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Abstract: Event-based clustering provides a low-power embedded solution for low-level feature
extraction in a scene. The algorithm utilizes the non-uniform sampling capability of event-based
image sensors to measure local intensity variations within a scene. Consequently, the clustering
algorithm forms similar event groups while simultaneously estimating their attributes. This work
proposes taking advantage of additional event information in order to provide new attributes for
further processing. We elaborate on the estimation of the object velocity using the mean motion of the
cluster. Next, we are examining a novel form of events, which includes intensity measurement of the
color at the concerned pixel. These events may be processed to estimate the rough color of a cluster,
or the color distribution in a cluster. Lastly, this paper presents some applications that utilize these
features. The resulting algorithms are applied and exercised thanks to a custom event-based simulator,
which generates videos of outdoor scenes. The velocity estimation methods provide satisfactory
results with a trade-off between accuracy and convergence speed. Regarding color estimation, the
luminance estimation is challenging in the test cases, while the chrominance is precisely estimated.
The estimated quantities are adequate for accurately classifying objects into predefined categories.

Keywords: low-power tracking; event-based processing; embedded sensing; event polarity; event
intensity; velocity estimation; color estimation

1. Introduction

Event-based image sensors (EBIS) are a new type of sensor that overcome some of
the limitations of frame-based systems. Instead of capturing an entire image frame at a
fixed rate, each pixel of event cameras responds to local changes in intensity, resulting
in non-uniform sampling of the image and the suppression of temporal redundancies
in the data. The resulting data stream is composed of events, each one encoding the
information of the observed change. Such sensors require dedicated algorithms to exploit
their properties, such as high temporal resolution and wide dynamic range, but also
reduced data throughput, which is suitable for embedded systems.

Event-based algorithms have been developed for many vision tasks, from feature
extraction to pattern recognition [1]. In a previous work [2], we proposed an event-by-event
clustering algorithm that can retrieve the position and size of objects directly from the event
stream of a Dynamic Vision Sensor (DVS) camera. With low-power sensing in mind, this
work focuses on the low computational cost and small memory footprint of clustering.

In the literature on event-based algorithms, many algorithms process the classical
DVS data stream by exploiting the position and the timestamp of the events [3,4]. This
information is sufficient to perform many vision tasks [1,5], such as object tracking, optical
flow estimation, and more. However, these methods often require the accumulation of
many events to replace the missing intensity measurements of conventional sensors. An al-
ternative approach to enhance either the algorithm’s performance or the understanding of
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the scene is to incorporate intensity measurements from Time to First Spike (TFS) pixels
into the DVS data stream [6,7].

However, direct integration of intensity measurements into the event-based algorithm
is not widely used. Numerous algorithms are established on frame-based equivalents,
and they do not entirely leverage the asynchronous event information. Thus, we put
forward a low-level event-by-event algorithm that does not necessitate a high-level repre-
sentation of event information.

An example of such an event stream can be found in the Color Event Dataset of
Scheerlinck et al. [8], which generates events by combining a conventional camera with
a DVS. It is the first available dataset of its kind. It contains a wide variety of scenes
that take advantage of the event cameras’ characteristics to cover a good range of vision
tasks, but the nature of the acquisition limits the possible applications, as the main pur-
pose of this dataset is image reconstruction. Similarly to our case study, the N-MuPeTS
dataset by Bolten et al. [9] focuses on tracking individuals with varied color characteristics.
Color segmentation is applied to the frames of a conventional camera and the resulting
labels are assigned to the event stream of a DVS camera, with each event being given a
corresponding color.

Nonetheless, few studies have suggested a processing approach for more intricate
events that convey supplementary information, compared to the DVS event stream. State-of-
the-art event-based object detection techniques, like the research carried out by
Mondal et al. [10], or optical flow estimation [11,12] are still confined to the most fun-
damental type of events. To the best of our knowledge, only Marcireau et al. [13] have
proposed a methodology to cluster and track uniformly colored objects with an event-by-
event algorithm.

Following these observations, the goal of this paper is to propose simple algorithms
which can make use of the enriched event stream in order to estimate the velocity and color
of the clusters, as a continuation of the previous clustering work. To achieve this, a sensor
is modelled in a custom event stream simulator.

Regarding velocity, we propose two simple and lightweight methods to estimate the
speed and direction of clusters using optical flow assumptions. Both methods are compared
and applied to a real video event stream. Then, we propose a method to estimate the color
of an object from an enriched event stream under some assumptions. This rough estimate
can then be used to classify the object color.

The paper is organized as follows: Section 2 presents the related works of event-based
image sensors and introduces the case study as well as a model of the simulated sensor;
Section 3 presents the state of the art of event simulators and the custom simulator along
with the datasets; Section 4 provides the prior knowledge of spatio-temporal clustering
required to fully understand the purpose of this work; Sections 5 and 6 then detail the
proposed methods for velocity and color estimation; and Section 7 discusses the results
to conclude.

2. Event-Based Image Sensors

An event-based image sensor (EBIS) provides an alternative to conventional cameras
that capture frames at regular time intervals. This type of sensor comprises self-triggering
pixels that respond to local, relative changes in intensity. As a result, the throughput,
and therefore the power consumption of the sensor, is significantly reduced. Since the
scene is only partially sampled, the output depends both on the activity of the scene and
the camera motion.

For further details on DVS pixels, we refer the interested reader to [3], and for TFS
pixels, readers may refer to [7].

2.1. Operation Principle

The most common EBIS is the DVS [3], where each pixel is composed of two main
components: a measuring element (such as a photodiode), which continuously captures



Sensors 2023, 23, 9768 3 of 21

the light intensity, and a change detector composed of a logarithmic differentiator circuit
to measure the difference in luminance (logarithm of the intensity value) between two
samples. Whenever this variation crosses a positive (resp. negative) threshold θ in the
comparator circuit, an ON (resp. OFF) event is output with the corresponding polarity.
After that, the pixel is reset and the process is repeated. Thus, a DVS event consists of time,
position (address of the pixel), and polarity (sign of the change) information.

Additional luminance information can be generated by combining a DVS pixel with
an element that measures intensity. One solution is to combine a conventional camera with
Active-Pixel Sensor (APS) pixels with a DVS to form a Dynamic and Active Pixel Vision
Sensor (DAVIS) [14], but the resulting sensor is not fully event-based. Another fully event-
based solution is to combine a DVS with Time to First Spike (TFS) pixels, as proposed in the
Hybrid DVS + TFS Pixel [7] and the Asynchronous Time-based Image Sensor (ATIS) [15].
These sensors work as follows: whenever the DVS circuit outputs an event (i.e., a significant
change has been detected), the TFS circuit starts its integration to measure the current light
intensity. It outputs a second event to indicate the end of the integration. Given these
pairs of event spikes, a Time-to-Digital Converter (TDC) is used to measure the TFS time
integration and to convert it to a digital value representing the intensity. Thus, the TDC
step determines the resolution of the gray levels, and its depth determines the maximal
integration time.

The working principle of a hybrid DVS + TFS pixel is illustrated in Figure 1: Consider
a white square moving towards the right side on a black background, passing in front of
the pixel i. During this scene, the luminance profile of the pixel is similar to a step function,
whenever it crosses the DVS threshold. Then, a DVS event is generated and triggers the
TFS intensity measurement of the current luminance at the pixel i. As the square passes by,
the generated events show the progressive integration of the intensity. The brighter the
measured intensity, the shorter the integration time.

pixel i pixel i

intensity
measurement

change detector

time t0
t0

θ a+θ 
a 

a+2θ 

time tf

trigger

DVS event stream

TFS event stream

change 
events

ON events

3ΔTa 3ΔTa2ΔTa 2ΔTaΔTa ΔTa

OFF events

gray-level
events

time

time

time

luminance of the pixel i

tf

Figure 1. Operation of a hybrid (DVS + TFS) camera system: the change detector triggers the
luminance intensity measurement; two types of event are then produced: change events indicating
the increase/decrease in luminance, and gray-level events representing the intensity value.

This concept of a change detector coupled to an intensity measurement can be ex-
tended to combinations of multiple change detectors and several intensity measurements,
in particular an intensity measurement for each color channel. In this paper, a modelled sen-
sor with three measuring elements, one for each of the red–green–blue (RGB) components
and one sole change detector, is simulated. For the sake of simplicity, the three elements
are assumed to be stacked on top of each other at each pixel, so that the color information
retrieved at that location is grabbed from the same pixel at the same time, which is not the
case for sensors using a Bayer filter array (see Section 7.1). The RGB values are then linearly
combined to obtain the luminance component, which is input to the change detector. The
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color representation in the algorithm is the YCbCr format, which separately represents
luminance and chrominance. The Y channel represents a corrected luminance that mimics
the sensitivity of the human eye, with its specific sensitivity for each primary color. The Cb
and Cr channels represent color values in a dichromatic plane, based on the blue difference
and red difference. The RGB components are converted to the YCbCr format.

The change and intensity events from the DVS and TFS streams are combined into
events of the form: ev = {ex, ey, et, ep, elum, ecb, ecr}, where ex, ey corresponds to the position,
et the timestamp, ep the polarity, and elum, ecb, ecr the components in the YCbCr format.

2.2. Case Study

To leverage the modelled sensor’s capabilities, we make certain assumptions to ensure
accurate estimation of the cluster velocity direction and color, as detailed later. This paper
aims to present the primary estimation approaches in a clear and concise manner. We
limit our use case scope to enhance comprehension, but the proposed methodology can be
modified to alleviate these constraints.

• The camera should be stationary, so that events only depend on the motion in the scene,
not on the camera motion. Otherwise, events can be generated by the background due
to the camera displacement. A pre-processing step can help to distinguish the events
involved in the movement of objects [16].

• The camera point of view should be a top-down view, looking down at the ground, so
that the objects are supposed to be not or slightly deformable. To account for deformation,
further processing of the clusters are required such as cluster fusion [17,18] or probability
distributions that handle occlusions [19].

• The white light source should also be invariant in time and at the top, facing towards
the ground, to avoid shadows outside the objects.

• The color of the objects and the background should be locally uniform (untextured)
and monochromatic. Since events are produced on edges, a textured surface would
produce events across its whole surface, resulting in an inaccurate estimation or
requiring further processing.

The operation principle of the presented sensor is simulated by a custom event simu-
lator, which is introduced in the next section.

3. Event-Based Simulators

In this section, state-of-the-art simulators are presented, as well as our custom event-
based simulator.

3.1. Related Works

The DAVIS simulator [20] is based on an ideal DAVIS camera which, given a virtual
3D scene and the trajectory of a DAVIS camera, generates the corresponding event streams,
intensity, and depth maps. It relies on a rendering software to render images that are used
by the simulator to generate event streams with event interpolation.

The open event camera simulator (ESIM) [21] is an improved version of the previous
simulator, as it is more complete and provides ground truth for camera pose, motion, depth,
and optical flow. In addition, the camera parameters and noise generation can be simulated.

The v2e simulator [22] proposes to generate realistic event streams from conventional
video frames by simulating the behavior of DVS pixels. It integrates a linear-to-logarithm
conversion for intensity frames, as well as temporal noise event addition. An optional frame
interpolation using the Super-SloMo network [23] is included to improve the accuracy,
but the processing time can be very long.

Although both the DAVIS and ESIM simulators are powerful tools as they provide
multiple ground truth information about the observed scene, they mostly attract interest for
moving camera scenarios since they require camera trajectory and prior scene modelization.
However, our case application (stationary camera) cannot be fully exploited with these
two simulators, as they do not provide ground truth for object tracking or object velocity
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estimation. The v2e tool could be used, especially to improve the accuracy of the model for
DVS events. However, these three simulators work with non-colored events, meaning that
the color information needed in our algorithm is discarded and cannot be retrieved. This is
a hindrance, as our algorithm works with both spatio-temporal and color information at
the same time. The Color Event Dataset [8] presents the same problem as the simulators,
as it does not fit the case of the stationary sensor study.

3.2. Custom Event-Based Simulator

As a continuation of the previous work [2], the simulator was extended to include
the TFS pixels. It consists of two parts (see Figure 2): an event stream generator, described
below, and the design under test, in our case an event-by-event clustering algorithm (the
orange block in Figure 2).

Simulator

Difference
to reference

Interpolation

Event
Generation

Event-Based
ClusteringSimulated

objects

Events

Groundtruth
annotation Evaluation

Clusters

Conventionnal
frames

Performance

Figure 2. Overview of the simulator used: an event stream generator (green blocks) followed by the
event-based clustering algorithm to test (orange block).

The event stream results from the translation of a conventional video, i.e., a sequence
of frames. Events are generated by measuring the luminance difference between the current
frame and a reference frame; if this difference exceeds a defined threshold, an event is
generated. The reference frame is then locally updated with the crossed value. This is
necessary to detect slowly changing pixels that require several frames to cross the amount
of the threshold.

Unlike real EBIS, the sampling of the input video is uniform in time (fixed by the
video frame rate), and it is required to apply an interpolation step to approximate the
continuous quantity between frames. As a result, multiple events can be generated from
the same pixel between two video frames if multiple thresholds are crossed meanwhile.
The generated events are composed of the interpolated timestamp of the threshold crossing
and the interpolated YCbCr values of the pixel.

4. Experimental Datasets

Several videos were recorded in order to test the algorithms with more realistic data.
Two of them are presented below and summarized in the Table 1. The recording conditions
are the same as those described in Section 2.2 to ensure proper functioning of the algorithms.

Table 1. Video properties: the object exit indicates whether or not an object leaves the scene during
the scenario.

Video Name Number
of Frames

Frame
Rate

Frame
Resolution

Number of
Events

Number of
Objects

Object
Exit

Pedestrian 277 10 fps 270× 480 80,135 1 Yes

Traffic 291 20 fps 480× 270 277,951 12 Yes
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In the first video, a person with a pink sweatshirt can be seen walking at various
speeds, along the vertical and the horizontal axes, as displayed in Figure 3. Note that the
background has a texture and is not uniform, the person’s direction changes frequently, and
the person is multicolored (as discussed later in the text). This dataset aims to assess velocity
estimation across different trajectories and color estimation against textured backgrounds
and non-uniform objects.

Figure 3. Example of a frame from the Pedestrian case (rotated sideways).

The second video shows a sequence of 12 colored cars moving in two opposite di-
rections along the vertical axis. A frame example can be seen in Figure 4. The speed and
direction of each car are similar (in absolute value). A color class is assigned to each car
from a predefined palette based on the car’s average color (including the colored parts of
the image not belonging to the cars). Table 2 presents the distribution of car classes and
their corresponding color. This dataset is primarily intended for evaluating the estimation
of car velocities within a certain range, and for assessing color classification, particularly
for color shades.

Table 2. Color classes in Traffic (ground truth).

Color Class Red Blue Yellow White Gray Black

Number 1 1 1 5 2 2

Color

Figure 4. Example of a frame from the Traffic case.
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The videos are processed and manually annotated. Each object is defined by a rectangu-
lar bounding box, marked out as a pedestrian or a car, and by its color class. The annotated
information (considered the ground truth) consists of the center of the box (position),
the size, the color (average of the pixels considered to be part of the object), and the color
label of each object in each frame. The ground truth velocity can be retrieved as a vector
between two consecutive positions (centers) of an object.

The video frame rate is adjusted based on the speed of the objects. Interpolation helps
in the modelling of an EBIS for slow-moving objects. However, the frame rate may need
to be adjusted if there are fast-moving objects that travel a significant distance between
successive frames. The ground truth color of each object is obtained through a basic
color segmentation within its respective bounding box. The main colors, along with the
background color, are provided to test the algorithm.

Since there is no simulator or dataset that provides similar events with ground truth
information on velocity and color, the custom event simulator is used to generate color
events for the clustering algorithm.

5. Spatio-Temporal Clustering

Section 3 offers an overview of event-based simulators, along with a model of the
sensor proposed in this work. This section presents the event-by-event clustering algorithm,
which forms the basis of the contributions made in this work.

Clustering consists of grouping data that are similar under one entity, so that data
within the same cluster are more similar to each other than to any other data. In our case,
the purpose is to identify and track objects of interest in the scene. This involves updating
the properties of these objects while filtering out irrelevant clusters that do not correspond
to any object in the scene.

The first step of clustering is to collect similar events under a group called a cluster.
Typically, a cluster is defined by a set of attributes including its size, center, and activity
(which measures the rate of events). Ideally, each cluster corresponds to an object to be
tracked in the scene. However, noise can cause formation of unwanted clusters that need
to be removed.

The second step involves updating the clusters by incorporating the latest scene
information and computing new values for each attribute. Therefore, the tracking data
solely comprise the attributes of each cluster and the information of the last event that
took place.

5.1. Related Works

The event-based clustering technique began with Litzenberger et al.’s [24] event-
by-event clustering algorithm. This technique relies on the mean-shift method, which
iteratively shifts the center towards the maximal density increase to locate the maxima
of a highly dense region. In other words, the mean information of events is extracted.
In this algorithm, individual events, which are points in the spatio-temporal space, are
processed before being discarded due to the iterative nature of the process, leading to the
event-by-event property.

The work of Lagorce et al. [25] and the improvement by Aladem et al. [18] use bivariate
Gaussian distributions to describe the event clusters, and the events are distributed in the
cluster based on the maximum likelihood. Another example of such a clustering algorithm
is the work of Barranco et al. [26] that uses Kalman filters to smoothen trajectories. These
methods require expensive computations for cluster updates; thus, the simpler approach of
Litzenberger et al. [24] is preferred, as well as the modifications proposed by Zhao et al. [17].
However, the primary distinction from previous studies [17,24] is the implementation of
decaying activity that is essential to precisely estimate event rates. Further adjustments
have been made, but they are beyond the scope of this paper.
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5.2. Mean-Shift Principle

For each incoming event, the algorithm searches for the nearest cluster within its
seeking range and then updates it. If the algorithm does not locate any cluster, it initializes
a new one with the information of the event. Consequently, the only data preserved in
memory are a list of all clusters, ordered according to their creation timestamp.

The cluster update is handled with the mean-shift approach. That is, every attribute X
of the cluster is revised using the following formula:

Xn = αXXn−1 + (1− αX) fX(ev) (1)

where n is the timestamp of the current event and n− 1 is the timestamp of the latest event
of the cluster; αX ∈ [0, 1] is the mean-shift parameter for the attribute X; and fX(ev) is the
change brought by the event.

This is a recursive low-pass filter that is non-periodic, since the time difference between
n and n− 1 is not constant.

A single event does not provide enough information to be meaningful, but the ac-
cumulation of many events allows this method to efficiently track objects as clusters, or
extract regions of interest. Periodic filtering of the list of clusters is performed based on the
cluster activity to remove noise and inactive clusters.

Table 3 presents the attributes of a cluster. The center position (i.e., the center of
mass) and the size of the cluster are updated based on the incoming event’s position.
The activity represents the rate of events assigned to the cluster. See also Figure 5 for
a visual representation where the red box represents the cluster, the green box the seek
region, the orange dot the center, and the blue arrow the velocity vector. This summarizes
the implemented algorithm in the details required to understand the contribution; however,
interested readers may refer to [2].

Table 3. Attributes of a cluster.

Attributes Symbolic Representation

Position (center) P = (Px, Py)
Size R = (Rx, Ry)

Activity A

Figure 5. Example of a cluster with its attributes.

The basic clustering algorithm is sufficient for tracking objects and outputting regions
of interest for the purpose of more complex processing. This work proposes the addition of
a velocity attribute and a color attribute, which are estimated using similar methods.
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6. Velocity Estimation

The velocity of the objects can be a helpful attribute to further improve object tracking.
It allows trajectory estimation and motion segmentation. By knowing the velocity magni-
tude and direction of the objects, the tracking performance can be improved by filtering
noise, detecting objects leaving the scene, and tracking motionless objects.

6.1. Related Works and Assumptions

The proposed methods are based on the assumptions made for estimating optical flow.
Since only one motion vector is necessary for tracking an object, the velocity estimation
method described in this section calculates the motion vector of the object’s center.

Classical optical flow methods aim to calculate the motion vectors for many points in
the scene between two consecutive image frames. Specifically, two studies offer distinct
constraints on the optical flow problem and establish the fundamental assumptions for
various methods. The first study is the method of Lucas and Kanade [27], which identifies
the best match between two images by minimizing the matching error for a limited number
of points within a specified area of interest. It operates under the premise that local flow
remains constant in a small neighborhood. The second study is the Horn and Schunck
method [28], which assumes that the global flow is constant and smooth.

These assumptions can be modified to fit event-based systems. Therefore, algo-
rithms designed for the classical framework can also be adjusted to process event data.
In particular, Benosman et al. [29] assume the local optical flow constancy described by
Lucas and Kanade [27] and apply it to a small spatio-temporal neighborhood around the
examined pixel. The missing luminance function is replaced by accumulating events over
time. Brosch et al. [11] noted that this approach may produce inconsistent outcomes due to
approximations in the computations of the gradient, and the potentially low number of
events. Using a consistent second derivative equation, Brosch et al. [11] proposed a further
refinement of the gradient-based method. However, for more accurate flow estimation at
the expense of higher computational costs, Brosch et al. suggest using an event plane in the
spatio-temporal space or filter-based approaches. These methods are closer to biologically
plausible systems.

However, the methods mentioned above rely on event buffering, which represents events
integrated at a high level over a time duration. In Mueggler et al.’s research [30], the authors
proposed a trajectory that updates continuously over time using information from each event.
Similarly, Stoffregen et al. [12] presented a method for optical flow and segmentation, which
uses the projection of events along the trajectory. Both of these methods are more general than
the one presented here, because they also consider ego-motion.

The aforementioned clustering algorithm can incorporate a velocity estimation using
the cluster property. The work of Aladem et al. [18] refers to utilize velocity, with a focus
on angular estimation, when merging clusters that move in the same direction to create a
larger, singular cluster. In this case, the velocity is estimated using the covariance matrix
of the cluster representation. However, this paper does not present a quantitative result
for the estimation error, and only shows the result in simple scenarios. The case study of
Litzenberger et al. [31] is similar to ours and uses a level crossing scheme based on the
distance crossed by the cars. This method relies on the constraints of the application, since
the speed is directly estimated as the time to travel a given 1D distance.

This paper estimates velocity by calculating the motion of the center of mass of the
object during the clustering phase. This estimation is an approximation of optical flow,
since it is only computed for the cluster center. However, this implies that no rotation
or deformation of the object, affecting the position of the center of mass, degrades the
estimation. For this reason, it is assumed that the objects are rigid, even though their shape
may change slightly due to perspective. The motion vector of the center is approximated as
a translation, since the local optical flow is consistent [27]. In other words, it is postulated
that events in the same spatio-temporal neighborhood contribute to the same translational
motion (see [12,29]). Finally, the estimated velocity is the apparent velocity of the center.
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It does not correspond to the real motion of the object. Another function is required to
translate this velocity, depending on the scene and camera setting.

6.2. Algorithms

This paper presents two methods for estimating velocity: the first approach calculates
the change in cluster position at regular time intervals, while the second utilizes the mean-
shift approach to estimate the average motion of the cluster center.

6.2.1. Regular Time Interval Estimation

One of the most intuitive methods is to periodically compute the change in position.
The time period between two estimations is used to assess the velocity using a mean-shift
approach, which also helps to smooth the estimations.

The estimation is defined by the following equation:

V̂RI(t) = αvel,RIV̂RI(t− τ) + (1− αvel,RI)
P(t)− P(t− τ)

τ
(2)

where V̂RI is the estimated velocity at regular estimation instants, αvel,RI is the mean-shift
parameter used to smooth the estimation, P is the position of the center of the cluster, and τ
is the time period between two successive estimation instants.

To ensure proper operation of this method, the time period τ must be sufficiently
long so that enough events occur during each time interval. It should be noted that
macroscopic-level changes are only represented by the accumulation of events. Moreover,
the parameter αvel,RI is required due to the estimation’s high sensitivity to noise. Since these
two parameters together act as a low-pass filter that eliminates noise, the same equations
can be used to determine αvel,RI from τ with appropriate noise characterization.

The velocity estimation can be done in parallel with clustering, analogous to the
filtering. Therefore, V̂RI(t) is a continuous function that can be sampled at any time (for any
τ). Furthermore, just as with the filtering, it is possible to define other types of intervals.
The proposed version employs a time interval, but spatial intervals [24,32] or a fixed
number of events could also be utilized. However, no definitive results are presented in
this version.

This approach provides an accurate and straightforward way to estimate velocity, al-
though convergence can be slow due to the periodic estimation. Nevertheless, when objects
produce sufficient events, the time period can be reduced, accelerating the convergence.

6.2.2. Mean Center Motion (MCM)

A second method is proposed to enhance responsiveness, particularly for high-speed
object tracking. This method relies solely on the position shift generated by each event
within the mean-shift-based clustering.

From (1) we obtain the following:

P̂n = αc P̂n−1 + (1− αc)(ex, ey) (3)

P̂n − P̂n−1 = (αc − 1)P̂n−1 + (1− αc)(ex, ey) (4)

V̂MCM,n = αvel,MCMV̂MCM,n−1 + (1− αvel,MCM)(P̂n − P̂n−1)γ (5)

V̂MCM,n = αvel,MCMV̂MCM,n−1 + (1− αvel,MCM)[(αc − 1)P̂n−1 + (1− αc)(ex, ey)]γ (6)

where V̂MCM,n is the estimated velocity at the timestamp of event n, αvel,MCM is the velocity
mean-shift parameter, Pn is the center of the cluster at the timestamp of event n, and γ is a
proportionality factor for the magnitude of the estimation.

In contrast to the previous method, this estimation is processed for each event, result-
ing in a more responsive estimation in time, but at the cost of more frequent computations.
The term (Pn − Pn−1) denotes the shift in the position of a single cluster caused by an event.
Accordingly, the previous position is also stored in memory.
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The parameter γ is a proportionality factor that scales the estimated velocity to the
apparent object velocity (see (5)). It depends on the amount of events generated; therefore,
the speed, the contour, and the size of the objects are the main factors influencing the value
of γ. Furthermore, since the estimation is not calculated at regular time intervals, γ replaces
the time interval. The parameter γ serves as an operating point for a given scene. In our
applications, it is set such that the estimated velocities are comparable to the ground truth
velocities. In the cases of multiple objects or missing ground truth, the operating point is
set according to the mean velocity or expected velocity in the scene. If the speed of objects
has a great variance, multiple operating points can be defined.

To further improve the results of this method, it is recommended to replace the
parameter γ with a function that depends on the attributes of each cluster, which would
improve the model’s ability to account for the amount of generated events. However, this
requires more processing as it may require an estimation of the contour, similar to [12]. This
approach provides better responsiveness in estimates at the cost of increased sensitivity to
noise and parameter tuning.

6.3. Experiments and Results

The results of velocity estimation for the various experiments and other applications
of velocity estimation are presented and analyzed in this section.

The velocity estimation is evaluated using the root mean squared error (RMSE),
which compares the estimated and true velocity vectors (see Section 4). Furthermore,
a normalized value is given alongside using the mean ground truth value (normalized
RMSE). Additionally, the mean angular error is determined using cosine similarity between
the estimation and the corresponding ground truth. Both evaluations are performed
at every filtering step (50–75 events), resulting in more evaluation points than frames.
All velocity magnitudes are expressed in pixel per frame time, while angular errors are
expressed in degrees. To optimize the parameters, a brief video segment was utilized and
the hyperopt framework [33] was employed on this segment to optimize the parameters.
Table 4 presents the optimized parameters for each scenario from 100 parameter sets,
with the evaluation results provided in Table 5. Figure 6 shows box plots of the squared
error in estimation. The orange line represents the median, and the whiskers encompass
3 quartiles of the error, without displaying outliers.

Table 4. Parameters for velocity estimation.

Parameters Pedestrian Traffic

MCM αvel,MS 1− (4.34× 10−4) 1− (8.3× 10−5)
γ 152 698

Interval αvel,Int 0.89 0.86
τ [s] 0.11 0.15

Table 5. Measurements of velocity estimation errors.

Measures Pedestrian Traffic

Ground Truth Range [−1.0, 3.7]× [−7.6, 5.7] [−5.8, 0.09]× [−7, 8.2]

MCM
RMSE [pixel/Tf rame] 1.498 2.6

NRMSE 18.1% 24.5%
Angular 17.2° 15.1°

Interval
RMSE [pixel/Tf rame] 1.08 2.1

NRMSE 13.1% 19.8%
Angular 18.6° 17.4°
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Figure 6. Box plot for velocity error. (a) Pedestrian; (b) Traffic.

Figure 7 displays the estimated velocity in pixel/Tf rame for Pedestrian, using green for
the mean center motion method and yellow for the regular interval method. The y-axis
indicates the estimated velocity in pixel/Tf rame, where Tf rame denotes the period between
two frames. The x-axis represents the number of evaluations conducted. The object leaving
and re-entering the scene later on is indicated by the red vertical line.

The optimization procedure results in αvel parameters that are near 1, since many
events are required to obtain accurate estimation of the motion. The choice of these
parameters presents a trade-off between accuracy and responsiveness, depending on the
estimation frequency. Figure 7 illustrates this point, as both estimations have a delay
compared to the ground truth. The regular estimation time interval τ falls within the range
of 1 Tf rame to 3 Tf rame. This means that at maximum, the equivalent of three frames are
required to accurately estimate the velocity from the events.

Figure 7. Tracking of one person in the Pedestrian case: (top) velocity y-component; (bottom) velocity
x-component; ground truth is shown in blue; MCM estimation is shown in green; and regular interval
estimation is shown in yellow. The red line indicates the object’s exit and re-entrance.

In general, the MCM approach presents a better responsiveness than the regular
interval method, since it assesses the velocity more frequently than the latter; however, it is
more sensitive to noise. The MCM method may have a higher error, but it depends mainly
on the velocity scaling. On the other hand, the MCM method shows a slightly smaller
angular error. This is reflected in the box plots, since the variance in error is lower for the
interval method.

For both Pedestrian and Traffic, we conclude that the primary source of error is the object’s
varying shape, especially upon scene entrance and exit. As a result, the methods converge only
when objects are entirely within the scene (see steps 740–820 for the x component in Figure 7).
This results in the upper whisker being far from the median in Figure 6.



Sensors 2023, 23, 9768 13 of 21

Furthermore, the chosen error metric is sensitive to outliers that occur at the entrance
before convergence.

In Traffic, the wider range of velocities leads to increased errors. However, straight
trajectories result in fewer angular errors. In certain instances, cars move so swiftly that they
only appear briefly in a few frames. In these scenarios, the simulator’s event generation is
less precise compared to a real EBIS, leading to decreased accuracy in the methods.

In the experiments, the proportionality factor γ is constant and global. However,
a better outcome can be obtained by replacing this constant gamma with a function that
considers the scene and object characteristics to reconstruct the objects’ actual velocity in the
scene. Fulfilling this goal necessitates exact estimation of each object’s properties alongside
the camera position and angle. Moreover, each object’s characteristics are required to carry
out precise estimation of the object velocity. One potential cause for inaccurate estimation is
the conversion from videos (frame-based) that do not capture precise temporal information.

Applications with Velocity

In the following section, a few applications of the estimated velocity are presented.
The first application involves filtering noise clusters based on their velocity. Since the

estimated velocity of noise is approximately zero, the noise pattern can be easily filtered
out using one of the previously introduced methods. To achieve this, a velocity threshold is
set below the expected minimum velocity value. This threshold is then compared to the
estimated velocity of each cluster to determine whether the cluster is considered noise or
not. This approach improves tracking performance by allowing the activity threshold to
be lowered, resulting in more consistent tracking without introducing additional noise.
In other words, reducing the recall–precision tradeoff by lowering the activity threshold
can be achieved by using velocity filtering.

Moreover, the velocity direction can be used to detect when objects are about to leave
the scene, allowing the removal of the corresponding clusters (see Figure 8). To begin with,
the algorithm checks if the cluster is in the outer region of the scene, in other words, if it
is close to one of the four borders. If the velocity direction points towards the borders in
such a scenario, it is possible that the cluster is about to exit the scene. The final verification
ensures that the velocity magnitude is sufficient and that the angle at which it exits is small
enough (close to being perpendicular to the border).

Figure 8. Example of a cluster about to exit the field of view of the sensor.

To reduce the number of clusters that need to be evaluated, it is suggested to launch
a filtering step before predicting the object exit, as this prediction adds a few more steps
with conditional verifications to the clustering algorithm. As previously discussed, ob-
ject entrance and exit cause discontinuities that generate non-negligible errors in velocity
estimation. Therefore, detecting object exit based on the velocity direction of clusters
increases the performance of the clustering algorithm. Similarly, an object’s entrance could
be detected with appropriate modifications of the algorithm.

Both methods offer solutions to estimate cluster velocity with minimal extra computa-
tions. As we constrain ourselves to low-power, low-calculation applications, the outcomes
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are less accurate compared to the values cited in [12,30]. Neither [18] nor [24] report the
angular error, but we consider an angular error of less than 20° sufficient for exit detection
and the estimation of rough trajectory. Moreover, errors are primarily attributed to out-
liers in the error distribution. Despite the trade-off between accuracy and responsiveness,
the methods perform well in multiple scenarios. Furthermore, velocity can improve the
clustering process by filtering noise and detecting objects that exit the scene.

7. Color Estimation

A significant difference between EBIS and conventional image sensors is the difficulty
in extracting color information from the event stream. Color and texture are inherent traits
of mammalian vision, and are useful for complex tasks such as object recognition, where
color is essential for distinguishing objects. Thus, retrieving color from the event stream
enables color segmentation of the scene and object classification based on the color.

7.1. Related Works and Assumptions

Dedicated sensors are required to extract color from EBIS. Thus, many works have
aimed to enrich the classical DVS [3] event stream, which only quantifies the variation of lu-
minance changes. Modifications to account for color changes, such as cDVS [34], implement
events to indicate the increase or decrease in the measured average wavelength. Proposed
by Moeys et al. [35], the SDAVIS is established on a DAVIS sensor with RGBW color filters to
recover color change information. For each color, the DVS process is performed separately,
so the sensor outputs color change events.

Moreover, a few works have proposed dichromatic or trichromatic color event sen-
sors [36] based on stacked junctions. These sensors are not built around a Bayer filter or
any other color mosaic because the photodiodes are stacked on top of each other. Thus,
each pixel corresponds to a specific position and each component of the color is measured
at that exact position.

Besides these new sensors, algorithms have been proposed to process event infor-
mation for color reconstruction. Bajestani et al. [37] attempted to reconstruct color from
monochromatic events and structured light. The SDAVIS [35] reconstructs pixel color from
RGBW color filters. Marcireau et al. [13] have developed their own color sensor using ATIS
sensors with beam splitters for color separation. One ATIS operates independently for
each color channel. Therefore, the resulting events contain color information that updates
whenever one of the three RGB sensors is triggered.

This color information can be utilized for color segmentation and object classification.
The authors of [13] proposed an algorithm to track uniformly colored objects, which is
similar to our case study. To estimate the color of an event and the object it belongs to,
they use bivariate normal probability distributions. Extracting the color signature of each
tracked object requires prior color calibration.

The present work has two objectives: first, to accurately reconstruct the color from
the event stream by using event information, and second, to classify the colors of objects
within a predefined palette.

7.2. Algorithm

This section presents a method for estimating the color of an object directly from the
color events. A discretization of the colors in all incoming events based on the object’s
color signatures is employed. This prior knowledge results in improved accuracy. Then,
the current limitations of this method are discussed.

7.2.1. Direct Estimation

Each event’s color corresponds to a 3D point in the YCbCr coordinate space. Since
the events occur mainly on the contour of an object, a sensor’s pixel samples part of the
background and part of the object. Hence, an event color ranges linearly from the scene
background color to the object color. This means that the color estimation of the cluster
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is relative to the scene background. Considering a locally uniform and monochromatic
background, the color of the background can be extracted from the noise events in the
scene. That is, events that are not due to an object moving in the scene.

The estimated color is a mixture of the background and the object color.

YMS = pYobj + (1− p)YBG (7)

YMS ∝ Yobj (8)

YMS ∝ YBG (9)

At the arrival of each event, the following formulas are applied for each color com-
ponent of the cluster. They are based on a mean-shift estimation of the color and apply a
correction to compensate for part of the background.

ŶMS,n = αlumŶMS,n−1 + (1− αlum)elum (10)

Ŷobj,n =
ŶMS,n −YBG

p
+ YBG (11)

where ŶMS,n is the cluster’s luminance, estimated at the arrival of the event n using the
mean-shift approach; elum is the luminance of the event n; p ∈ [0, 1] is a correction factor to
compensate for the part of the BG; Ŷobj,n is the estimated luminance value of the object; and
YBG is the luminance of the background.

The first Equation (10) calculates the influence of the new event on the estimated
luminance, and the second Equation (11) corrects the influence of the background using
the parameter p of (7). Ideally, p should be close to 1, but in most applications it is lower,
depending on the contour of objects and uniformity of colors.

However, this method has limitations in certain contexts. Firstly, the calculated color
is dependent on the background’s color, as the mixture is only an approximation. This
technique is accurate when the background is uniform and monochromatic, analogous
to the Traffic case study and the research conducted by Marcireau et al. [13]. Secondly,
the computed color is susceptible to noise and the object specularity. Each event impacts
the estimation, introducing imprecision into the outcomes due to variance. While this
technique may not differentiate between shades for monochromatic objects, it is sufficient
for distinguishing colors.

7.2.2. Color Class

To alleviate this problem, and because color estimation is a challenging problem, we
assume that each color can be assigned to a predefined color class. The palette of color
classes used for the experiments is composed of colors extracted from the original video.
This palette is considered prior knowledge.

By discretizing the colors, the goal is not to estimate the exact color of the objects,
but rather to obtain the distribution of the color classes in the clusters, i.e., the relative
proportion of each class. For each event assigned to a cluster, the corresponding color class
of the event is selected and updated in the color distribution of the cluster, which counts
the number of events of each color class.

This method is beneficial because it represents the various colors of the object in
the distribution, and also considers the proportion of background events. This enables
the tracking of complex objects with multiple colors in a complex background with the
condition of the foreground and background colors being distinguishable. No prior scene-
specific information is necessary besides defining the color palette. In fact, the color classes
can be estimated using a different instance of clustering, known as a dynamic color palette.
This results in a dynamic clustering of event colors that generates the principal color classes.
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7.3. Experiments and Results

To estimate color, it is represented in the YCbCr format using 8-bit integers ranging
from 0 to 255. The RMSE assesses the difference between the estimated color and the
annotated object color. Separate RMSE values are calculated for each component, that is,
the mean luminance error and the mean chrominance error. Again, a normalized error is
given using the mean true value. The single object of Pedestrian is classified among a palette
of blue, red, pink, green, black, gray colors in a total of eight classes. The classification
accuracy is determined by dividing the number of correct evaluations by the total number
of evaluations performed during the simulation. Again, the parameters are optimized
on a video segment using hyperopt [33]. The optimized parameters of each scenario are
presented in Table 6, and the estimation results are shown in Table 7.

Table 6. Parameters for color estimation.

Parameters Pedestrian Traffic

αlum 1− (9.2× 10−5) 0.999
αchro 0.9986 0.992

p 0.33 1

Table 7. Measurements of color estimation errors.

Measures Pedestrian Traffic

Position RMSE [pix] 3.74 3.49

YCbCr RMSE 35.2 25.9
NRMSE 12.6% 11%

Luminance RMSE 19.85 25.7
NRMSE 12.3% 17.5%

Chrominance RMSE 29.1 3.4
NRMSE 12.7% 2%

Classification 93.75%/100% 79.2%/92.3%

The values of the parameters α indicate the rate of change for both luminance and
chrominance. Higher values correspond to a lesser degree of variation in the value. The rea-
son the parameter p is low for Pedestrian is the object’s changing contour, multiple colors,
and textures.

As mentioned above, estimating the object’s color directly from the event’s color gives
bad results in the case of multicolored objects. Figure 9 illustrates this problem. It shows
the color distribution of events during the experiment. On the right, the tracked object is
represented, and on the left, there is a scatter plot where each point corresponds to the
color of an event. One can recognize the color of the sweatshirt (pink), the color of the
background (shades of gray), and the color of the skin (shades of beige). Furthermore,
the range of pink extends between the background color and the expected object color.
From this scatter, the algorithm estimates one spatio-temporal mean color that does not
accurately represent the color distribution. This non-uniform object color induces a bias for
the chrominance (see Figure 10). In the case of Traffic, the luminance varies a lot in the scene,
but the chrominance can be estimated with a small error (2%). Our conclusion is that the
reflective surfaces of the cars in the scene make it hard to precisely estimate the luminance.
These two problems are reflected in the box plots in Figure 11; the chrominance errors are
comparable to the luminance errors for Pedestrian (see Figure 11a), and chrominance errors
do not contribute much to the color errors in Traffic (see Figure 11b). Notice that the errors
are normalized differently for luminance and chrominance.
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(a) (b)
Figure 9. Color scattering for Pedestrian: (a) scatter plot, with each point corresponding to an event;
(b) exemplary content of the cluster.

Figure 10. Color estimation for Pedestrian: (top) luminance, (middle) chrominance Cb,
(bottom) chrominance Cr; the estimation is shown in green, and the ground truth in blue. The red
line indicates the object’s exit and re-entrance.
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Figure 11. Box plots for color errors: (a) Pedestrian; (b) Traffic.

Generally, chrominance temporal variations tend to be minimal during experiments,
as the object’s color remains relatively stable. However, luminance variations tend to
be more substantial due to differences in the amount of light that shines on the objects.
Therefore, the classification accuracy is generally high, particularly in the Pedestrian dataset,
due to consistent lighting conditions and fewer reflective surfaces. However, when it comes
to Traffic, accurately classifying shades of gray between white and black poses a challenge,
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even with correct classification of colored vehicles. The classification directly from the
event stream yields an accuracy of 79.2%, while the use of the color palette results in a
92.3% accuracy. It is possible for gray to be misclassified as white or black based on shining
light, given a 17% error in luminance.

In contrast to Marcireau et al. [13], we believe that spatio-temporal clustering achieves
better tracking performance (see the position error in both scenarios), particularly in
applications with non-uniform, textured, and multicolored backgrounds and objects. Thus,
we advocate for the integration of color estimation in the cluster. However, in both works,
the predefined palette should be replaced with dynamic color clustering for a wider range
of applications that require less prior knowledge of the scene.

This section’s concludes with a few remarks. To achieve accurate estimation, the color
information regarding the event needs to be corrected. Using a color signature or a cluster
color provides more reliable results than using the color of a single event. Moreover,
the color distribution in a cluster significantly improves classification performance. We
conclude that the estimation method works well enough to classify objects of different
colors, but gray shades cannot be accurately distinguished due to the imprecision of the
luminance estimation (due to reflective surfaces in the scene). In addition, the use of color
signatures can improve the accuracy of the method at the cost of more computations.

8. Conclusions

The polarity and intensity information retrievable with the state-of-the-art EBIS is
neglected by most event-based image sensor algorithms. This work suggests using this
enriched event stream to estimate object velocity and color for object tracking purposes.
To accomplish this, a custom simulator was built by integrating a model of an advanced
event-based image sensor. The constructed simulator allows testing of clustering and
estimation algorithms using conventional videos and validating on annotated datasets.
The first scenario follows a pedestrian walking on a textured background, and the second
scenario shows two lanes of differently colored driving cars. Results are presented for these
scenarios as they are comprehensible and annotated. Nevertheless, comparable outcomes
were measured on other test cases.

Two practical methods for estimating velocity are proposed: the first computes veloc-
ity periodically, resulting in a more stable estimation but slower convergence; the second
approach achieves faster convergence by updating velocity at each new event, but increases
the sensitivity to noise. Both methods involve a trade-off between accuracy and respon-
siveness through their parameters. For the case studied, both methods provide satisfactory
results. Moreover, this estimation can be utilized to enhance clustering by filtering noise
based on velocity or predicting objects leaving the scene. However, the methods are demon-
strated for apparent motion and would require an extra translation step to estimate real
motion. The algorithm’s complexity is deliberately constrained, but its performance could
be significantly improved by taking the object contour into consideration.

The direct color estimation from the event stream produces satisfactory results for the
accurate estimation of object color. Nevertheless, when the luminance estimation is impre-
cise, this estimation confronts difficulties in classifying tones of the same
color—for example, due to reflective surfaces. An improved description of cluster colors
has been presented in the form of a discrete color distribution, which enhances the accuracy
at the expense of more computations. In this instance, a predetermined color palette is
employed for the color distribution, but another layer of clustering could be utilized to
extract dynamic color signatures from the event stream.

Both velocity and color estimation are defined by tunable global parameters that could
be replaced by dedicated parameters associated to each cluster and automatically tuned for
each object and scenario.

The aim of this paper is to showcase the effectiveness of straightforward techniques in
estimating features like velocity and color from the data stream of an event-based image
sensor. Our findings suggest that the information from intensity measurement and multiple
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color channels is valuable in extracting complex features from the scene without high-level
representation of the events’ information. Potential applications encompass optical flow
estimation, motion segmentation, color segmentation, and object recognition, among others.
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Abbreviations
The following abbreviations are used in this manuscript:

EBIS Event-based image sensor
DVS Dynamic vision sensor
ATIS Asynchronous time-based image sensor
DAVIS Dynamic and active pixel vision sensor
APS Active pixel sensor
TFS Time to first spike
TDC Time to digital converter
RGB Red–green–blue
MCM Mean center motion
RMSE Root-mean-square error
MSE Mean squared error
MS Mean-shift
GT Ground truth
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