

Physiologically-based pharmacokinetic modelling of dendrimer nanoparticles to unravel structure – PK parameters relationships

Jessica Ou, Béatrice Louis, Laure Balasse, Tom Roussel, Ling Peng, Benjamin Guillet, Philippe Garrigue, Florence Gattacceca

▶ To cite this version:

Jessica Ou, Béatrice Louis, Laure Balasse, Tom Roussel, Ling Peng, et al.. Physiologically-based pharmacokinetic modelling of dendrimer nanoparticles to unravel structure – PK parameters relationships. GMP Symposium 2023, Oct 2023, Paris, France. hal-04344099

HAL Id: hal-04344099 https://hal.science/hal-04344099v1

Submitted on 20 Dec 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

lnserm

Physiologically-based pharmacokinetic modelling of dendrimer nanoparticles to unravel structure – PK parameters relationship

<u>Jessica OU^{1,2}, Béatrice LOUIS^{3,4}, Laure BALASSE^{3,4}, Tom ROUSSEL⁵, Ling PENG⁵, Benjamin GUILLET^{3,4},</u> Philippe GARRIGUE^{3,4}, Florence GATTACCECA^{1,2}

(1) Inria-Inserm COMPO team, Centre Inria Sophia Antipolis - Méditerranée, Inserm U1068-CNRS UMR7258, Aix-Marseille University UM105 (2) CRCM, CNRS UMR7258- INSERM U1068- Institut Paoli-Calmettes UMR7258, Aix-Marseille University UM105, Marseille, France

(3) CERIMED, CNRS, Aix-Marseille University, Marseille, France (4) C2VN, INSERM 1263, INRAE 1260, Aix-Marseille University, Marseille, France (5) CINaM, Aix-Marseille University UMR7325 / UPR3118, Centre National de la Recherche Scientifique UMR7325 / UPR3118

METHODS

CONTEXT & OBJECTIVES

Many types of nanoparticles (NPs) developed but no tools to	Dendrimer C18 NOTA chelator	Reduction of alkyl chain and fluorination of C18	 <u>Data</u>: Model: healthy Swiss mice 	Parameter	Source
rationalize NPs development ⇒ Need of tools for rational nanodrugs optimization	$Ga = [68Ga]Gallium$ $= \int Ga = [68Ga]Gallium$	A constraint of the second	 Administration: intravenous mPET/CT imaging for 2h (n=6, except for (C₄F₉)-C11 n=5, and (C₄F₉)-C11 with RGD n=3) gamma counting (blood) for 2h (n=6, except (C₄F₉)-C11 with RGD n=3) Software: R version 4.2.2 Ordinary Differential Equation (ODE) solver: deSolve 	Partition coefficients (Kp)	In vivo data ^[2] Concentration in organs, tissues (%ID/g) Concentration in blood (%ID/g)
Current work on 7 formulations				Physiology Permeability (P)	Brown et al. ^[3] Estimated
of gallium-68 radiolabeled				(mL/h) Renal clearance (CLr. mL/h)	In vivo data (popPK
				Hepatic clearance	In vivo data (popPK

PBPK modeling: quantitative PK estimations and predictions

Development of a computational model describing the distribution of dendrimers in the organism depending on their characteristics

Plots: ggplot and GraphPad Prism 9.5

RESULTS

2. Structure-PK parameters relationships

1. Structure of the nanoPBPK model

Tissue model: permeability-limited tissue distribution

 $\frac{dA_{vascular}}{dt} = Q^*(CA - CV_{tissue}) - P_{ti}$ P_{tissue} * C_{tissue} * CV.

Effect of the alkyl chain length \rightarrow lower affinity for kidneys when chain > 12C

model)^[2]

Effect of the fluorination \rightarrow

(CLh, mL/h)

$$\frac{dA_{interstitial}}{dt} = P_{tissue} * CV_{tissue} - \frac{P_{tissue} * C_{tissue}}{Kp}$$

C: concentration (%ID/g) CA: arterial concentration (%ID/mL) CV: venous concentration (%ID/mL) Q: Blood flow (mL/h)

4. Predictions of dendrimers disposition *in vivo*

Internal evaluation of the model

Comparison of blood PK parameters (Cmax and AUC) calculated from observed data (**obs**) and predicted (**pred**) from the PBPK model for each dendrimer

Dendrimer	Cmax _{obs} (%ID/g)	Cmax _{pred} (%ID/g)	Cmax Fold error	AUC _{obs 0-2h} (%ID/g.h)	AUC _{pred 0-2h} (%ID/g.h)	AUC Fold error
C18	22.29	27.87	1.25	30.19	39.87	1.32
(CF ₃) ₃ -C15	24.57	26.19	1.07	32.84	37.03	1.13
C ₄ F ₉ -C14	30.42	24.39	0.80	42.09	33.69	0.80
(CF ₃) ₃ -C12	30.98	27.66	0.89	35.99	32.55	0.90
C ₄ F ₉ -C11	16.47	13.9	0.84	19.10	17.39	0.91
C₄F ₉ -C11 RGD 1:3	24.91	24.04	0.97	23.35	29.79	1.28
C₄F ₉ -C11 RGD 3:1	25.67	22.67	0.88	28.05	26.84	0.96
			Fold error	< 2		

CONCLUSION

Space for improvement (overprediction in liver, underprediction in heart for C_4F_9 -C11)

- PBPK model accurately predicted the distribution of dendrimers
- Relationships between dendrimer structure and PK parameters established \rightarrow tool to guide the development of dendrimers

PERSPECTIVES

- Collection of *in vitro* parameters to add NP-specific processes in the model (cellular uptake (endocytosis), opsonization)
- Expand the PBPK model to other types of NPs
- Apply this approach to design new optimal NPs

Acknowledgments

J. Ou's PhD is financed by a grant from Ecole Doctorale 62 -Sciences de la vie, Aix-Marseille University. The authors thank PACA Canceropôle, Conseil Régional PACA and Institut National du Cancer for financial support.

[1] Garrigue P. et al., Proc. Natl. Acad. Sci. 115, 11454–11459 (2018) [2] Ou J. et al., hal-03930671 (2022) [3] Brown RP et al., Toxicol Ind Health. 13: 407 (1997)

Abbreviations

AUC: Area under the curve C: carbon ID: injected dose MPS: Mononuclear Phagocyte System RGD: Arginyl-glycyl-aspartic acid