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An Equivalent to the Riemann Hypothesis

Frank Vega

To my mother Abstract. The Riemann hypothesis is a conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part 1 2 . It is considered by many to be the most important unsolved problem in pure mathematics. There are several statements equivalent to the famous Riemann hypothesis. Robin's criterion states that the Riemann hypothesis is true if and only if the inequality σ(n) < e γ •n•log log n holds for all natural numbers n > 5040, where σ(n) is the sum-of-divisors function of n, γ ≈ 0.57721 is the Euler-Mascheroni constant and log is the natural logarithm. We prove that the Riemann hypothesis is true whenever there exists a large enough positive number x0 such that for all x > x0 we obtain that the value of

n≤αx 1 n - 6≤n≤ x log x e -γ n • (log(n • log n)) - n<6 e -γ qn
is lesser than or equal to e -γ • γ -B -

1 2•(x-1)
where B ≈ 0.26149 is the Meissel-Mertens constant and αx = log x + 0.0222•log x log log x . Since the previous expression goes to 0 as x tends to infinity, then we deduce that the Riemann hypothesis must be true.

Introduction

In mathematics, the Prime-counting function π(x) is given by π(x) = q≤x 1 with the sum extending over all prime numbers q that are less than or equal to x. 

π(x) > x log x ,
where log is the natural logarithm.

Proposition 1.2. For the nth prime number q n and n ≥ 6 [11, Corollary (3.13) pp. 69]:

q n < n • (log(n • log n)) .
The number γ ≈ 0.57721 is the Euler-Mascheroni constant which is defined as

γ = lim n→∞ -log n + n k=1 1 k = ∞ 1 - 1 x + 1 ⌊x⌋ dx.
Here, ⌊. . .⌋ represents the floor function. Franz Mertens discovered some important results about the constants B and H (1874) [START_REF] Mertens | Ein Beitrag zur analytischen Zahlentheorie[END_REF]. We define H = γ -B such that B ≈ 0.26149 is the Meissel-Mertens constant [START_REF] Mertens | Ein Beitrag zur analytischen Zahlentheorie[END_REF].

Proposition 1.3. We have [2, Lemma 2.1 (1) pp. 359]: ∞ k=1 log q k q k -1 - 1 q k = γ -B = H,
where q k is the kth prime number.

For x ≥ 2, the function u(x) is defined as follows [7, pp. 379]:

u(x) = q>x log q q -1 - 1 q .
Proposition 1.4. We have [7, (11) pp. 379]:

0 < u(x) ≤ 1 2 • (x -1)
.

On the sum of the reciprocals of all prime numbers not exceeding x, we have:

Proposition 1.5. For x ≥ 2278383 [3, Theorem 5.6 (1) pp. 243]: - 0.2 log 3 x ≤ q≤x 1 q -B -log log x ≤ 0.2 log 3 x As usual σ(n) is the sum-of-divisors function of n d|n d, where d | n means the integer d divides n. Define f (n) as σ(n) n .
Proposition 1.6. Let r i=1 q ai i be the representation of n as a product of prime numbers q 1 < . . . < q r with natural numbers a 1 , . . . , a r as exponents. Then [4, Lemma 1 pp. 2],

f (n) = r i=1 q i q i -1 • r i=1 1 - 1 q ai+1 i .
Definition 1.7. We say that Robin(n) holds provided that 

f (n) < e γ •
q q -1 < e γ • m≤x 1 m ,
where m denotes a natural number.

In 1997, Ramanujan's old notes were published where he defined the generalized highly composite numbers, which include the superabundant and colossally abundant numbers [START_REF] Nicolas | Highly Composite Numbers by Srinivasa Ramanujan[END_REF]. Superabundant numbers were also studied by Leonidas Alaoglu and Paul Erdős (1944) [START_REF] Alaoglu | On Highly Composite and Similar Numbers[END_REF]. Let q 1 = 2, q 2 = 3, . . . , q k denote the first k consecutive primes, then an integer of the form

k i=1 q ai i with a 1 ≥ a 2 ≥ . . . ≥ a k ≥ 1 is called a Hardy-Ramanujan integer [2, pp. 367]. A natural number n is called superabundant precisely when, for all natural numbers m < n f (m) < f (n).
We know the following property for the superabundant numbers: Proposition 1.12. Let n be a large enough superabundant number such that q is the largest prime factor of n. Then [6, Corollary 4.16 pp. 16]:

q < (log n) • 1 + 0.0222 log log n .
A number n is said to be colossally abundant if, for some ϵ > 0, σ(n) n 1+ϵ ≥ σ(m) m 1+ϵ for (m > 1). There is a close relation between the superabundant and colossally abundant numbers.

Proposition 1.13. Every colossally abundant number is superabundant [1, pp. 455].

Several analogues of the Riemann hypothesis have already been proved. Many authors expect (or at least hope) that it is true. However, there are some implications in case of the Riemann hypothesis could be false. Putting all together yields a proof for the Riemann hypothesis.

Central Lemma

The following is a key Lemma.

Lemma 2.1. If the Riemann hypothesis is false, then there exist infinitely many superabundant numbers n such that Robin(n) fails.

Proof. This is a direct consequence of Propositions 1.8, 1.13 and 1.14. □

Main Insight

This is the main insight.

Theorem 3.1. The Riemann hypothesis is true whenever there exists a large enough positive number n 0 such that for all n > n 0 we obtain that the value of

m≤αn 1 m - 6≤m≤ n log n e -γ m • (log(m • log m)) - m<6 e -γ q m
is lesser than or equal to e -γ • H -

1 2•(n-1) where α n = log n + 0.0222•log n log log n .
Proof. Let n > 5040 be a counterexample such that Robin(n) does not hold.

We know this number could be a large enough superabundant number by Lemma 2.1. Let k i=1 q ai i be the representation of this superabundant number n as the product of the first k consecutive primes q 1 < . . . < q k with the natural numbers a 1 ≥ a 2 ≥ . . . ≥ a k ≥ 1 as exponents according to Proposition 1.11. We know that n > 10 10 13.11485 by Proposition 1.9. Under our supposition, we have

σ(n) ≥ e γ • n • log log n.
By Proposition 1.5, we notice that q≤n 1 q ≤ log log n + B + 0.2 log 3 n .

We can see that

q≤n log q q -1 - q≤n log q q -1 - 1 q ≤ log log n + B + 0.2 log 3 n which is q≤n log q q -1 -H < log log n + B + 0.2 log 3 n and q≤n log q q -1 < log log n + γ + 0.2 log 3 n by Proposition 1.3. That is the same as n • q≤n log q q -1 < n • log log n + γ + 0.2 log 3 n • n
after multiplying both sides by the superabundant number n. We know that

γ + 0.2 log 3 n • n ≤ (e γ -1) • n • log log n
for n > 10 10 13.11485 . Consequently, we obtain that

σ(n) > n • q≤n log q q -1 by transitivity since e γ • n • log log n ≥ n • log log n + γ + 0.2 log 3 n • n.
In this way, we have

f (n) > q≤n log q q -1 which is q≤αn q q -1 > q≤n log q q -1
by Proposition 1.6 and 1.12 since

q≤q k q q -1 > f (n) and q k < (log n) • 1 + 0.0222 log log n = log n + 0.0222 • log n log log n = α n
for large enough superabundant number n. That would be

e γ • m≤αn 1 m > q≤n log q q -1 since q≤αn q q -1 < e γ • m≤αn 1 m
by Proposition 1.10. So, we would have

e γ • m≤αn 1 m - q≤n 1 q > H -u(n)
by Proposition 1.3. By Proposition 1.4, we have

e γ • m≤αn 1 m - q≤n 1 q > H - 1 2 • (n -1)
.

That is equivalent to

e γ • m≤αn 1 m - m≤ n log n 1 q m > H 1 2 • (n -1) since π(n) > n log n by Proposition 1.1. Hence, it is enough to show that m≤αn 1 m - m≤ n log n e -γ q m > e -γ • H - 1 2 • (n -1)
which means that the expression

m≤αn 1 m - 6≤m≤ n log n e -γ m • (log(m • log m)) - m<6 e -γ q m
would be greater than e -γ • H -

1 2•(n-1)
by Proposition 1.2. However, that contradicts the fact that n could be a superabundant number as large as we want and thus, it could happen that n > n 0 from our pre-conditions. This contradiction implies that it cannot exist infinitely many superabundant numbers n such that Robin(n) fails and therefore, the Riemann hypothesis should be true using a proof by contraposition from Lemma 2.1. □

Main Theorem

This is the main theorem.

Theorem 4.1. The Riemann hypothesis is true.

Proof. Since the expression of Theorem 3.1 goes to 0 as n tends to infinity, then we deduce that the Riemann hypothesis must be true. This is because of the upper bound n log n is exponentially larger than the number α n = log n + 0.0222•log n log log n and e -γ m • (log(m • log m)) ≈ 1 m is true for each value of m ≥ 6 since e γ ≈ 0 according to the Proposition 1.2. □
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