in the po-
tential to make it continuous up to the second derivative.
The relaxation dynamics of each structure has been sim-
ulated using NR = 32 independent replicas to calculate
the isoconfigurational average. All results have been ex-
tracted by solely considering type 1 particles. The net-
works have been trained on NS = 400 structures, with
N1 = 3277 type 1 particles each, resulting in a total of
Nd ≈ 106 data points. The testset consists of NS = 100
independent structures.

B. KA2D system

The two-dimensional KA2D system is a variation of the
above described KA mixture. In addition to the change
of dimensionality, KA2D consists of three particle types,
instead of two. This change enables to apply the swap
Monte Carlo algorithm [S3, S4] and thus go to very low
temperatures [S5]. All details on the KA2D system are
provided in the main text and the SM of Ref. [S5].

The isoconfigurational average has been calculated
over NR = 20 independent replicas, and NS = 1500
structures are provided for training. Each structure con-
sists of 600 type 1 particles, which thus also yields a total
of Nd ≈ 106 data points for training.

For both the KA and the KA2D system, the structural
relaxation time τα is defined as,

Fs(τα) = e−1, (S1)

where Fs(t) = ⟨∑i cos(q∆ri(t))⟩ is the incoherent inter-
mediate scattering function with q ≈ 2π/σ and ∆ri(t) =
|ri(t)− ri(0)| . The structural relaxation time τα there-
fore describes the time scale on which the particles move
on average approximately one particle diameter σ.

Equilibrated structures and labels calculated from the
relaxation dynamics for both KA and KA2D will be up-
loaded in combination with this roadmap for future re-
search (see 10.5281/zenodo.10118191).

C. Propensity (labels)

The input of each ML method are the positions of each
particle in a given structure or derived structural descrip-
tors. The labels that are used for training and testing are
dynamical quantities characterizing structural relaxation
at various time scales t. As introduced in Sec. III of the
main text we use propensities to remove any effects of
the initial velocities.

For each figure in the main text, except Fig. 5, the
results are based on the propensities of displacement,

Ri = ⟨∆ri(t)⟩iso = N−1
R

∑NR

k=1

∣∣rki (t)− ri(0)
∣∣ , where

rki (t) denotes the position of particle i in replica k. In
Fig. 5 we have reported results for the bond-breaking
propensity of particle i, Ci

B(t) = ⟨ni
t/n

i
0⟩iso. Here, ni

t

describes the number of original nearest neighbours par-
ticle i still has after a time t and ni

0 is the initial number
of neighbours [S6]. The quantity therefore decays from
Ci
B(t = 0) = 1 to Ci

B(t → ∞) = 0. Details and parame-
ters are described in the SM of Ref. [S5].

D. BOTAN

The model architecture of BOTAN [S2] is based on
that of the original GNN proposed by Bapst et al. [S7].
The difference is that BOTAN is equipped with an addi-
tional MLP layer as a decoder for targets on graph edges.
BOTAN is implemented as an “interaction network” [S8]
consisting of a pair of two-layer MLPs with the size of
(64, 64). Each of the MLPs is connected to nodes and
edges, respectively, and performs message passing with
the other.

The input graphs are constructed by choosing each
particle as a node of the graph, and “connecting” nearest-
neighbour pairs by edges. The threshold distance for the
nearest neighbours are set to 2.0σ11 (both for KA and
2DKA). For recursive message passing, the MLPs re-
peat the message passing iteratively 7 (KA) or 8 (2DKA)
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times, but the results are not strongly affected by slight
changes in this number. The target quantity on the edges
is, similarly to Ref. [S2], the isoconfigurational average
of distance change between particle pairs which are con-
nected via the edges. The loss function is defined as
L = 0.4LN + 0.6LE , where LN and LE denote the MSE
losses for node target (particle propensity) and edge tar-
get (propensity for pair-distance change), respectively.
Details and visualisation of the method are presented in
Ref. [S2].

The BOTANGNNmodel contains about 54,200 weight
parameters (both for 2D and 3D). The training is started
by using pretrained model parameters (optimized to yield
the edge target quantities in advance), and is performed
over 1,000 epochs on 400 snapshots (KA) and over 2,000
epochs on 1,500 snapshots (2DKA), respectively. The
batch size is fixed to one graph. The training has been
conducted separately for each temperature and time, by
using the Adam optimizer with learning rates of 10−4

(KA) and 2 × 10−4 (2DKA). The overall training time
amounted to 4 hours (KA) and 11.5 hours (2DKA) on
an NVIDIA A100 Tensor Core GPU (40GB SXM) on
Aquarius subsystem of Wisteria/BDEC-01 Supercom-
puter at Information Technology Center, University of
Tokyo, with the host CPUs being 2 Intel Xeon Platinum
8360Y. These training times do not include the elapsed
time of the data loader. The code and pretrained model
parameters for 3D are provided on a GitHub repository
( https://github.com/h3-Open-BDEC/pyg botan ).

E. CAGE

As described in Ref. [S9], we train a simple Ridge
regression model to fit the dynamics, based on the struc-
ture of both the initial state and the cage state. The cage
state is defined as the average position of particles before
any rearrangement occurs. To obtain the cage state, we
perform a Monte Carlo simulation where all the particles
are confined to a sphere of radius rαc . For both glassy sys-
tems we use rαc = 1.25σαα with σαα the particle diameter
of type α.

To capture the local structure, we use recursive, rota-
tionally invariant parameters that capture both the ra-
dial density, as well as the n-fold symmetry in various
shells around each particle. For the 3D system, we use
exactly the same set of descriptors as in Ref. [S9]. For
the 2D system we use the same density parameters as for
3D [S9], however the angular parameters are altered to
better reflect 2D symmetry. Specifically, to capture the
n-fold symmetry for the 2D system we use

Φl
i(r, δ) =

√
ϕl
i · (ϕl

i)
∗

with

ϕl
i(r, δ) =

1

Z

∑

i ̸=j

e
−(rij−r)2

2δ2 eilθij ,

and

Z =
∑

i ̸=j

e
−(rij−r)2

2δ2 ,

where θij is the angle between a fixed axis (e.g., x- or
y-axis) and the bond joining the ith particle with a
particle j. In both 2D and 3D we consider l ∈ {1, 12}.

Combining both the radial density and the angular pa-
rameters, we obtain a total of 462 parameters for the
KA2D system:

• 294 parameters that described the radial density up
to the 5th minimum in the pair correlation function
(which is located at 4.8σ11).

– 60 equally spaced in the interval r/σ11 ∈
(0.5, 2.0] with δ = 0.025.

– 20 equally spaced in the interval r/σ11 ∈
(2.0, 3.0] with δ = 0.050.

– 18 equally spaced in the interval r/σ11 ∈
(3.0, 4.8] with δ = 0.100.

Note that the radial density functions are type spe-
cific, such that in the ternary system the total num-
ber of functions above is multiplied by three.

• 168 parameters that capture the n-fold symmetry
up to the second minimum of the pair correlation
function (located at 2.3σ11).

– 14 equally spaced in the interval r/σ11 ∈
[1.0, 2.3] with δ = 0.1 and l ∈ [1, 12].

Note that the radial functions do not take the par-
ticle species into account.

As described in Ref [S9], for the 3D system we obtain
a total of 366 parameters. In addition to the zeroth order
generation parameters, for both the 2D and 3D system,
we additionally include two generations of structural
parameters that are iteratively averaged over the nearest
neighbours (see Ref. [S10]).

The dataset on which we train our Ridge regression
thus includes three generations of structural descriptors
for both the initial structure, as well as the cage state.
Additionally, for each particle we include the distance
between the cage state and the initial positions ∆rcagei =
|rcagei − riniti |. This means that the local structure of
each particle in the 2D system is described by a total of
2197 parameters, and in the 3D system a total of 2773
parameters.
To predict the dynamics, we standardise the data and

then train the Ridge regression model on 300 (KA2D)
and 100 (3D KA) snapshots, respectively. The only free
parameter that is tuned for this ML method is the reg-
ularization parameter α, which sets the strength of the
penalty for large weights in the Ridge regression. We
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train the model on various values of α ∈ {10−5, 105},
and then choose the α that yields the highest correla-
tion. The training time per timestep in both 2D and 3D
is less than 10 minutes on a standard CPU.

F. GlassMLP

The methodology employed in this manuscript corre-
sponds exactly to the procedure described in detail in
Ref. [S5], including all training meta data. In particu-
lar, we calculate a set of MS physics-inspired descrip-
tors, including the coarse-grained local density, ρiL,β =∑

j∈Ni
β
e−rij/L, which is coarse-grained over a distance

L by summing over all N i
β particles of type β within

distance rij = |rinhi − rinhj | < 20σ11 of particle i. Impor-
tantly, particle positions are extracted from the inherent
structures rinhi , and not directly from the thermal struc-
ture. Similarly, we include the potential energy, perime-
ter of the Voronoi cell and local variance of potential
energy (see Ref. [S5] for details).

Different from Ref. [S5] we additionally include one
further structural descriptor, based on the distance be-
tween the inherent and the thermal states of particle i,

∆rinhi = |rinhi −rthi |: ∆r
i

L,β =
∑

j∈Ni
β
∆rinhi e−rij/L. This

descriptor does not affect the long-time prediction and
was therefore discarded in Ref. [S5], but is reintroduced
here mainly to improve the short-time performance of
GlassMLP.

To predict propensity in the KA (3D) system,
GlassMLP has in total 618 free parameters. In the
ternary KA2D system, the number is slightly increased
(765). The training just takes 2-5 minutes with an octa-
core CPU or a Laptop GPU (NVIDIA T600 Laptop).

G. SE(3)

The model is exactly that presented as the main model
of Ref. [S11] (version 2, august 2023).

We recall the main features for completeness and to
avoid possible confusion. In the SE(3) GNN we use 8
layers. The structure of each layer is the same: 8 chan-
nels for each l component, with l = 0, 1, 2, 3 (namely,
lmax = 3). The input data consists of the thermal posi-
tions (not quenched to the IS) and of the particles poten-
tial energy (but computed from the inherent state’s par-
ticles positions). We predict simultaneously propensities
for all particle types and time steps. The connectivity
graph is computed using a threshold distance of 2.0σ11.
The input node features are the particle type (one-hot
encoded) concatenated with the potential energy (of the
IS). For the 2D case, we introduce an artificial third com-
ponent to the position of all particles (∀i, zi = 0) and
used spherical harmonics embedding. This is overkill but
is a quick way to adapt the 3D scheme to 2D data.

The radial-encoding MLP encodes the radius on
(Bessel) basis functions using 10 basis vectors, followed
by a hidden layer of 16 neurons, and uses a dropout of
0.3. We use batch normalization between each convolu-
tion layer. We minimise the MSE loss with a L2 reg-
ularization coefficient β = 10−7, using a batch size of
2 graphs (8 in 2D), a learning rate of 10−3 with Adam
(β1 = 0.99). As opposed to Ref. [S11], we do not use
a validation set in this manuscript and therefore do not
perform early stopping. We simply take the last epoch
model (the accuracy and losses are basically flat when we
interrupt learning).

The model has 52, 660 parameters for 3D data (respec-
tively 53, 394 in 2D). We perform 200 epochs (100 in 2D),
which takes approximately 11 hours (27 hours in 2D) us-
ing an NVIDIA Tesla V100 (32GB) (the CPUs on the
node are 2 Intel Xeon Gold 6148 20 cores (40 threads) at
2.4 GHz (Skylake)). Note that we train simultaneously
the 10 time steps (6 for KA2D) of a given state point
(temperature), therefore the training does not have to
be repeated for each timescale.

H. SBO

Unsupervised learning of local structure fluctuations
is carried out for the 3D KA samples along the lines
of Ref. [S12], using the partycls Python package [S13].
Namely, we characterise the local structure around par-
ticle i using the smooth bond-order (SBO) descriptor

XSBO(i) = (QS
0 (i), . . . , Q

S
lmax

(i)), (S2)

where QS
l are smoothed bond-orientational invariants of

order l computed over the first coordination shell of parti-
cle i, see Refs. [S12] for full details. The maximum order
lmax is equal to 8. A PCA is then carried out for each
chemical species, to identify the directions in the descrip-
tor space that capture the largest structural fluctuations.
In particular, the projection on the first principal com-
ponent, X̃SBO

1 (i), is a measure of structural heterogene-
ity that is correlated to some extent with the dynamics
of glassy binary mixtures [S12]. The correlation between
the first projection of the SBO descriptor and the propen-
sity of motion is calculated directly on the test dataset,
since there is usually no separate training stage in un-
supervised learning. Finally, along with the bare SBO
descriptor, we consider a coarse-grained (CG) version

X̃CG
i =

∑
j X̃j · w(rij ;L)

∑N
j=1 w(rij ;L)

.

where the sum over j runs over the particles of the same
species as i. As in Ref. [S14] we use an exponential func-
tion w(r;L) = e−r/L, and we set L = 1.
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I. Other structural descriptors

In addition to these models we have also included sev-
eral traditional structural descriptors.

Density:
The density is connected to the structural input of
GlassMLP (see definition Sec. I F above). In particu-
lar, we have used ρiL=5,β=all, i.e. coarse-grained over a
distance L = 5 considering particles of all types. The
only difference to GlassMLP is that we have evaluated
the density in the thermal states.

Potential energy E
inh

pot:

The potential energy in the inherent state, E
inh

pot =

E
i

L=5,β=all =
∑

j∈Ni
β
Eje−rij/L/ρ̄iL,β , is similarly part

of the structural descriptors which is used as input for
GlassMLP [S5]. Here, Ei =

∑
j ̸=i V (rij)/2 is the poten-

tial energy of particle i.

Bond-order 3D (Ψ6):
The bond-order descriptor Ψi

6 of particle i for the KA
system in three dimensions is defined via the complex
coefficient [S15]

qil,m =
1

Nb

∑

j∈Nb

Y m
l (rij), (S3)

where Nb is the number of bonds of particle i, defined
as all neighbours within a cutoff of rcut = 2.0σ11, and
Y m
l (rij) are the spherical harmonics. Using qi we define,

Ψi
l =

√√√√ 4π

2l + 1

m=l∑

m=−l

∣∣∣qil,m
∣∣∣
2

. (S4)

As before, we also further coarse-grain the descriptor,

Ψ
i

6,L=5,β=all =
∑

j∈Ni
β
Ψj

6e
−rij/L/ρ̄iL,β .

Bond-order 2D (Ψ4):
For the KA2D system, we slightly adapt the definition,

qil =
1

Nb

∑

j∈Nb

eilθij , (S5)

which is strongly related to the n-fold symmetry defined
in Sec. I E. From this we calculate,

Ψi
l =

√
qil · (qil)∗, (S6)

which is subsequently coarse-grained in the same way as
defined in the 3D case.

Tanaka’s Θ order parameter:
In Ref. [S16] Tong and Tanaka proposed the usage of a
structural descriptor Θi, which quantifies the strength of
local packing around particle i (see Ref. [S16] for details
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FIG. S1. Coefficient of determination R2 = 1 −∑
i

(
RMD

i −XML
i

)2
/var(RMD

i ) between the model predic-
tions and the ground truth in the KA system (3D) at T = 0.44
for various ML models. The dynamical variable is the propen-
sity of displacements. The vertical line marks the structural
relaxation time τα. GlassMLP(L1) denotes the GlassMLP
model [S5] trained without the additional terms in the loss
function using only the L1 norm.

and definitions). We similarly coarse-grain this descrip-

tor Θ
i

L=5,β=all =
∑

j∈Ni
β
Θje−rij/L/ρ̄iL,β .

In a 2D system of polydisperse harmonic spheres,
Ref. [S16] reports a Spearman’s rank correlation coef-
ficient of around ρS ≈ 0.9 for the coarse-grained Θ with
propensity. ρS is usually strongly related to Pearson cor-
relation ρP. In this roadmap, we show that the per-
formance is significant reduced when applied to systems
which are not prone to crystallization. Additionally,
some of the performance difference might emerge from
calculating Pearson correlation over all particles indepen-
dent of their radii in Ref. [S16], as opposed to making
independent predictions for each particle type as done
in this manuscript. This emphasises the importance of
using standardized datasets and performance metrics to
quantify and validate the performance of newly devel-
oped descriptors and techniques.

II. ADDITIONAL BENCHMARKING

In the following, we will discuss additional metrics
and ways to visualise the performance of the various
methodologies which have been benchmarked intensively
in Sec. V of the main text.

A. Coefficient of determination R2

The coefficient of determination R2 = 1 −∑
i

(
RMD

i −XML
i

)2
/var(RMD

i ) is a popular measure to
quantify the quality of a fit, including, in particular, su-
pervised ML models. In Fig. S1 the coefficient of de-
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FIG. S2. Probability distribution of predicted and simulated
propensities at t = τα for the KA system (3D). The dynamical
variable is the propensity of displacements R. The inset shows
a zoom to the tail, with logarithmic y-axis.

termination is shown for exactly the same data as was
analysed with the Pearson correlation in Fig. 3. It can
be observed that, in general, the two measures ρP and R2

do not show very different results. In particular, SE(3)
still features the best performance at t = τα. The most
pronounced difference is that GlassMLP performs worse
when measured with R2 instead of ρP. This can be ex-
plained by the usage of a loss function which contains
additional terms on top of the standard L1 or L2 norm
[S5]. To validate this explanation we show the results for
GlassMLP(L1) trained without these additional contri-
butions and find results significantly better than for the
original GlassMLP (see Fig. S1).

B. Probability distribution of propensities

Another interesting observable is the probability distri-
bution of the propensities of displacement, p(R), which
can be extracted both from the MD simulations and from
the ML models. A similar analysis has been performed
in Ref. [S5]. As can be seen in Fig. S2 the propensities
predicted by the models tend to underestimate the vari-
ance of the distribution. This observation can be ratio-
nalized, since predicting outliers could be very costly in
the loss function during training, hence networks tend to
predict small variances. The only network which agrees
quite well to the MD prediction is GlassMLP, which has
been constructed to adapt the variance by an explicit
contribution in its loss function [S5]. However, as can be
seen in the inset of Fig. S2, even for GlassMLP the tail
of strongly moving particles is not perfectly reproduced.
Focusing on this tail would likely significantly worsen the
overall performance of the model.

C. Scatter plots of propensity predictions

The Pearson correlation ρP or the coefficient of de-
termination R2 are very good measures to quantify the
performance of a network using a scalar quantity (see
Figs. 3-6 in the main text and Fig. S1). However, they
obviously cannot capture all details of the connection be-
tween the true and predicted propensities. In Fig. S3 we
therefore show a 2D histogram visualizing this connec-
tion in greater detail. The overall impression of these
figures is very similar to what we have concluded before.
The most obvious difference between the methods is that
GlassMLP is symmetric around the straight line, while
the other techniques are slightly asymmetric. This obser-
vation is connected to the differences in the probability
distribution as discussed in the previous paragraph.

D. Snapshots

The best way to visualise the predictions are snap-
shots of the amorphous structure, where each particle
is coloured according to its propensity R. In Fig. S4 we
show an exemplary structure and the predicted propensi-
ties of displacement for various different models. Gener-
ally, strong correlations between the models and the MD
simulations can be observed, as was expected from the
high Pearson correlations. The strongest visible differ-
ence between MD and the ML models is that the latter
are much smoother, in particular the ones based on GNNs
(BOTAN and SE(3)).

FIG. S3. 2D histograms of particle propensityRi to compare
different ML techniques to the MD ground truth in the KA
system (3D, t = τα). Each entry in the histogram represents
one particle, i, where the x/y-coordinates correspond to the
propensities as predicted by ML and from MD simulations,
respectively.
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CAGE GlassMLP

E
inh

pot SE(3)

FIG. S4. Snapshots of an exemplary configuration of the
KA2D system (shown are only type A particles). Each par-
ticle is coloured according to its propensity of displacement
R at t = τα, as calculated from MD simulations or predicted
from various ML techniques (see Fig. 3 in the main text for
the respective Pearson correlations). Each snapshot has the

same color bar, except E
inh
pot.

E. Cross correlations

To study connections between the different models, we
also investigate the cross correlations between the differ-
ent ML techniques and other structural descriptors. Un-
surprisingly, the strongest cross correlations are between
the various ML models, since they all correlate strongly
with propensity. The strongest correlation can, in fact,
be detected between SE(3) and GlassMLP (see Fig. S5).
This can be rationalized by the observation that both
techniques also have the strongest correlation with the

coarse-grained potential energy, E
inh

pot. This could be ex-
pected since both techniques receive the potential energy
as explicit input.

Another strong cross correlation is observable between

FIG. S5. Pearson cross-correlations ρP(X,Y ) between differ-
ent ML models and structural descriptors in the KA system
(3D) at t = τα.
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FIG. S6. Performance of network, as quantified by the Pear-
son correlation coefficient ρP, trained with differently sized
training sets in the KA system (3D) at t = τα. NS denotes the
number of samples, where each sample consists of N = 3277
particles.

the unsupervised SBO CG technique and density, show-
ing that these two descriptors are strongly linked. This
indicates that the strongest asymmetries in the structure
emerge from density fluctuations.

F. Learning curves

An important feature of ML models is also how they
cope with limited training data. In standard fitting pro-
cedures, one would usually expect that the more fitting
parameters a model has, the more training data is re-
quired to achieve a certain accuracy. This ’rule of thumb’
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FIG. S7. Transferability in temperature T of trained networks
in the KA system (3D) at the structural relaxation time τα.
The figures is identical to Fig. 6 in the main text, just featur-
ing an additional temperature T = 0.4.

has, however, been repeatedly questioned for deep net-
works, which often perform well even when overparam-
eterized. When investigating Fig. S6 we observe that
indeed SE(3) already performs excellent, even with only
N = 3277 data points, despite having > 50k fitting pa-
rameters. Furthermore, the increase in performance is
very continuous, implying that the network might per-
form even better with > 400 independent structures
(which was the maximum of the dataset available). The
learning curves of CAGE and BOTAN closely resembles
SE(3) just with a very small reduction in performance.

Contrarily, the learning curve of GlassMLP starts at
a significantly smaller Pearson correlation, but quickly
catches up with SE(3) to slightly surpass its performance
at around NS = 10 (i.e. 32770 data points). How-
ever, the performance of GlassMLP does not further im-
prove for larger NS > 20. It might be necessary to in-
crease the number of structural input descriptors to im-
prove GlassMLP in situations where much training data
is available. It should be mentioned that there is an
important difference between the training procedures of
SE(3) and the other models. While GlassMLP uses for
NS = 1 only twice the number of epochs for training (i.e.
Ne = 600), since no improvement in performance can be
observed beyond this point, SE(3) requires a significant
increase in epochs for small NS : Ne(NS) = 8 · 104/NS .
This implies that for NS = 1, the training time of
GlassMLP is roughly 5 seconds, while for SE(3) it re-
mains roughly 11 hours.

G. Transferability

We have investigated in detail the transferability of
trained networks in the benchmarking section V of the
main text. Here, we study for two models the perfor-
mance of GlassMLP and CAGE when applied to an even
lower temperature T = 0.4, taken from the dataset pre-
sented in Ref. [S17]. Different from the main KA dataset
we only have NS = 12 individual structures available,
but use NR = 100 different isoconfigurational replicas.
Due to the larger number of replicas we expect the Pear-
son correlations to be slightly larger than for NR = 32.

The results in Fig. S7 indeed confirm this expectation,
nevertheless, they also highlight the strong transferabil-
ity of the models. A network trained at T = 0.44, with
a relaxation time an order of magnitude smaller than at
T = 0.4, CAGE can predict structural relaxation with a
Pearson correlation of up to ρP = 0.84. We believe that
this is an important result towards using transferability
to study glassy liquids at extremely low temperature.

H. Bond-breaking propensity in the KA system
(3D)
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FIG. S8. Pearson correlation ρP with the ground truth in the
KA system (3D) at T = 0.44 for various different techniques.
Different from Fig. 3, here the dynamical variable is the bond-
breaking propensity. The vertical line marks the structural
relaxation time τα. GNN(DM) refers to the original GNN
[S7].

Finally, we also briefly investigate the performance of
ML models and other structural descriptors in predict-
ing the bond-breaking propensity in the KA system (see
Fig. S8). While the predictability for small times is
much weaker than for the propensity of displacements,
R, analysed in Fig. 3, we observe better performance for
longer times around the structural relaxation time scale
t = τα. This observation is identical to the discussion
in Sec. V of the main text after Fig. 5 for the bond-
breaking propensity in the KA2D system. We further
find that both BOTAN and GlassMLP significantly out-
perform the original GNN proposed by DeepMind ([S7],
GNN(DM)). This shows the great advancements in the
field within the past three years. We hope that this
roadmap further fuels the development and application
of ML techniques to analyse glassy liquids.
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