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A B S T R A C T 

In recent years, a Gaussian process regression (GPR)-based framework has been developed for foreground mitigation from data 
collected by the LOw-Frequency ARray (LOFAR), to measure the 21-cm signal power spectrum from the Epoch of Reionization 

(EoR) and cosmic dawn. Ho we ver, it has been noted that through this method there can be a significant amount of signal loss if 
the EoR signal covariance is misestimated. To obtain better covariance models, we propose to use a kernel trained on the GRIZZLY 

simulations using a Variational Auto-Encoder (VAE)-based algorithm. In this work, we explore the abilities of this machine 
learning-based k ernel (VAE k ernel) used with GPR, by testing it on mock signals from a variety of simulations, exploring noise 
levels corresponding to ≈10 nights ( ≈141 h) and ≈100 nights ( ≈1410 h) of observations with LOFAR. Our work suggests 
the possibility of successful extraction of the 21-cm signal within 2 σ uncertainty in most cases using the VAE kernel, with 

better reco v ery of both shape and po wer than with pre viously used cov ariance models. We also e xplore the role of the e xcess 
noise component identified in past applications of GPR and additionally analyse the possibility of redshift dependence on the 
performance of the VAE kernel. The latter allows us to prepare for future LOFAR observations at a range of redshifts, as well 
as compare with results from other telescopes. 

Key words: methods: data analysis – techniques: interferometric – dark ages, reionization, first stars – cosmology: observations. 
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.  I N T RO D U C T I O N  

he Epoch of Reionization (EoR) follows the period of cosmic dawn, 
hen the first stars, galaxies, black holes, and other astrophysical 
bjects formed. These objects began to radiate photons that ionized 
he neutral gas across the Universe. Understanding this period, 
hich spreads o v er redshifts z ≈ 5–15, is crucial to learn more

bout the nature, timing, and mechanism of the formation and 
volution of the aforementioned astrophysical objects, as well as 
heir impact on the interstellar medium and intergalactic medium 

IGM) surrounding them (Ciardi & Ferrara 2005 ; Morales & 

yithe 2010 ; Pritchard & Loeb 2012 ; Furlanetto 2016 ; Liu &
haw 2020 ). From observations of the Gunn–Peterson troughs 
f high- z quasars (Becker et al. 2001 ; Fan et al. 2006 ) and the
ptical depth for Thomson scattering of the cosmic microwave 
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ackground (CMB) radiation (Planck Collaboration XLVII 2016 ), 
e can deduce that most reionization took place in the range 6
 z � 10, with recent observations suggesting an end of reion-

zation at z < 6 (see e.g. Becker et al. 2015 and Bosman et al.
022 ). 
There exist multiple indirect probes to study this period. For 

xample, the evolution of the observed Lyman- α emitter luminosity 
unction at z > 6 (Cl ́ement et al. 2012 ; Schenker et al. 2013 ),
nd Lyman- α absorption profiles to distant quasars (Mortlock 2016 ; 
reig et al. 2017 ; Davies et al. 2018 ). Ho we ver, the most sensiti ve
robe to study the EoR is through the fluctuations of the redshifted
1-cm line of neutral Hydrogen against the CMB (Hogan & Rees
979 ; Madau, Meiksin & Rees 1997 ; Shaver et al. 1999 ; Tozzi
t al. 2000 ; Ciardi & Madau 2003 ; Zaroubi 2013 ). A statistical
etection of the strength of these 21-cm brightness temperature 
uctuations can allow us to constrain our models of the early
niverse and the formation of the first stars and galaxies. For

his, a number of interferometric low-frequency radio telescopes 
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ave been designed, such as LOw-Frequency ARray (LOFAR), 1 

ydrogen Epoch of Reionization Array (HERA), 2 Murchison Wide-
eld Array, 3 and Precision Array to Probe EoR, 4 which o v er the
ears have been providing increasingly tighter upper limits. For
xample, The HERA Collaboration et al. ( 2022 ) reported � 

2 ( k =
 . 34 h Mpc −1 ) ≤ 457 mK 

2 at z = 7.9 and � 

2 ( k = 0 . 36 h Mpc −1 ) ≤
496 mK 

2 at z = 10.4 from 94 nights of observation, and Mertens
t al. ( 2020 , hereafter M20 ) reported � 

2 ( k = 0 . 075 h Mpc −1 ) <

329 mK 

2 from 141 h ( ≈10 nights) of observation with LOFAR at
 = 9.1. 

One of the major challenges faced in the detection of the 21-cm
ignal is the fact that it is buried under foregrounds (synchrotron
nd free–free emissions from the Milky Way and other galaxies) that
re several orders of magnitude stronger. To address this issue, The
ERA Collaboration et al. ( 2022 ) uses the ‘foreground a v oidance’

echnique (Kerrigan et al. 2018 ; Morales et al. 2019 ) by focusing
n regions in Fourier space which are mostly foreground free, while
he LOFAR EoR Key Science Project (KSP) team uses foreground

odelling and removal, which allows the maximization of scales
xplored, as well as boosts the sensitivity up to an order of magnitude
Pober et al. 2014 ). 

The most stringent constraints obtained with LOFAR data were
resented in M20 , where Gaussian process regression (GPR, as
escribed in Mertens, Ghosh & Koopmans 2018 ; Gehlot et al. 2019 ;
othi et al. 2021 ) was used for hyperparameter optimization with
ifferent Matern-class functions (equation 6 , see below) chosen
s covariance kernels for modelling different components of the
bserved data and then recovering the fitted data cube. Ho we ver,
ern & Liu ( 2021 ) pointed out some issues with this approach.
rimarily, they found that given the choice of normalization and
ias correction in the power-spectra estimation used in M20 ,
isestimation of the covariance kernel for the EoR signal could

ead to significant signal loss. This can have severe ramifications
n the astrophysical interpretations of the estimated 21-cm signal
ower spectrum. Further, they show that alternative choices for
ormalization and weighting schemes could reduce the dependence
n the choice of covariance priors, thus reducing its impact on the
stimation of the 21-cm signal. Ho we ver, here we focus on improving
he covariance prior, while in future works we plan to explore other
ormalization and bias correction schemes to further upgrade the
 v erall analysis pipeline. 
To impro v e the co variance kernel, we refer to Mertens, Bobin &

arucci ( 2023 ). They propose a machine learning (ML)-based
pproach to GPR, where the covariance kernel for the 21-cm signal
s obtained by implementing a ML-based algorithm that learns from
imulations. The results obtained can then be compared against runs
f the same simulation code, to constrain the physical parameters
sed in it. As the covariance kernel is trained o v er a range of physical
arameters, this would significantly reduce chances of misestimation,
nd thus it can be reliably used to derive astrophysical parameters
ecessary for the same simulation code to generate similar power
pectra. 

In this paper, we use GRIZZLY (Ghara, Choudhury & Datta 2015 ;
hara et al. 2018 , 2020 ) for generating the training, test, and
alidation data sets. This code has been employed previously (see
hara et al. 2020 ) to constrain astrophysical parameters based on
NRAS 527, 7835–7846 (2024) 
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he results obtained in M20 . As this combines N -body simulations
ith one-dimensional (1D) radiative transfer, it is more physically
recise than seminumerical algorithms, while not being as computa-
ionally e xpensiv e as codes that use 3D radiativ e transfer (while still
erforming reasonably well, as shown in Ghara et al. 2018 ). Here,
e test the performance of this ML-based kernel versus covariance
ernels used with GPR in previous work. In Section 2 , we discuss a
ange of simulations used to generate mock 21-cm data sets, as well
s introduce the ML-trained 21-cm kernel. We also provide a short
ntroduction to GPR. We report the results and comparisons between
ernel performances in Section 3 . Finally, we discuss the role of the
xcess noise component found in M20 and the overall performance
f the ML-based kernel in Section 4 . In a companion paper, we will
pply the new pipeline to 10 nights of LOFAR data at z = 9.1, as
as done in M20 . 

.  M E T H O D O L O G Y  

n this section, we introduce the pipeline used to implement GPR
o reco v er the 21-cm signal from mock data sets, comparing the
erformance of an ML-based kernel with kernels used in M20 . 

.1 Simulations of the 21-cm signal 

he 21-cm differential brightness temperature relative to the CMB
or any patch of the IGM is given by (see Furlanetto, Oh & Pierpaoli
006 ) 

T b = 27 x H I (1 + δB ) 

(
1 − T CMB 

T S 

)

×
[(

�B h 

2 

0 . 023 

) (
0 . 15 

�m 

h 

2 

1 + z 

10 

)1 / 2 ]
mK (1) 

here x H I is the fraction of neutral hydrogen, δB is the fractional
 v erdensity of baryons, T S is the spin temperature, T CMB is the
emperature of the CMB photons at that redshift, �m 

is the total
atter density, �B is the baryon density, z is the redshift, and h is

he Hubble constant in units of 100 km s −1 Mpc −1 . In this equation,
he parameters affecting the large-scale fluctuations of δT b are x H I ,
 S and δB . 
We consider a variety of simulations to generate mock 21-cm

ifferential brightness temperature maps as discussed below. In
ection 2.1.1 , we employ maps generated using GRIZZLY , where
e focus on variations tied to fluctuations in x H I and T S , while

ssuming that the fluctuations due to δB are small and can thus be
gnored. In Section 2.1.2 , we do not make this assumption and employ
aps generated using the reionization simulation code CRASH . In
ppendix A , we also consider the additional case of using 21CMFAST

Mesinger & Furlanetto 2007 ; Greig & Mesinger 2015 ) to generate
he 21-cm differential brightness temperature maps. 

.1.1 GRIZZLY simulations 

RIZZLY (Ghara, Choudhury & Datta 2015 ; Ghara et al. 2018 , 2020 )
mploys a 1D radiative transfer scheme in combination with cosmo-
ogical density fields and halo catalogues obtained from an N -body
imulation to produce brightness temperature maps of the 21-cm
ignal at different redshifts for a given source model. The algorithm
as been shown to reproduce results similar to those obtained with
D radiative transfer schemes with the same N -body simulation,
hile being at least 10 5 times faster (Ghara et al. 2018 ). Because
f this, we can run a large number of GRIZZLY simulations without
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he process being too computationally e xpensiv e. Furthermore, it 
as a wide range of physical parameters that can be varied, thus
llowing us to explore the role of different physical processes in 
enerating different models of the 21-cm signal. The density fields, 
elocity fields, and the halo lists used in this work are obtained
rom the same N -body simulation (500 h −1 cMpc box length, 6912 3 

articles, with a mass resolution of 4.05 × 10 7 M �) which was used
n Ghara et al. ( 2020 ). In this study, we consider two major GRIZZLY

odels presented in Sections 3.1 and 3.2 of Ghara et al. ( 2020 ).
imilar to their implementation, we use four physical parameters to 
odel the sources: the ionization efficiency ( ζ ), the minimum mass

f the ultraviolet (UV) emitting haloes ( M min ), the minimum mass of
he X-ray emitting haloes ( M min X ), and the X-ray heating efficiency
 f X ). The emission rate of ionizing photons and X-rays per unit
tellar mass from a halo are ζ × 2 . 85 × 10 45 and f X × 10 42 s −1 M 

−1 
� ,

espectively. Further, the X-ray spectral index α is fixed at 1.2, as
one in Ghara et al. ( 2020 ). Lastly, they note that all other IGM
roperties can be derived from these parameters, and thus using just
hese to define the simulation is sufficient. The properties of the two
odels adopted are listed below: 

(i) x H I fluctuation dominated model: Here, we assume a uniform 

y α background strong enough to allow the spin temperature T S 

o be fully coupled to the gas temperature T K . Further, we adopt
he following parameters: ζ = 7.0, M min = M min X = 10 9 M �, and
 X = 100, which makes the gas temperature (and in turn, T S )
ignificantly high compared with T CMB due to strong X-ray heating. 
his assumption of T S � T CMB ensures that δT b becomes insensitive 

o the (1 − T CMB 
T S 

) term from equation ( 1 ). Thus, all variability of δT b 

s tied to the fluctuation of the neutral hydrogen fraction x H I . 
(ii) T S fluctuation dominated model: In this case, while we con- 

inue to have the assumption of a strong, uniform Ly α background to
nsure coupling of T S and T K , we change our parameters to relax the
ondition of T S � T CMB . This is done by reducing the X-ray heating
nd ionization efficiency. Thus, we adopt the following parameters: 
= 3.0, M min = 10 9 M �, M min X = 10 10 M �, and f X = 1. This allows

or greater variability tied to T S , with regions of partial reionization
nd heating forming in the IGM. 

.1.2 CRASH simulations 

s a reference, we also use the simulations of reionization described 
n Eide et al. ( 2018 , 2020 ) and Ma et al. ( 2021 ). These are obtained
y post-processing the large-scale, high-resolution hydrodynamical 
imulation MASSIVE BLACK-II (Khandai et al. 2015 ; box length 
00 h −1 cMpc, 2 × 1792 3 gas and dark matter particles, correspond- 
ng to a resolution of 2 . 2 × 10 6 and 1 . 1 × 10 7 h 

−1 M �, respectively)
ith the multifrequency 3D radiative transfer code CRASH (Ciardi 

t al. 2001 ; Maselli, Ciardi & Kanekar 2009 ; Graziani, Maselli &
iardi 2013 ; Graziani, Ciardi & Glatzle 2018 ; Glatzle, Ciardi &
raziani 2019 ). Here, we make use of the ‘Stars’ simulation run

which includes only stellar type sources) to generate the mock 21- 
m signal data at z = 9.18. We refer the reader to the original papers
or more detailed information on the simulations. 

.2 Gaussian process regression 

PR (Rasmussen & Williams 2006 ; Aigrain & F oreman-Macke y 
023 ) can be used to model a noisy observation y = f ( x ) + ε,
ith ε Gaussian noise having variance σ 2 

noise . This is achieved by 
odelling the Gaussian process as a joint probability distribution for 
 = { y i } i = 1, . . . , N , as f = f ( x ), which is fully defined by its mean
ector ( m ) and covariance matrix ( K , also called covariance ‘kernel’)
s 

 ∼ N ( m ( x ) , K( x , x )) , (2) 

or a set of points x (independent parameters). Here, the covariance 
atrix K gives the covariance between the function values at any two

oints and can be written as K ij = κ( x i , x j , φ) + δij σ
2 
i , where κ( x i ,

 j , φ) can be optimized by the choice of hyperparameters represented
y φ, and δij is the Kronecker-delta function. 
When applying it to radio data to extract the 21-cm signal, we split

his function into a foreground component, f fg , and the 21-cm signal,
 21 , giving 

 = f fg ( x) + f 21 ( x) + ε (3) 

here y is the observed data and x is the frequenc y. Ne xt, following
20 , we further split the foreground component into the intrinsic

ky emission component ( f sky ), which comes from the confusion-
imited extragalactic sources and from the Milky Way, and the 

ode-mixing contaminants component f mix , which has contributions 
rom the instrument chromaticity and calibration errors. Beyond the 
oreground, we also model the noise (represented by ε in equation 3 )
sing estimates of the noise variance for ≈10 nights of observation
rom M20 . In addition to this, M20 found a significant spectrally-
orrelated residual, and thus we inject this ‘excess noise’ component 
 f ex ) into our model as well. This gives an updated version of equation
 : 

 = f sky ( x) + f mix ( x) + f ex ( x) + f 21 ( x) + ε . (4) 

For the sake of simplicity and utilizing the additive property of
atrices, we can reduce equation ( 4 ) to y = f ( x ) + ε, and represent

 ( x ) with its corresponding covariance kernel K (from equation 2 ) as 

 = K sky + K mix + K noise + K ex + K 21 . (5) 

M20 modelled each of these kernels using the best possible fit
atern-class functions (equation 6 , Stein 1999 ): 

 Matern ( r) = σ 2 2 
1 −η


( η) 

(√ 

2 ηr 

l 

)η

κη

(√ 

2 ηr 

l 

)
. (6) 

ote that in the Matern-class function, r is the absolute difference
etween the frequencies of two sub-bands, κη is the modified Bessel 
unction of the second kind, and 
 is the Gamma-function. 

M20 obtained the best possible fit Matern-class function by 
aking dif ferent v alues of the hyperparameter η, maximizing the
arginal likelihood (also known as the evidence), and obtaining 

stimates for the coherence-scale hyperparameter l and the variance 
2 . Then, for each kernel, they chose the η that led to the highest
vidence by calculating the analytical inte gral o v er f which is the
og-marginal-likelihood (LML, see Section 2.3 in Mertens, Ghosh & 

oopmans 2018 ) and choosing the kernel that maximizes its value.
or calculating the hyperparameters (listed in the second column of 
able 1 ), M20 used a gradient-descent-based optimization algorithm 

or maximizing the LML. 

.3 ML-trained 21-cm kernel 

he limitations of GPR as pointed out by Kern & Liu ( 2021 ) mainly
oil down to the choice of covariance kernel for the 21-cm signal.
hile the choice of hyperparameters allows a variety of functions to

e accessed, the same function might not work equally well across
he k -space. Having a function obtained by employing ML trained
n power spectra of simulations where the sources of ionization 
MNRAS 527, 7835–7846 (2024) 
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M

Table 1. We use the results of M20 as our input (2nd column) for the hyperparameters (1st column) to generate a mock data set composed of the f sky , f mix , and 
f ex components, in addition to the x H I ( T S ) fluctuation dominated models from GRIZZLY to generate the 21-cm signal component at z = 9.16. For the recovery 
using GPR, we keep the value of η fixed for the f sky , f mix , and f ex components, and estimate the median and the 68 per cent confidence intervals for the coherence 
scales and variances from the MCMC-based LML maximization (4th to 7th columns) using the priors as in M20 (3rd column), i.e. we either use linear scale 
uniform priors U , or logarithmic scale indicated as –. As the latter is o v er sev eral orders of magnitude, it has not been listed and can be assumed to be an 
uninformed prior from −∞ to +∞ . For ≈10 nights of observation, we use σ 2 

noise = 74 × 10 3 mK 

2 (as obtained in M20 ). For ≈100 nights of observation, we 
scale it down by a factor of 2 for the f sky component and by a factor of 20 for the rest of the components (see Section 2.4 ). The values for σ 2 

noise in each case are 
listed in the first row for each component. Note that σ 2 

noise has been scaled to the Field of View of the GRIZZLY simulations, which is 3.03 ◦ × 3.03 ◦. 

x H I fluctuation dominated T S fluctuation dominated 

Hyperparameter Input value from M20 Prior 10 nights 100 nights 10 nights 100 nights 

σ 2 
noise ( × 10 3 mK 

2 ) 74 37 74 37 
ηsky +∞ +∞ +∞ +∞ +∞ 

l sky 47.5 U (10, 100) 43.44 ± 4.02 47.76 ± 1.64 52.00 ± 6.91 45.84 ± 1.67 
σ 2 

sky /σ
2 
noise 611 – 665.17 ± 29.52 579.91 ± 24.11 598.99 ± 27.13 633.43 ± 28.23 

σ 2 
noise ( × 10 3 mK 

2 ) 74 3.7 74 3.7 
ηmix 3/2 3/2 3/2 3/2 3/2 
l mix 2.97 U (1, 10) 2.99 ± 0.07 2.97 ± 0.08 3.08 ± 0.08 2.90 ± 0.08 
σ 2 

mix /σ
2 
noise 50.4 – 54.80 + 2 . 53 

−2 . 42 46.05 + 2 . 14 
−2 . 04 55.82 + 2 . 64 

−2 . 52 52.12 + 2 . 58 
−2 . 46 

σ 2 
noise ( × 10 3 mK 

2 ) 74 3.7 74 3.7 
ηex 5/2 5/2 5/2 5/2 5/2 
l ex 0.26 U (0.1, 0.8) 0.26 ± 0.003 0.26 ± 0.005 0.27 ± 0.01 0.26 ± 0.01 
σ 2 

ex /σ
2 
noise 2.18 – 2.15 + 0 . 05 

−0 . 05 1.91 + 0 . 11 
−0 . 10 2.25 + 0 . 07 

−0 . 07 2.32 + 0 . 18 
−0 . 17 

σ 2 
noise ( × 10 3 mK 

2 ) 74 3.7 74 3.7 
x 1 – – −0.10 ± 0.99 −0.23 ± 1.02 −0.41 ± 0.92 −0.07 ± 1.00 
x 2 – – −0.17 ± 0.98 0.42 ± 0.77 0.92 ± 0.59 −0.06 ± 0.31 
σ 2 

21 /σ
2 
noise – – 0.04 + 0 . 21 

−0 . 03 0.17 + 0 . 37 
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re modelled using parameters that sample a wide range of values,
llows greater flexibility, and reduces chances of misestimation.
urther, it allows for a direct comparison with physical quantities, as
e can reliably derive the source parameters necessary to generate

imulations that produce the power spectra estimated by the ML-
ased kernel. 
To achieve this, Mertens, Bobin & Carucci ( 2023 ) use a Variational

uto-Encoder (VAE, Kingma & Welling 2013 , 2019 ) algorithm.
imply put, an Auto-Encoder (AE, Goodfellow, Bengio & Courville
016 ) is an unsupervised neural network which compresses data by
educing the number of independent parameters used to describe it
nto what is referred to as a ‘latent space’ of hyperparameters. Thus,
t is primarily used for data compression by filtering out independent
arameters that are deemed to be unnecessary because they only
lightly affect data reco v ery. This is a two steps process, where the
rst step of reducing the number of independent parameters into

he latent space is called encoding , while the step of reco v ering the
ata given the latent space parameters is called decoding . Instead of
aking an input of just a set of parameters a 1 , . . . , a n , a VAE (Pinheiro
inelli et al. 2021 ) uses probability distributions of each parameter,

hus allowing to interpolate in the latent space, and to generate a
arge range of new samples of reconstructed data (in our case 21-cm
ignal models), which are not limited by the data that the encoder was
rained on. Ho we ver, this also means that the VAE has an inherently
arger error than an AE. 

Thus, reconstructing the training data using the decoder with
he latent space generated by the VAE as input would not be an
xact match to the original training data. Ho we ver, the VAE is
esigned to optimize a trade-off between reconstruction accuracy
nd the fidelity of the latent space representation, by minimizing the
 ullback–Leibler (KL) div ergence loss (K ullback & Leibler 1951 ),
hich is a measure of the divergence between the distribution of

econstructed data and the training data. So while the reconstructed
NRAS 527, 7835–7846 (2024) 
ata and training data might not be an exact match, if their o v erall
istribution is similar (i.e. divergence is minimized), the training is
onsidered successful. Thus, in the training of a VAE algorithm, the
ollowing sources of error exist: 

(i) Encoder: the error due to sampling from a distribution for
ach independent parameter to build a latent space. Sampling from
 distribution is expected to be noisier than choosing point values. 

(ii) Decoder: the error due to deriving the independent parameters,
i ven some v alue of the latent space parameters. As this does not
nvolve sampling from distributions, the contribution to the total
rror is expected to be smaller. 

Mertens et al. ( 2023 ) show that GPR can be used to estimate the
alues of the latent space parameters, after which the decoder of the
AE kernel can be used to estimate the independent parameters, and

n turn to obtain the reco v ered 21-cm signal. In this case we would
hen use only the decoder part of the VAE algorithm. Ho we ver, as

inimizing KL divergence loss requires training the encoder and
ecoder together, we proceed as follows. 

We start by using two hyperparameters, x 1 and x 2 , and an
ssociated variance, as the latent space parameters. We train the VAE
lgorithm on a data set of ≈1500 simulations (the training set), and
alidate it against an independent data set of ≈150 simulations (the
alidation set). We refer to this as the VAE kernel . The training and
alidation data sets are generated by running GRIZZLY simulations
ith a wide range of values for the parameters introduced in
ection 2.1.1 . We sample them randomly at the same redshift as the

argeted 21-cm signal ( z = 9.16, 8.30, and 10.11) and in the following
anges: ζ = [ −3, 3], M min = [9, 12], M min X = [9 , 12], and f X =
 −3, 2] in the log space. We choose these ranges to be significantly
roader than necessary (i.e. the performance of the VAE kernel does
ot show any appreciable difference even if they are reduced by
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ultiple orders of magnitude), and also note that the performance of
he kernel is not impacted if we fix one of the parameters to a specific
alue and vary the remaining three. This ensures that the sampling 
ange does not induce any major bias. Next, to train the VAE we
se 2000 iterations, as we find that the KL divergence loss and the
econstruction loss for both the training and validation data sets 
tabilize after ≈500 iterations. The reconstruction loss is defined as 
he total error made when using the encoder to obtain specific values
f the latent space parameters, and then employing the decoder to 
etrieve the data from those parameters. We then e v aluate the ratio
etween the output and input data as a function of the wave number k ,
nd finally calculate the median ratio, which is ≈1 across all k -bins.
o we ver, as discussed earlier, the 68 per cent confidence interval

s significant, being ≈10 per cent for k = [0 . 06 , 0 . 12] h Mpc −1 ,
35 per cent for k = [0 . 12 , 0 . 43] h Mpc −1 , and ≈27 per cent for
 = [0 . 43 , 1 . 11] h Mpc −1 at z = 8.30, 9.16, and 10.11. 

We note a similar reconstruction error for training sets of sizes
anging from 1000 to 5000 simulations (with the validation set 
caling as ∼10 per cent of the training set in size), while the errors
ecome worse when using less than 1000 simulations. We also tried 
o used three hyperparameters, but saw no significant improvement 
n the reco v ery error. We thus choose to use two hyperparameters to
 v oid o v erfitting. 

A high reconstruction error was to be expected, as it includes also
he error due to the encoding process. While this is not required for
ur purpose, we do need to e v aluate the exact contribution from the
ecoder. For this, we create a testing set of ≈150 simulations, and
nsure that it also includes ‘extreme’ models from GRIZZLY (which 
e define as cases where the power spectrum differs by at least

n order of magnitude from the mean of the power spectra from the
raining and validation data sets), along with some injected stochastic 
oise. We then apply GPR for hyperparameter optimization (using 
CMC, as discussed in Section 2.5 ) to estimate x 1 , x 2 , and the

ssociated variance. This is then used with the decoder to obtain 
he reco v ered signal. The median ratio of the reco v ered and input
ata across all k -bins is again ≈1. But now we obtain a 68 per cent
onfidence interval of ≈0.5 per cent for k = [0 . 06 , 0 . 12] h Mpc −1 ,
1 per cent for k = [0 . 12 , 0 . 43] h Mpc −1 , and ≈3 per cent for k =

0 . 43 , 1 . 11] h Mpc −1 at z = 8.28, 9.16, and 10.11, respectively. By
omparing with the total error estimated abo v e, we note that even
here decoder error is high, i.e. for the highest k -bins, it is still a
inor contributor. Therefore, as the o v erall error is � 5 per cent , we

ccept the VAE kernel as a reliable ML-based kernel for the 21-cm
ignal, and proceed to use it with GPR for signal reco v ery. 

.4 Generating mock data sets 

o build a mock data set in the gridded U − V cube domain of radio
bserv ations, we deri ve a full data set y by adding each term on the
ight-hand side of equation ( 4 ). For this, we adopt the values of η, l ,
nd σ 2 for K sky , K mix , and K ex given in the second column of Table 1
o generate their corresponding f sky , f mix , and f ex . These values are
btained from the results of M20 , where they used ηsky = +∞ for the
ntrinsic sky, ηmix = 3/2 for the mode-mixing contaminants, and ηex = 

/2 for the excess noise to fix Matern-class functions for each of these
omponents, and then employed GPR to obtain the coherence-scale 
yperparameter l and its associated variance by adopting η21 = 1/2 
or the 21-cm signal. Note that while f sky and f mix are not independent
uantities, their reco v ery with GPR treats them as such. In this paper,
e also generate them as independent components to build our mock 
ata sets (unlike in real data, where the mode-mixing component 
epends on the true sky signal). Thus, the overall quality of the
eco v ered f sky and f mix is better from the mock data sets, than from
eal data. Ho we ver, the ef fect on the accurac y of reco v ery is not
xpected to be severe, as the impact of not factoring in the inter-
ependency is insignificant, as compared with the o v erall power
f these components. That is, even without assuming their inter- 
ependence, GPR can reco v er them with reasonably high accuracy. 
Next, we also assume the value σ 2 

noise ∼ 74 × 10 3 mK 

2 (from 

20 ) to simulate the noise component ε for ≈10 nights of observa-
ion with LOFAR scaled to the Field of View corresponding to the
RIZZLY simulations, which is 3.03 ◦ × 3.03 ◦. The variance for the

ntrinsic sky-emission, mode-mixing, and excess noise components 
cales by the noise variance as indicated in Table 1 . 

We also consider the case of ≈100 nights of observation, to provide 
stimates for future observations of similar duration with LOFAR. 
n this case, the noise variance is expected to be reduced by a factor
f 10, assuming all effects to scale uniformly from ≈10 to ≈100
ights of data. Ho we ver, it should be noted that the data used in
20 was plagued with issues such as Radio Frequency Interference 

RFI) flagging and bad ionospheric conditions, and it would be 
f little scientific value to assume the same conditions to persist
or a 10 times longer observational duration. For this reason, we
ssume ideal conditions (e.g. picking observation nights with good 
onospheric conditions) and assume that the thermal noise is reduced 
y a factor of 20 instead, obtaining σ 2 

noise ∼ 3 . 7 × 10 3 mK 

2 . As we
xpect the excess noise to behave in a similar fashion, we also reduce
ts variance σ 2 

ex by a factor of 20. M20 noted that the mode-mixing
ontaminants were not decreasing when integrating over more nights 
f data. Ho we ver, the parts of this component due to effects of
onosphere and calibration errors are uncorrelated from night to 
ight, and thus are expected to decrease with longer integration, 
eading to a reduction of the mode-mixing term. Additionally, this 
hould also decrease because of the impro v ed UV-co v erage. Here, we
hus consider an ideal scenario to understand how the performance 
f the VAE kernel compares with previously used kernels when also
he mode-mixing term’s variance σ 2 

mix is reduced by a factor of 20.
o we ver, we scale do wn the intrinsic sky component only by a factor
f 2. This is justified because (i) the confusion noise limit is set by the
esolution of the LOFAR telescope, so that unresolved point sources 
annot be subtracted even when integrating over more nights; (ii) 
odelling an increasing number of point sources is not a trivial task,

nd doing it accurately does not seem feasible in the short-term.
hus, we limit ourselves to an assumption of modest improvements. 
ecause of this, we assume that the variance of f sky is scaled by a

hermal noise variance of σ 2 
noise ∼ 37 × 10 3 mK 

2 , corresponding 
o a factor of 2 reduction from the noise variance in the ≈10 nights
ase. 

Following the procedure outlined above, we generate two sets of 
ore ground, noise, and e xcess noise components, i.e. for ≈10 and
100 nights of observation. We then add the 21-cm signal (see
ection 2.1 ) to obtain a complete mock data set. 
The input power spectra for the o v erall mock data set using

RIZZLY is shown in Figs 1 and 2 for the x H I and T S fluctuation
ominated case, respectively. The ratio between the 21-cm signal 
nd the 1 σ uncertainty of the noise power spectrum is a measure of
he signal-to-noise ratio (SNR). Thus, for k -bins where the 21-cm
ignal’s power is greater than the 1 σ error of the noise, there is a
hance of detectability with 1 σ confidence. From Fig. 1 , we can thus
onclude that for ≈10 nights of observation a detection of the x H I 
uctuation dominated 21-cm signal is unlikely, as the SNR is 
1 for
ll k -bins. Ho we v er, the chances of detectability impro v e for ≈100
ights of observation, as SNR ≈ 1. In Fig. 2 , we see that detecting
he T S fluctuation dominated signal should be possible also for ≈10
MNRAS 527, 7835–7846 (2024) 
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M

Figure 1. Power spectrum of the mock data set (solid line) generated 
using the x H I fluctuation dominated model from GRIZZLY . It consists of the 
foreground component (intrinsic sky + mode-mixing contaminants; topmost 
dashed), the excess noise (dashed-dotted), the noise (middle dashed), and the 
21-cm signal at z = 9.16 (bottom-most thick dashed). We also show the 1 σ
upper limit (dotted) achie v able if the data set is thermal noise dominated, i.e. 
any signal below this line has SNR < 1. The top (bottom) panel refers to a 
case with the noise corresponding to 10 (100) nights of observation. 
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Figure 2. As Fig. 1 for the T S fluctuation dominated model. 
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ights of observations, as SNR is > 1 for all k -bins, while for ≈100
ights it is � 10, assuring a detection as long as the covariance kernel
sed to model the 21-cm signal is correctly estimated. 
While we first focus on the 21-cm signal at z = 9.16 in order

o make a direct comparisons with M20 , we also consider z =
.30 and 10.11 to prepare for future LOFAR results at these redshifts.

.5 Reco v ery with MCMC 

s discussed in Section 2.2 , M20 used a gradient-descent method to
aximize the LML. Ho we ver, in this paper we instead use MCMC

ampling (F oreman-Macke y et al. 2013 ) to estimate the hyperparam-
ters by sampling their posterior distributions. The benefit of MCMC
ampling is that it allows us to also have a measurement of the
ncertainty on the hyperparameters, which can then be propagated.
e build the posterior distributions adopting flat uniform priors with

road ranges as used in M20 . For the coherence scales, we provide a
maller range for the uniform prior ( U ) to impro v e conv ergence time,
s done by M20 . Thus, as listed in the third column of Table 1 , we
se a range of (10, 100) for l sky and of (1, 10) for l mix . To ensure that
he converged value for l ex remains in the 1 σ confidence interval,
e used a range of (0.1, 0.8) rather than of (0.2, 0.8) as in M20 .
hile we note that a Gamma prior for the variances of the different

omponent leads to faster convergence, we still adopt flat priors in the
ogarithmic scale o v er sev eral orders of magnitude (thus ef fecti vely
n uninformed prior) to minimize the chances of bias. 

In addition to this, we note that the coherence scale and the variance
or the 21-cm signal are dependent on the baseline length. So, while to
eco v er the intrinsic sky, mode mixing and excess noise components
e continue to employ the same Matern-class functions used to
NRAS 527, 7835–7846 (2024) 
enerate them (i.e. with the same η values of the input, see Table 1 ),
hen using Matern-class functions to reco v er the 21-cm signal, we
odify the hyperparameter l and the variance as 

 = 

l 0 

1 + 0 . 001 l αl 0 ( u − u min ) 
and σ 2 = σ 2 

0 σ
2 
norm 

(
u 

u min 

)σ 2 
α

, (7) 

here l 0 and σ 2 
0 are the coherence-scale parameter and variance used

n M20 for baseline length u (where u min is the minimum baseline
ength), but now we introduce the additional parameters l α and σ 2 

α

o fully define the coherence-scale hyperparameter and the variance.
urther, σ 2 

norm 

is chosen such that the mean of the variance o v er all
aselines is σ 2 

0 . The two additional parameters (i.e. l α and σ 2 
α ) thus

llow us to encode the dependence on the baseline length into the
ovariance kernel for the 21-cm signal. 

To reco v er the 21-cm signal component, we use Matern-class
unctions with two specific values of η: the Exponential Matern-
lass function with η = 1/2 (which, as shown in M20 , maximizes the
vidence), and the Matern32 function with η = 3/2. We then compare
heir performance for reco v ery with the VAE kernel using GPR. For
he hyperparameters x 1 and x 2 , we again take an uninformed flat prior
n the linear space. 

.  RESULTS  

ere, we discuss a qualitative comparison between the results which
re shown in Figs 3 and 4 using the three aforementioned kernels
Exponential, Matern32, and VAE). We then analyse the estimated
oherence-scale hyperparameter and v ariance v alues for each of the
omponents of the mock data sets defined in Section 2.1.1 in Table 1 .
urther, we qualitatively compare the results obtained by using the
ull simulations of reionization (Section 2.1.2 ) rather than the mock
ata sets generated with GRIZZLY . Lastly, we explore the role of
edshift on the performance of the VAE kernel, by testing cases
t z = 8.30 and 10.11, and by comparing them against the results
btained for z = 9.16. 
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Figure 3. Power spectrum reco v ered using the Exponential (dash–dotted 
line) and Matern32 (dotted) Matern-class functions-based covariance kernels, 
and the VAE-based kernel (solid), together with the x H I fluctuation dominated 
model 21-cm signal (darker dashed) and noise (lighter dashed) at z = 9.16. 
The 2 σ uncertainty on the reco v ered signal for each kernel is shown as a 
shaded area in the corresponding colours. The top (bottom) panel refers to a 
case with the noise corresponding to 10 (100) nights of observation. We also 
plot the estimated upper limits of power at k = 0 . 075 h Mpc −1 from M20 
(cross). Note that this value can be significantly higher than the signal due to 
more complex noise in real data. 
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Figure 4. As Fig. 3 for the T S fluctuation dominated model. 
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.1 x H I fluctuation dominated model 

n Fig. 3 , we compare the results from the three kernels (VAE in blue
olid, Exponential in orange dash–dotted, and Matern32 in green 
otted) in reco v ering the power spectrum of the 21-cm signal at
 = 9.16 (in grey dashed). We also show the 2 σ uncertainty on the
eco v ery from different kernels to compare their performance. We 
ote that if the lower bound of the 2 σ uncertainty of the reco v ered
ignal is below the uncertainty on the thermal noise (as shown in Fig.
 ) the reco v ery qualifies as an upper limit, otherwise it is referred to
s a detection. Based on this, we note that in this case, the reco v ery
rom all kernels is going to provide upper limits, as the thermal
oise uncertainty is higher than the 21-cm signal for ≈10 nights, and
omparable with it for ≈100 nights. 

We note that for ≈10 nights of observations, while the VAE kernel
as uncertainty bands wider than the Matern-class function-based 
ernels, the input 21-cm signal is contained within its constrained 
egion. Thus, while the recovered signal for the three kernels is
omparable, the VAE kernel is robust enough to compensate for the 
 v erestimation and to contain the signal within the 2 σ limits of the
rror, although it is still an upper limit rather than a constrained
etection. As discussed in Section 2.4 , the reason for this non-
etection when using Matern-class functions-based kernels and 
road uncertainty bands for the VAE kernel is due to the low SNR,
hich is < 0.1 across all k -bins. This, ho we v er, impro v es to an average
NR of ≈1 for ≈100 nights of observations, for which, as expected,
e obtain tighter constraints and an impro v ed prediction of the

ctual value. We see, though, that the reco v ered signal from Matern-
lass function-based kernels is still o v erpredicted. In particular, for
 > 0 . 5 h cMpc −1 the Exponential and Matern32 kernels are
nable to contain the signal even in their 2 σ uncertainty bands.
n the other hand, the VAE kernel contains the signal in its 2 σ
ncertainty bands across all k -bins, despite the reco v ered signal being
bout an order of magnitude higher than the input signal. The VAE
ernel also does a much better job in reco v ering the o v erall shape
f the power spectrum. By comparing to the estimated power at
 = 0 . 075 h Mpc −1 from M20 (cross), it is clear that in this case
he VAE kernel is also capable of significantly improving the 21-cm
pper limits estimate. Ho we ver, we highlight that the VAE kernel
pplied to real data is still likely to provide upper limits higher than
hat has been shown here, because of the more complex noise, and

hus the impro v ement pro vided by the kernel might be lesser. 
In the 4th and 5th columns of Table 1 , we show the MCMC

stimates for the coherence-scale hyperparameter and the variance 
btained by applying GPR to the input power spectrum of the mock
ata set (in indigo, Fig. 1 ). The covariance kernels for the intrinsic
ky, mode mixing, and excess noise components are the same as
hose used to generate them (i.e. the value of η is fixed), while we
dopt the VAE kernel for the 21-cm signal. Note that the variances for
ll components are scaled down by the corresponding value of σ 2 

noise .
his is equal to 74 × 10 3 mK 

2 for all components for ≈10 nights
f observations (see M20 ), while for ≈100 nights this corresponds
o scaling down by a factor of 2 (i.e. σ 2 

noise = 37 × 10 3 mK 

2 ) for
he intrinsic sky component, and by a factor of 20 (i.e. σ 2 

noise =
 . 7 × 10 3 mK 

2 ) for other components (as discussed in Section 2.4 ).
rom the MCMC estimates, we note that the measurement of the
oherence scale for the f sky and f mix impro v es from ≈10 to ≈100
ights of observ ation. Ho we ver, the v ariance estimates do not sho w
n impro v ement, and ev en slightly worsen for the e xcess noise
omponent. The estimates of x 1 and x 2 and their associated variance
2 
21 agree within error limits for both cases. 
MNRAS 527, 7835–7846 (2024) 
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Figure 5. As Fig. 3 for the CRASH simulation of reionization. 
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.2 T S fluctuation dominated model 

ere, we perform a comparison between covariance kernels for the
pin temperature fluctuation model, similarly to what done in the
revious section. The results are shown in Fig. 4 . As seen in Fig. 2
nd discussed in Section 2.4 , the SNR is larger than 1 also for ≈10
ights of observations, suggesting better chances of detectability
nd smaller uncertainty ranges. Indeed, all three covariance kernels
ontain the signal within the 2 σ uncertainty bands around their
eco v ered signal, and the uncertainty range for the VAE kernel is
2 orders of magnitude smaller than the equi v alent case for the x H I 
uctuation dominated model. As discussed in the previous section,
e compare the lower bounds of the reco v ered signal with the thermal
oise uncertainty from Fig. 2 to classify the reco v ery as a detection
r an upper limit. 
For ≈100 nights of observations, the SNR is �10 across all k -bins,

o that the reco v ered signal is expected to reproduce the input signal
ith a significantly narrower 2 σ uncertainty range, provided that the

ovariance kernel chosen is a reliable estimate of the covariance of
he input 21-cm signal. Indeed, from Fig. 4 we note that the VAE
ernel fully reco v ers the signal with less than one order of magnitude
ncertainty. Ho we ver, the Exponential kernel contains the 21-cm
ignal only in the lowest k -bins and shows significant bias in the
stimated power at higher k -bins. Its broad 2 σ uncertainty shows
hat the reco v ery just pro vides upper limits ev en in the low k -bins.
n the other hand, the Matern32 kernel performs better, and provides
 successful detection, albeit with broader uncertainty ranges than
he VAE kernel reco v ery. This suggests that the Exponential kernel
s definitely not a good match for the covariance of the input 21-cm
ignal, and, as highlighted by Kern & Liu ( 2021 ), would lead to
ignificant errors in the estimated physics, if used. The Matern32
ernel is better; ho we ver, the VAE kernel impro v es upon it even
urther. This problem with the Exponential kernel appears in the
100 and not in the ≈10 nights of observation due to the similarity of

ower and shape of the excess-noise and 21-cm signal components.
hus, a covariance kernel which is not a reliable estimate of the
ovariance of the input 21-cm signal would not be able to distinguish
etween the two, and may either ignore both equally, or identify one
 v er the other purely by chance. It can also be argued that the only
eason for any ‘detection’ at low k -bins using the Exponential kernel
ould possibly just be the detection of the excess noise component,
rongly interpreted as the 21-cm signal one. 
The reco v ered values for the coherence scales and variances

or the intrinsic sky, mode mixing, and excess noise components,
s well as those for the hyperparameters x 1 and x 2 and asso-
iated variance for the 21-cm signal are listed in the 6th and
th columns of Table 1 along with their 68 per cent confidence
ntervals. As expected, we find an improvement in recovery of
he input values for ≈100 nights of observation in comparison
o ≈10 nights, particularly for the coherence-scale hyperparame-
er. 

While we note better estimates for l sky and σ 2 
sky /σ

2 
noise for ≈100

ights of observations in both 21-cm signal models, in the x H I 
uctuation dominated model the input σ 2 

sky /σ
2 
noise is not included

ithin the estimate error of the reco v ered values. A similar behaviour
s observed in the recovery of the variance for f mix and f ex in the
 H I fluctuation dominated model for ≈100 nights of observations.
astly, we also note that the x 1 and x 2 hyperparameters and associated
ariance for the 21-cm signal in both models agree within the
rror estimates. While the estimated variance for ≈100 nights of
bservations is higher, it also has a broad 68 per cent confidence
NRAS 527, 7835–7846 (2024) 

nterval. 
v

.3 CRASH simulations 

he power spectra resulting from the reco v ery using the three kernels
n the case of the CRASH simulation are shown in Fig. 5 . As now
he input 21-cm signal has a power which lies in between the two
RIZZLY models, this translates into an intermediate SNR across k -
ins. Due to this, we are able to successfully contain the input signal
n the 2 σ ranges of the reco v ered signals in most k -bins for ≈10
ights of observation with all kernels, but given the thermal noise
ncertainty power, it is still classified as an upper limit. However, for
100 nights, we note that while the VAE kernel does an excellent

ob of reco v ering the signal with narrow 2 σ uncertainty bands, they
till indicate that the reco v ery is an upper limit. On the other hand,
he Matern-class functions-based kernels underestimate the signal
nd do not contain the input 21-cm signal within 2 σ uncertainty
ands for some k -bins, despite them being significantly larger. When
omparing with the thermal noise uncertainty, we note that they
nly provide upper limits for the signal in most k -bins. This result
s similar to that with the T S fluctuation dominated model with
RIZZLY , and thus is due to the same reasons discussed in Section
.2 . 

.4 Redshift dependence 

o e v aluate the performance of the VAE kernel at different redshifts,
e use the simulations at z = 8.30, 9.16, and 10.11 of both
RIZZLY models, and compare the performance of the VAE kernel
or noise levels equivalent to ≈100 nights of observations. It should
e noted that we use the VAE kernels trained for the respective
edshifts to a v oid making the assumption of the kernels being redshift
gnostic. 

To analyse our reco v ery technique, we check how accurately it
eco v ers the input signal, and how precise the results it reports are.
or this purpose, we use the quantities defined below, with their
alues listed in Table 2 : 
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Table 2. Average bias, 〈 PS rec / PS in 〉 k , average scaled uncertainty, 〈 Err rec / PS in 〉 k , and average z-score, 〈 z-score 〉 k , at various redshifts. 
These values are obtained when the signal reco v ery is done employing the VAE kernel with the x H I (left) and the T S (right) fluctuation 
dominated model and ≈100 nights of observations. 

x H I fluctuation dominated T S fluctuation dominated 

z 〈 PS rec 
PS in 

〉 k 〈 Err rec 
PS in 

〉 k z-score min 〈 z-score 〉 k z-score max 〈 PS rec 
PS in 

〉 k 〈 Err rec 
PS in 

〉 k z-score min 〈 z-score 〉 k z-score max 

8.30 3.90 14.88 + 0.46 + 0.74 + 0.85 0.69 0.50 −4.00 −1.36 −1.25 
9.16 8.57 21.12 + 0.73 + 0.82 + 0.88 0.90 0.58 −0.79 −0.60 + 0.23 
10.11 29.29 78.22 + 0.87 + 1.02 + 1.16 0.34 0.83 −3.50 −1.96 −0.92 

Figure 6. Top panel: Input 21-cm signal for the x H I (dashed lines) and the 
T S (solid) fluctuation dominated model are shown for z = 8.30 (blue), 9.16 
(orange), and 10.11 (green). Middle panel: Reco v ered 21-cm signal and its 
associated uncertainty divided by the input 21-cm signal to give the bias and 
scaled uncertainty (the average values over k -bins for these quantities are listed 
in Table 2 ) for the x H I fluctuation dominated model. For comparison, the line 
of zero bias (i.e. reco v ered signal perfectly matching the input signal) is also 
shown. Bottom panel: Same as the middle panel, but for the T S fluctuation 
dominated model. 

 

t  

p  

h  

o  

d
f  

c  

o  

s  

b  

≈
o

 

(  

E  

t  

p  

a  

r  

q
a  

c  

h  

i  

r  

o
i  

c  

b  

P  

c  

o  

o
S  

s  

p  

i
i  

w
i  

H
p  

c  

i  

i  

p  

i  

m
 

q  

a  

t  

o  

a  

i  

T  

t  

i  

n  

k  

I  

x

fl
m

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/527/3/7835/7455887 by Ecole N
orm

ale Superieure user on 04 N
ovem

ber 2024
(i) Avera g e bias , 〈 PS rec / PS in 〉 k : this is the average bias given as
he ratio between the reco v ered (PS rec ) and input 21-cm signal (PS in )
ower spectra, averaged across all k -bins. An accurate reco v ery
as a value close to 1, with higher (lower) values indicating an
 v er(under)estimation of the input 21-cm signal. We note that the
eviation of average bias from 1 increases significantly with redshift 
or the x H I fluctuation dominated model. Ho we ver, the trend is not so
lear for the T S fluctuation dominated signal, as the power and slope
f the excess noise component match closely those of the input 21-cm
ignal at z = 8.30 and k ≤ 0.2 h Mpc −1 , which makes differentiating
etween them more dif ficult. Ho we ver, we still get an average bias of
0.70, suggesting only a minor underestimation, which is primarily 

bserved at the lowest k -bins (see Fig. 6 ). 
(ii) Avera g e scaled uncertainty , 〈 Err rec / PS in 〉 k : the 2 σ uncertainty

given by the shaded region in Figs 3 , 4 , 5 , and referred to as
rr rec hereafter) on the reco v ered power spectrum (PS rec ) gives
he precision of reco v ery. Ho we v er, e xcept for cases of extremely
oor reco v ery, the absolute value of Err rec generally depends on the
bsolute value of the corresponding PS rec . Thus, to compare different
eco v eries for a given PS in , we need to convert it into a unitless
uantity. We first tried to do this by calculating the ratio Err rec / PS rec 

s a measure of the precision of the reco v ery. Ho we ver, this ratio
ontains no information on the accuracy of PS rec . Indeed, one could
ave a precise recovery, i.e. a low Err rec / PS rec , but an inaccurate PS rec ,
.e. a bias which deviates significantly from 1 (see point abo v e). This
atio, then, is not useful, as it does not quantify the o v erall quality
f reco v ery. To o v ercome this issue, we use the ratio Err rec / PS in 

nstead. As the magnitude of Err rec depends on that of PS rec , it also
arries the information of the bias in reco v ery. Further, as we divide
y PS in , the scaled uncertainty becomes independent of the specific
S in being reco v ered. This allows us to use it to compare between
ases with different PS in , such as at different redshifts (see top panel
f Fig. 6 where the power spectrum varies due to the time evolution
f ionizing bubbles) and different physical models (as discussed in 
ections 2.1 ). We use this generalized comparison, and call it the
caled uncertainty for each k -bin. Averaging this across all k -bins
rovides a handy quantity to compare the precision of reco v ery for
nput 21-cm signals with different physical properties. For example, 
n Fig. 6 we observe that in the x H I fluctuation dominated model,
hile small-scale variability due to partial reionization is restricted, 

t still has variability tied to the large-scale distribution of neutral
ydrogen, which increases for lower redshifts. This boosts the 
ower at large scales, corresponding to the low k -bins. The same
an also be seen in the T S fluctuation dominated model, although
ts o v erall power is boosted, as it allo ws small-scale v ariability
n δT b as well. Using the scaled uncertainty, we can compare the
recision of reco v ery across redshift for both cases. The difference
n 〈 Err rec / PS in 〉 k is quite significant for the x H I fluctuation dominated
odel, going from ≈15 at z = 8.30 to ≈80 at z = 10.11. 
(iii) z-score , 〈 z-score 〉 k : The z-score (Kirch 2008 ) is a popular

uantity to e v aluate quality of reco v ery. In our case, it is defined
s PS rec −PS in 

σ
or PS rec −PS in 

Err rec / 2 
at each k -bin, and it measures how much

he reco v ered signal deviates from the input 21-cm signal, in units
f standard deviation of the reco v ered signal. The z-score is thus
 more explicit method to combine into a single quantity the
nformation provided by the bias along with that of the uncertainty.
he only possible issue is that σ ( = Err rec / 2) depends on PS rec and

hus their ratio would mask the accuracy of reco v ery as discussed
n the point abo v e (see below for an example case). Further, we
ote that we cannot just report an average of z-scores across all
 -bins, as the distribution of z-scores is not necessarily Gaussian.
ndeed, we find that while it is approximately Gaussian for the
 H I fluctuation dominated model, this is not the case for the T S 

uctuation dominated model. Thus, we report the minimum and 
aximum z-scores (z-score min and z-score max ) along with the average 
MNRAS 527, 7835–7846 (2024) 



7844 A. Acharya et al. 

M

(  

e  

d  

r  

a
fl  

a  

〈  

m  

l  

v
w  

I  

o  

d  

u  

t  

b  

a  

s  

a

 

p  

t  

i  

w  

t  

t  

s  

o  

t  

u  

a  

f
 

w  

p

4

4

I  

c  

c  

s  

c  

t
 

o  

c  

r  

2  

W  

v  

a  

s  

u  

r  

s  

s  

a  

Table 3. Average bias, 〈 PS rec / PS in 〉 k , average scaled uncertainty, 
〈 Err rec / PS in 〉 k , and average z-score, 〈 z-score 〉 k , for the x H I fluctuation 
dominated model with ≈100 nights of observations at z = 9.16. These values 
are obtained when the signal reco v ery is done employing the VAE kernel 
and multiplying the coherence-scale hyperparameter, l ex , or the variance, σ 2 

ex , 
listed in the second column of Table 1 (and as used in M20 ) by a factor f var . 

f var 〈 PS rec 
PS in 

〉 k 〈 Err rec 
PS in 

〉 k z-score min 〈 z-score 〉 k z-score max 

l ex 

0.5 12.88 31.37 + 0.88 + 1.04 + 1.19 
0.75 9.61 26.75 + 0.77 + 0.89 + 0.97 
1.0 8.57 21.12 + 0.73 + 0.82 + 0.88 
1.25 8.04 27.40 + 0.75 + 0.82 + 0.89 
1.5 7.77 15.65 + 0.78 + 0.84 + 0.90 
1.75 5.64 14.76 + 0.81 + 0.87 + 0.93 
2.0 4.55 19.38 + 0.81 + 0.85 + 0.94 

σ 2 
ex 

1.00 8.57 21.12 + 0.73 + 0.82 + 0.88 
0.75 6.64 32.81 + 0.75 + 0.80 + 0.88 
0.50 4.77 16.89 + 0.66 + 0.71 + 0.78 
0.25 3.24 9.13 + 0.58 + 0.62 + 0.67 
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 〈 z-score 〉 k ). When 〈 z-score 〉 k > ( < )0, its exact value quantifies the
xtent of over(under)prediction. We note that in the x H I fluctuation
ominated model, the average z-score worsens with increasing
edshift, consistently with the behaviour of the average bias and
verage scaled uncertainty. This trend is not detected for the T S 

uctuation dominated signal, due to the same reasons discussed
bo v e for the average bias in (i). We also note that at z = 10.11,
 z-score 〉 k ≈ −2 and + 1 in the T S and x H I fluctuation dominated
odel, respectively, naively suggesting a better recovery for the

atter. This, though, is not correct, but simply a consequence of the
ery broad error bars and the inverse proportionality of 〈 z-score 〉 k 
ith the error. This reasoning exposes the limitation of the z-score.

ndeed, by looking at 〈 PS rec / PS in 〉 k and 〈 Err rec / PS in 〉 k for reco v ery
f the x H I fluctuation dominated signal (see Table 2 ), we note that the
eviation from zero bias (obtained when 〈 PS rec / PS in 〉 k = 1) and zero
ncertainty (when 〈 Err rec / PS in 〉 k = 0) is significantly higher than for
he T S fluctuation dominated model. In fact, these numbers suggest a
etter quality of reco v ery in the latter case, which is understandable
s the SNR in this model is higher. Thus, while we report the z-
core due to its popularity, we recommend using the average bias
nd scaled uncertainty for e v aluating the quality of reco v ery. 

The trends in various quantities discussed abo v e are linked to the
hysical nature of the 21-cm power spectrum and its redshift evolu-
ion. The drop in the SNR with increasing redshift [due to a decrease
n signal power as shown in Fig. 6 and explained in (ii)], leads to a
orsening of the average bias and scaled uncertainty, especially for

he x H I fluctuation dominated model. As already mentioned, when
he excess noise and the input 21-cm signal have similar power and
lope (as at z = 8.30 for the T S fluctuation dominated case), we
bserve limitations in the capability of differentiating among the
wo, but the effects are minor and the trends of average bias, scaled
ncertainty, and z-score for the x H I fluctuation dominated model are
lso observed in the T S fluctuation dominated model when going
rom z = 9.16 to z = 10.11. 

Thus, we find that the VAE kernel does not add significant biases,
ith its reco v ery and associated uncertainty largely scaling with the
hysical properties of the 21-cm signal. 

.  DI SCUSSION  

.1 Role of the excess noise component 

n M20 , it was noted that the excess noise component was poorly
onstrained, and thus the combined excess noise and 21-cm signal
omponents were jointly reco v ered, as separating them was not
tatistically justifiable. Thus, it is important to understand how well
onstrained the excess noise component has to be, in order to separate
he 21-cm signal from it. 

To explore this, we looked at the x H I fluctuation dominated model
f the 21-cm signal at z = 9.16. We note that in the ≈100 nights
ase for the chosen excess noise component, the power spectrum
eco v ered with the VAE kernel is slightly o v erestimated, with the
 σ bands on both sides of it spanning ≈2 orders of magnitude.
e then generated a range of input excess noise components (by

arying either the coherence-scale hyperparameter or the variance),
nd analysed the effects on the reco v ery of the 21-cm signal power
pectrum using the VAE kernel by looking at the average bias, scaled
ncertainty and z-score, as defined in Section 3.4 . The results are
eported in Table 3 , where f var is the factor by which the coherence-
cale hyperparameter and the variance from the results of M20 were
caled. We see that, o v erall, the av erage bias and scaled uncertainty
re reduced when increasing the coherence-scale hyperparameter or
NRAS 527, 7835–7846 (2024) 
ecreasing the variance, while no substantial difference is observed
n the average z-score. This is possibly because the bias and scaled
ncertainty decrease at the same rate, and thus their effects roughly
ancel out. 

.2 Overall performance of the VAE kernel 

sually it is expected that the recovery of the 21-cm signal from
n o v erall data set with fore ground components, noise and signal,
s not possible if SNR < 1. In Section 3.1 , we have indeed shown
hat Matern-class functions-based kernels are unable to contain the
nput 21-cm signal within their 2 σ uncertainty bands when SNR <

. Ho we ver, the VAE kernel is not only able to do so, but also to
eco v er the o v erall shape of the power spectrum, as seen in the top
anel of Fig. 3 . 

Further, as highlighted by Kern & Liu ( 2021 ), misestimation of
he covariance kernel can significantly hamper signal detection given
he currently used normalization and bias correction schemes. This
eans that as the Matern-class functions model the 21-cm signal

nly approximately, their results can be significantly biased for more
omplex models of the 21-cm signal, as giv en e xample by the T S 

uctuation dominated model of GRIZZLY and the 21-cm signal model
rom the CRASH simulations. Indeed, in these cases the Matern-class
unctions-based k ernels f ail to reco v er the signal also for noise levels
qui v alent to ≈100 nights of observ ation, e ven when 〈 SNR 〉 k ≈ 10.
he VAE kernel does not suffer from such a limitation and performs
ell also when used with an input signal from the CRASH simulations.
his shows that the VAE covariance kernel is a more robust estimate
f the covariance of the 21-cm signal, and can successfully report
 detection within 2 σ uncertainty regardless of the exact physical
roperties of the observed 21-cm differential brightness temperature
ower spectrum. Lastly, we note that it performs well across all
edshifts analysed here. This reconfirms the robustness of the VAE
ernel in constraining the 21-cm signal, with an increase/decrease in
ncertainty tied to the 〈 SNR 〉 k of the signal itself. 
Overall, the 2 σ uncertainty bands given by the VAE kernel contain

he signal in all cases discussed here. We consider the reco v ery limit
f the VAE kernel in terms of SNR averaged over k -bins to be that
rom ≈10 nights of observation in the x H I fluctuation dominated
odel, i.e. 〈 SNR 〉 k = 5 × 10 −2 . For values lower than this, we do
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ot expect the VAE kernel-based reco v ery to contain the input signal
ithin its 2 σ uncertainty bands across k = [0 . 05 , 1 . 00] h Mpc −1 .
e explore one such case in Appendix A , and indeed find that the

eco v ery does not contain the input signal within its 2 σ uncertainty
ands, but instead provides upper limits. Yet it still outperforms the 
atern-class functions-based kernels in reco v ering the shape of the 

ower spectrum, spread of uncertainty on reco v ery, as well as the
eported upper limits. 

.3 Limitations 

n this work, we reduce the possibility of biases in the EoR
ovariance kernel by incorporating a more physically motivated 
ov ariance. We sho wcase the robustness of the generated VAE
ovariance kernel by testing it against not just mock 21-cm signals
btained with GRIZZLY , but with signals generated using very 
if ferent frame works as sho wn in Section 3.3 and in Appendix A .
his has also been demonstrated in Mertens, Bobin & Carucci 
 2023 ). 

Ho we ver, biases are still possible, especially if the true signal,
nd thus its covariance, is fundamentally different from what we 
btain with our simulation codes. One way to further minimize this
ias is to use mock data obtained from different codes to train the
ovariance kernel, which we plan to do in further upgrades of our
ipeline. In the future, we will also investigate methods to reduce the
ependence on the prior by using different normalization and bias 
orrection schemes as suggested by Kern & Liu ( 2021 ). 

.  S U M M A RY  

he LOFAR EoR KSP team strives for a successful detection of the
1-cm signal from the EoR at z ≈ 7–11. Past theoretical models 
ndicated that at least 1000 h of observation would be necessary 
o lead to a successful detection (Mertens, Ghosh & Koopmans 
018 ), while M20 provided upper limits using 141 h ( ≈10 nights)
f observation. In this respect, an optimal choice of the covariance 
ernel for the 21-cm signal component is crucial. Indeed, as shown in
ern & Liu ( 2021 ), given the currently used normalization and bias

orrection scheme, a mismatch between the adopted and the actual 
ovariance kernel of the 21-cm signal can induce a significant signal 
oss, which can in turn lead to incorrect astrophysical interpretations 
rom any ‘successful’ detection. 

To impro v e the choice of the 21-cm signal covariance kernel,
ertens, Bobin & Carucci ( 2023 ) introduce a ML method which

mploys a VAE-based algorithm. As the training done using VAE 

s not limited by the form of the specific function (as in the case of
atern-class functions), nor by the kernels of the training data sets

as in the case of a simple AE), it allows to reproduce the covariance
ernel of the 21-cm signal with a greater flexibility. This is showcased 
n terms of the robustness of the VAE-based kernel’s performance 
n comparison with previously used kernels based on Matern-class 
unctions. 

We show that the result on using the VAE kernel is able to
ontain the input 21-cm signal within its 2 σ uncertainty band in 
ll cases explored where 〈 SNR 〉 k � 5 × 10 −2 . It is also usually
etter than the results from Matern-class functions-based covariance 
ernels in reco v ering the o v erall shape of the power spectrum
f the signal. A key result in this paper is that Matern-class
unctions-based kernels are unable to reco v er the 21-cm signal 
or the T S fluctuation dominated model even for ≈100 nights of
bservation, for which 〈 SNR 〉 k ≈ 10, while a reco v ery with the
AE kernel is successful. A similar result is obtained also with a
1-cm signal generated using the CRASH simulations, thus clearly 
ndicating that the Matern-class functions-based kernels do not 
orrectly match the covariance of more complex models of the 
ignal. Thus, this analysis suggests that using the VAE kernel can
itigate to a significant extent the issues highlighted by Kern &
iu ( 2021 ) given no change to the normalization and bias correction
chemes. 

Further, we show that the behaviour of the VAE kernel is consistent
cross all redshifts of interest, with changes in its performance 
trongly correlating with the neutral hydrogen distribution, which 
hanges the strength of the resultant power spectrum, and thus the
 SNR 〉 k . This suggests that the VAE-based kernel can be used for
ny choice of redshift without additional correction factors, making 
he algorithm developed here directly applicable to LOFAR data at 
 ≈ 8 to 10, whose results can then be compared with results from
elescopes like HERA. 

We also explore the effects that the properties of the excess
oise component identified in M20 have on the recovery of the 21-
m signal. As expected, we find that having a higher coherence 
cale or a lower variance for the components leads to better
eco v ery. 

In companion papers we will apply the VAE kernel to the
10 nights of LOFAR data used in M20 , and explore the range

f theoretical models which are consistent with the upper limits 
rovided by the VAE kernel, as done in Ghara et al. ( 2020 ). Applying
he VAE kernel to observations much longer than ≈10 nights requires
 significant impro v ement in the modelling of the intrinsic sky
omponent, which would eventually be limited by the confusion 
oise due to the angular resolution of LOFAR. Further impro v ements,
uch as noise mitigation, can be implemented by choosing data from
ights with better ionospheric conditions and lesser contribution from 

FI flagging. All these aspects are currently being explored by the
OFAR EoR KSP team. 
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ATA  AVAI LABI LI TY  

he VAE kernels generated for z = 8.30, 9.16, and 10.11 shall be
ade public on publication. The PS EOR package used to run GPR

nd ML-GPR can be found at ht tps://gitlab.com/flomert ens/ps eor. 
he underlying training, testing, and validation data sets generated 
sing GRIZZLY , and the mock 21-cm signal data generated using
RIZZLY and CRASH can be shared upon reasonable request. 

EFERENCES  

igrain S. , F oreman-Macke y D., 2023, ARA&A , 61, 329 
ecker R. H. et al., 2001, AJ , 122, 2850 
ecker G. D. , Bolton J. S., Madau P., Pettini M., Ryan-Weber E. V., Venemans

B. P., 2015, MNRAS , 447, 3402 
osman S. E. I. et al., 2022, MNRAS , 514, 55 
iardi B. , Ferrara A., 2005, Space Sci. Rev. , 116, 625 
iardi B. , Madau P., 2003, ApJ , 596, 1 
iardi B. , Ferrara A., Marri S., Raimondo G., 2001, MNRAS , 324, 381 
l ́ement B. et al., 2012, A&A , 538, A66 
avies F. B. et al., 2018, ApJ , 864, 142 
MNRAS 527, 7835–7846 (2024) 

https://gitlab.com/flomertens/ps_eor
http://dx.doi.org/10.1146/annurev-astro-052920-103508
http://dx.doi.org/10.1086/324231
http://dx.doi.org/10.1093/mnras/stu2646
http://dx.doi.org/10.1093/mnras/stac1046
http://dx.doi.org/10.1007/s11214-005-3592-0
http://dx.doi.org/10.1086/377634
http://dx.doi.org/10.1046/j.1365-8711.2001.04316.x
http://dx.doi.org/10.1051/0004-6361/201117312
http://dx.doi.org/10.3847/1538-4357/aad6dc


7846 A. Acharya et al. 

M

E  

E  

F
F  

F  

F  

G
G  

G  

G
G
G  

G
G
G
G  

H
H
K
K
K  

K
K  

K
K
L
M  

M
M
M  

M
M  

M
M
M  

M  

P  

 

P
P
P
R  

 

S
S  

S  

H
T
Z  

A
C

W  

2  

z  

3  

M
 

F  

i  

(  

2  

t  

t  

t  

o  

w  

o  

(  

a  

b  

T  

t  

j

Figure A1. As Fig. 3 for 21CMFAST simulations of reionization. 

This paper has been typeset from a T E 

X/L 

A T E 

X file prepared by the author. 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/527/3/7835/7455887 by Ecole N
orm

ale Superieure user on 04 N
ovem

ber 2024
ide M. B. , Graziani L., Ciardi B., Feng Y., Kakiichi K., Di Matteo T., 2018,
MNRAS , 476, 1174 

ide M. B. , Ciardi B., Graziani L., Busch P., Feng Y., Di Matteo T., 2020,
MNRAS , 498, 6083 

an X. et al., 2006, AJ , 131, 1203 
 oreman-Macke y D. , Hogg D. W., Lang D., Goodman J., 2013, PASP , 125,

306 
urlanetto S. R. , 2016, The 21-cm Line as a Probe of Reionization. Springer

International Publishing, Cham, p. 247 
urlanetto S. R. , Oh S. P., Pierpaoli E., 2006, Phys. Rev. D , 74,

103502 
ehlot B. K. et al., 2019, MNRAS , 488, 4271 
hara R. , Choudhury T. R., Datta K. K., 2015, MNRAS , 447,

1806 
hara R. , Mellema G., Giri S. K., Choudhury T. R., Datta K. K., Majumdar

S., 2018, MNRAS , 476, 1741 
hara R. et al., 2020, MNRAS , 493, 4728 
latzle M. , Ciardi B., Graziani L., 2019, MNRAS , 482, 321 
oodfellow I. , Bengio Y., Courville A., 2016, Deep Learning. MIT Press,

USA 

raziani L. , Maselli A., Ciardi B., 2013, MNRAS , 431, 722 
raziani L. , Ciardi B., Glatzle M., 2018, MNRAS , 479, 4320 
reig B. , Mesinger A., 2015, MNRAS , 449, 4246 
reig B. , Mesinger A., Haiman Z., Simcoe R. A., 2017, MNRAS , 466,

4239 
ogan C. J. , Rees M. J., 1979, MNRAS , 188, 791 
othi I. et al., 2021, MNRAS , 500, 2264 
ern N. S. , Liu A., 2021, MNRAS , 501, 1463 
errigan J. R. et al., 2018, ApJ , 864, 131 
handai N. , Di Matteo T., Croft R., Wilkins S., Feng Y., Tucker E., DeGraf

C., Liu M.-S., 2015, MNRAS , 450, 1349 
ingma D. P. , Welling M., 2013, arXiv:1312.6114 ) 
ingma Diederik P. ,Welling Max 2019,Foundations and Trends R © in Ma-

chine Learning,12,307–392. 
irch W. ed. 2008, z-Score. Springer, Netherlands, Dordrecht, p. 1484 
ullback S. , Leibler R. A., 1951, Ann. Math. Stat. , 22, 79 
iu A. , Shaw J. R., 2020, PASP , 132, 062001 
a Q.-B. , Ciardi B., Eide M. B., Busch P., Mao Y., Zhi Q.-J., 2021, ApJ , 912,

143 
adau P. , Meiksin A., Rees M. J., 1997, ApJ , 475, 429 
aselli A. , Ciardi B., Kanekar A., 2009, MNRAS , 393, 171 
ertens F. G. , Ghosh A., Koopmans L. V. E., 2018, MNRAS , 478,

3640 
ertens F. G. et al., 2020, MNRAS , 493, 1662 (M20) 
ertens Florent G. ,Bobin J ́er ̂ ome Carucci Isabella P

2024,MNRAS,527,3517–3531. 
esinger A. , Furlanetto S., 2007, ApJ , 669, 663 
orales M. F. , Wyithe J. S. B., 2010, ARA&A , 48, 127 
orales M. F. , Beardsley A., Pober J., Barry N., Hazelton B., Jacobs D.,

Sulli v an I., 2019, MNRAS , 483, 2207 
ortlock D. , 2016, Quasars as Probes of Cosmological Reionization.

Springer International Publishing, Cham, p. 187 
inheiro Cinelli L. , Ara ́ujo Marins M., Barros da Silva E. A., Lima Netto S.,

2021, Variational Autoencoder. Springer International Publishing, Cham,
p. 111 

lanck Collaboration XLVII 2016, A&A , 596, A108 
ober J. C. et al., 2014, ApJ , 782, 66 
ritchard J. R. , Loeb A., 2012, Rep. Prog. Phys. , 75, 086901 
asmussen C. E. , Williams C. K. I., 2006, Gaussian Processes for Machine

Learning (Adaptive Computation and Machine Learning). MIT Press,
USA 

chenker M. A. et al., 2013, ApJ , 768, 196 
haver P. A. , Windhorst R. A., Madau P., de Bruyn A. G., 1999, A&A, 345,

380 
NRAS 527, 7835–7846 (2024) 

Published by Oxford University Press on behalf of Royal Astronomical Society. This is an 
( https://cr eativecommons.or g/licenses/by/4.0/), which permits unrestricted reus
tein M. L. , 1999, Interpolation of Spatial Data: Some Theory for Kriging.
Springer Science and Business Media, Berlin 

ERA Collaboration The , et al. 2023,ApJ,945,124. 
ozzi P. , Madau P., Meiksin A., Rees M. J., 2000, ApJ , 528, 597 
aroubi S. , 2013, The Epoch of Reionization. Springer, Berlin, Heidelberg,

p. 45 

PPENDI X  A :  I NVESTI GATI NG  A  LOW-SNR  

ASE  

e use the seminumerical code 21CMFAST (Mesinger & Furlanetto
007 ; Greig & Mesinger 2015 ) to generate a mock 21-cm signal at
 = 9.1 within a box of length 400 cMpc. We adopt the values ζ =
0 per cent , R mfp = 15 cMpc, and T feed 

vir = 5 × 10 4 K (see Greig &
esinger 2015 for more details). 
The power spectra reco v ered using the three kernels are shown in

ig. A1 . As in this model the input 21-cm signal is much weaker than
n those discussed in the main text, for ≈10 nights of observation
 〈 SNR 〉 k ≈ 1 . 6 × 10 −2 ) the input signal is never contained within the
 σ uncertainty bounds of the reco v ered signal with the exception of
he highest k -bins, where the SNR is higher. When comparing with
he thermal noise uncertainty, we find that all three kernels manage
o provide upper limits, with the VAE kernel also recovering the
 v erall shape. A detection is not possible because of the low SNR,
ith the uncertainty on the thermal noise being almost two orders
f magnitude larger than the input 21-cm signal. For ≈100 nights
 〈 SNR 〉 k ≈ 0 . 3), the signal is within the 2 σ uncertainty bounds for
ll kernels, while still providing upper limits and not a detection
ecause the SNR is still low despite the increased integration time.
he VAE kernel has the tightest constraints on the uncertainty. While

he VAE kernel o v erestimates the input signal, it does an excellent
ob in reco v ering its o v erall shape. 
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