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R is a highly flexible, interpreted programming language and environment for statistical and graphical data analysis. Nowadays, there is no doubt that it is the software par excellence in Applied Econometrics courses for any level, for theoretical and applied subjects alike. The goal of this paper is helping to apply econometric models using the R software. We will cover its benefits, show how to use the packages and will make interesting recommendations for estimating models using R, according to my experience .

Introduction

The software R is a free, open-source programming language specifically designed for statistical programming. It is a great language to use for econometrics, data science, and statistics, as it combines the best parts of both 'pure' programming languages like Julia with the best parts of pre-built statistical software like Stata.

The software R is available freely on the CRAN site, to the address at: cran.rproject.org. This logic is comparable to Matlab in certain respects, but it can be improved more frequently in the statistic domain. The number of servers on the development of a series of advanced functions available to all users of R. These functions are regrouped in package that are available to download the project R website: http://www.r-project .org/.

The R installation program can be downloaded free of charge from http://www.rproject.org. Because R is a programming language and not just an econometrics program, most of the functions we will be interested in are available through libraries (sometimes called packages) obtained from the R website. To obtain a library that does not come with the standard installation follow the CRAN link on the above website. Under contrib you will find is a list of compressed libraries ready for download. Click on the one you need and save it somewhere you can find it later. If you are using a gui, start R and click install package from local directory under the package menu. Then select the file that you downloaded. Now the package will be available for use in the future

The multiple linear regression

An econometric model can be defined as a formalized presentation of a phenomenon in the form of equations whose variables are economic quantities. The objective of a model is to represent the most striking features of a reality that it seeks to stylize. The construction of a model consists in determining a functional form between the variables. Let's the observations {(y i , x 1i , ..., x ki ), i = 1 . . . n}

y i = x 1i β 1 + ... + x ki β k + ε i ,
Writing the model in matrix form:

Y (n,1) = X (n,k) β (k,1) + ε (n,1) ,
The estimation of the specification (1) requires the formulation of a set of hypotheses concerning the random term (ε i ):

H 1 : E(ε i ) = 0
the effects of factors other than xi are offset.

H 2 : V (ε i ) = σ 2
This is a homoskedasticity hypothesis.

H 3 : Cov(ε i , ε j ) = 0 ∀i = j
the errors are independent.

Ordinary least squares (OLS) estimation of β is a value β that minimizes the sum of residual squares:

SCR = Y -Xβ 2 = (Y -Xβ) (Y -Xβ).
The resolution of this optimization program makes it possible to obtain the following estimator:

β = (X X) -1 X Y.
The statistical significance test of the parameter β k consists of checking whether the explanatory variables X have a significant multiplier effect on the explained variable Y . This is a test with the following hypothesis :

H 0 : β k = 0 H 1 : β k = 0 We reject H 0 when |t c | > t (n-p) 1-α 2 with t c = βk √ V ( βk )
is the estimate of the test statistic from the sample used and t

(n-k) 1-α 2
being the value tabled.

For the case of multiple linear regression: the regression of y by x 1 and x 2 is written:

lm(y ∼ x 1 + x 2 )
where y , x 1 and x 1 are variables, vectors for regression, x can also be a factor.

It should be noted that by default, models always include the intersection with the origin.

If we want to make a regression of type y = a.x and not y = a.x + b, we must explicitly remove the intersection in the formula:

lm(y ∼ x -1)
.

An illustrative example

A driver has noted his fuel consumption for various journeys. We propose to calculate the relationship that expresses the consumption according to the distance by considering that the consumption is proportional to the mileage and that there is a consumption just because of the start. cs=c(0. The residuals are normally distributed. We can concluded that increasing distance by one km induces a consumption increase of 0.067 litre.

The logistic regression

The objective of logistic regression is the same as that of linear regression ; it involves allows to determine the effects of the X variables on the categorical dependent variable (binaries) Y. In medicine, it will, for example, make it possible to find the factors that characterize a group of sick subjects in relation to healthy subjects. In the banking sector, it will detect risk groups when subscribing to a loan. Since the data of the variable to be explained y i are dichotomous, then Y follows the Bernoulli's law of parameter mu i = P (y i = 1). To model this probability we assume that the decision is based on the value taken by an unobservable variable y * i called latent variable, according to the following scheme:

On observe y i = 1 lorsque y * i ≥ 0 On observe y i = 0 lorsque y * i < 0 In fact, we do not have information on the latent variable y * i that allows the individual to make the decision (choice 1 or 0). To make the model estimable, it is assumed that this latent variable linearly depends on a number of explanatory variables.

y * i = x i β + ε i
It is easy to deduce the link between the linear predictor βx i and the mean µ i = E(y i /x i ). We can then write:

µ i = E(y i /x i ) = P (y i = 1/x i ) = P (y i ≥ 0/x i ) = P (x i β + ε i ≥ 0/x i ) = P (ε i ≤ x i β/x i ) = F (x i β)
The distribution function F then depends on the hypothesis made on the disturbance distribution ε i . The distribution function associated with the logistic law is written in the following form:

µ i = Λ(x i β) = 1 1 + exp -(x i β)
We define the logit functiong : [0, 1] → R is a reciprocal function of the distribution function of the logistic law Λ(x i β) such as:

g(µ i ) = log µ i 1 -µ i = x i β
The likelihood associated with the sample y = (y 1 , . . . , y N ), is written in the following form :

L(y, β ) = N i=1 µ y i i (1 -µ i ) 1-y i = N i=1 [F (x i β)] y i [1 -F (x i β)] 1-y i
We then deduce the log-likelihood as follows:

log L(y, β) = N i=1 y i log[F (x i β)] + (1 -y i ) log(1 -F [x i β)]
All that remains is to specify the distribution function F (.) To obtain the functional form of the likelihood. So, in the case of the logit model, ∀x i β ∈ R , we have :

F (x i β) = e x i β 1 + e xβ i .
Deriving the log likelihood by β vector of dimension (k; 1), we obtain a derivative vector denoted G(β) called gradient vector :

G(β) = ∂ log L(y, β) ∂β = N i=1 y i f (x i β) F (x i β) x i + (y i -1) f (x i β) 1 -F (x i β) x i
Where f (.) Is the density function associated with F (.) And where x i denotes the transpose of the vector xi of dimension (1; k). By simplifying the expression of the gradient, we obtain :

G(β) = N i=1 y i -F (x i β) f (x i β) F (x i β) (1 -F (x i β)) x i
In a logistic model, the maximum likelihood estimator of the parameter vector is defined by the system resolution of K nonlinear equations in β. We apply the Newton-Raphson algorithm, calculating the first and second derivatives of the log-likelihood L(y, β). The recursive formula to calculate β (m+1) as a function of β (m) is:

β (m+1) = β (m) -H(β) -1 × G(β) With H(β) = ∂ 2 log L(y,β) ∂β∂β
If we want to test the significance of the model, ie the hypothesis H 0 : β 2 = β 3 = ... = β k = 0 the likelihood ratio test can be applied.

LR = -2(log L( β * M V ) -logL( βMV )) where log L( β * M V ) = y i log F ( β 1 ) + (1 -y i )log (1 -F ( β 1 )
) and logL( βMV ) is the value of the log L function when the parameters β k = 0. Under the hypothesis H 0 , p i = F (β 1 ) = P the probability p i is identical for all individuals and is given by the proportion P d individuals for whom we observe y i = 1 If the LR statistic is less than χ 2 α (k -1) we accept the hypothesis H 0

An illustrative example

We have data for 8 people with cancer and 8 people in good health and the number of cigarettes smoked by each of them and also their sex.

The logistic regression model is used to determine the effect of smoking cigarettes (Num-Cig) and the nature by sex (sex) on the probability of having cancer.The Diagnostic is a binary variable that takes the value 1 for individuals who have cancer, and the value 0 who are in good health.

Diagnostic=c(0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,1) sex=c(2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1)
NumCig =c(10,13,12,12,7,8,12,17,32,37,28,34,32,37,30,28)

We will use the glm command to estimate the regression models. mod1=glm(cancer ∼NumCig+sexe,family=binomial) summary (mod1) exp(cbind("OR"=coef(mod1),confint(mod1))) Using R, we obtained the results in Table 2: The coefficient of NumCig is equal to 0.18, so that one additional unit of cigarette causes a change of about 0.18 unit to be affected by cancer. 

P (Y = y/µ i ) = e -µ i µ y i y! (y = 0, 1, 2, ..) where ln(µ i ) = β 1 X 1i + β 2 X 2i + ... + β k X ki
The logarithm of the likelihood function is

ln[L(y, β)] = n i=1 ln[µ(x i β)] - n i=1 µ(x i β) - n i=1 ln(y i !)
The likelihood equations can be formed by taking the derivatives with respect to each regression coefficient and setting the result to zero. This leads to a set of nonlinear equations that admit no closed form solution. Thus, an iterative algorithm must be used to find the set of regression coefficients that maximize the log-likelihood. Using the iterative weighted least squares method, one solution can be found in five or six iterations The overall performance of the model is measured by two chi-square tests. These are Pearson statistics

P p = n i=1 (y i -μi ) 2 μi ]
et la statistique de la déviance,

D p = n i=1 [y i ln( y i μi ) -(y i -μi )
These two statistics are approximately chi-square distributed with n -k degrees of freedom. When a test is rejected, there is a significant lack of fit. When a test is not rejected, there is no evidence of lack of fit.

An illustrative example

We have data for 100 students affected by an infectious disease and we count number of days from the start of the epidemic.

Students: number of students affected by an infectious disease Days: number of days counted from the start of the epidemic.

model1 =glm(Students ∼ Days,family= poisson) summary(model1) Using R, we obtained the results in Table 3 The negative coefficient for days indicates that as the number of days diagnosed increases, the average number of students with the disease decreases. This coefficient is very significant (p <2e-16). We also see that zero deviance is greater than residual deviance, so we have excess dispersion. This means that there is additional variance not accounted for by the model or the error structure. Excess dispersion is a problem if the conditional variance is greater than the conditional mean.

The time series

Econometrics makes use of time series data, cross-sectional data and panel data. While microeconomic analyses generally refer to a cross section or a panel of companies, households or employees, macroeconomic data such as gross domestic product, private consumption or investment are frequently available as time series. Econometric data are illustrated here secondly using time series data. A time series is a succession of observations over time representing an economic phenomenon (price, sales ...).

The Box and Jenkins method is a systematic tool that allows to determine the best ARMA type model describing the stochastic process of an observed series or transformation stationary of it ; to estimate this model ; to extrapolate the values of the series. The Box and Jenkins methodology essentially consists of five steps :

Step 1 : Transformation of data to stabilize the variance (log,sqrt, ...) and data differentiation to store them.

Step 2 : Visualize ACFs and empirical PACFs to identify appropriate p and q parameters.

Step 3 : Estimate the parameters of the selected model (s).

Step 4 : Diagnosis and tests model adequacy.

Step 5 : Forecasting : future values through the chosen model.

An illustrative example

We have time series data on the producer price index (ppi The Dickey Fuller test shows that the original variable is not stationary, but that the difference variable is stationary. We must therefore use the d = 1 differences in the ARIMA models layout(matrix We know that the variable is not stationary, so we need to use the differentiated variable ARIMA (p, 1, q). But here we also include models with the initial variable ARIMA (p, 0, q). E The coefficient on the delayed dependent variable is close to 1 indicating non-stationarity. To select a model to use, we examine the significance of the coefficients and the lowest AIC or BIC. Usually, there are some models that work the same way, you have to try some Models and decide which one to use. The recommendation is to go with the simplest model. ARIMA (1,1,1) is a good choice based on low AIC and BIC. ARIMA (2,1,3) is also a good choice based on the importance of offsets.

mydata.arima = arima(d.Y, order = c(2,1,3)) mydata.pred1 = predict(mydata.arima, n.ahead=10) plot (d.Y) lines(mydata.pred1$pred, col="blue") lines(mydata.pred1$pred+2*mydata.pred1$se, col="red") lines(mydata.pred1$pred-2*mydata.pred1$se, col="red")

The VAR model

The VAR process can be defined as a set of n variables, y it for i = 1, 2, . . . , n, observed in timet = 1, 2, . . . , T each of these variables is linearly related to own past as well as the immediate past and the distant past of p periods of all other variables.

For the case of two variables n = 2 and a single delay p = 1, the formalization corresponds to the following system :

y 1t = a 11 y 1t-1 + a 12 y 2t-1 + u 1t y 2t = a 21 y 1t-1 + a 22 y 2t-1 + u 2t
u 1t ,u 1t :error terms a ij : are the coefficients to be estimated from the available observationsy 1t , y 2t for t = 1, 2, . . . , T Using the following matrix notations:

Y t = y 1,t y 2,t , A = a 11 a 12 a 21 a 22 u t = u 1,t u 2,t
We get vector equality

Y t = AY t-1 + u t
The generalization of the VAR representation has k variables and p delays written in the following matrix form: 

Y t = A 0 + A 1 Y t-1 + A 2 Y t-2 + • • • + A p Y t-p + v t Y t =      y 1,t y 2,t . . . y k,t      ; A 0 =      a 0 1 a 0 2 . . . a 0 k      ; A p =     
a p k1 a p k2 a p kk      ; v t =      v 1,t v 2,t . . . v k,t     
The parameters of the VAR process can only be estimated on stationary time series.

Y t = A 0 + A 1 Y t-1 + • • • + A p Y t-p + v t
Where v t is a white noise of variance-covariance matrix Ω. The likelihood conditionally to all the past values of the process is written:

L (y t , . . . , y t-1 ) = T t=1 L(y t |y t-1 )
Where y t-1 denotes the memory of the process y t up to the date t -1 inclusive. The likelihood of the VAR (p) process is then written:

L (y t , . . . , y t-1 ) = T t-1 1 √ 2π N √ detΩ × exp - 1 2 (Y t -A 1 Y t-1 -• • • -A p Y t-p )Ω -1 (Y t -A 1 Y t-1 -• • • -A p Y t-p )
The log-likelihood of the process VAR (p), is written thus:

logL (y 1 , . . . , y T ) = - T N 2 log2π - T 2 logΩ - 1 2 T t=1 ε t Ω -1 ε t
The maximization of this log-likelihood then makes it possible to obtain the estimates of the parameters A 1 , ..., A p and the variance-covariance matrix Ω.

The representation order selection procedure consists in estimating all the VAR models for an order ranging from 0 to h (h being the maximum delay allowed by the economic theory or by the available data). The functions AIC (p) and SC (p) are calculated as follows: The delay p that minimizes the AIC or SC criteria is retained.

AIC(p) = Ln[detΣ e ] + 2k

An illustrative example

For illustration, we are trying to model, in the VAR form, the (y 1t ) request and the (y 2t ) price of a product. The data is composed of quarterly over 18 years. library("vars") tab1=read.table("modeleVAR.txt",h=T) attach(tab1) layout(matrix(1:2, nrow = 1, ncol = 2)) plot.ts( Y1) plot.ts( Y2)

We will use the Akaike and Schwarz criteria for offsets h ranging from 0 to 4. We must use the VARselect command and retain the model with the lowest AIC and SC criteria. y=cbind(Y1,Y2) VARselect(y, lag.max = 4, type = "both")

We ask to estimate the parameters of the model, we have to use the command VAR p1 = VAR(y, p = 1,type = "const") summary(p1)

The estimated VAR model is written: y 1t = 0, 00676.y 1t-1 -0, 6125.y 2t-1 + 17, 129 + e 1t y 2t = -0, 1752.y 1t-1 + 0, 2992.y 2t-1 -12, 863 + e 2t The choice of the direction of impact is therefore very important and conditions the values obtained. We can observe that the effect of an innovation fades over time. This characterizes a stationary VAR process. Once the initial shocks are calculated, we compute the impulse response functions, the shocks then reverberate on the two processes by damping, sign of the stationarity of the VAR process. The analysis of the impulse response is based on the moving average representation of a VAR (p) process. It is used to study the dynamic interactions between endogenous variables. The model in this form will measure the impact on the present values of a variation of innovations or shocks v 1t and v 2t . Let the V AR(p) representation be stationary

Y t = A 0 + A 1 Y t-1 + A 2 Y t-2 + • • • + A p Y t-p + v t Its V M A(∞) representation is given by: Y t = µ + v t + M 1 v t-1 + M 2 v t-2 + =µ + ∞ i=0 M i v t-i With µ = (I -A 1 -A 2 -• • • -A p ) -1 and M i = min(p,i) j=1
A j M i-j i = 1, 2, . . . and M 0 = I irf.p1 =irf(p1, impulse = "Y1", response = c("Y1"), boot = T) irf.p1 plot(irf.p1) irf.p2 = irf(p1, impulse = "Y1", response = "Y2", boot = T) plot(irf.p2) irf.p3 =irf(p1, impulse = "Y2", response = "Y1", boot = T) plot(irf.p3) irf.p4= irf(p1, impulse = "Y2", response = "Y2", boot = T) plot(irf.p4)

The vector error correction model

Let us first examine the case of a VAR (2) process with k variables in matrix form:

Y t = A 0 + A 1 Y t-1 + A 2 Y t-2 +
with: Y t : dimension vector (k, 1) consisting of k variables (y 1t , y 2t .., Y kt ), A 0 : dimension vector (k, 1), A p : dimension matrix (k, k). The VECM representation is valid either Critical values are 34.91 for a threshold of 5% and 41.07 for a threshold of 1%; we therefore reject the hypothesis H0, The rank of the matrix is not 0 (the series are not stationary). Rank of the matrix π equal 1 (r = 1), ie H0: r = 1 against H1: r> 1 λ trace = -28.0.297 + 0.150 = 12.51 Critical values are 19.96 for a threshold of 5% and 24.60 for a threshold of 1%; we can not reject the hypothesis H0 ni at 5% nor at 1%, we consider that the rank of the matrix π is equal to 1. We therefore accept the hypothesis of a cointegrating relationship.

∆Y t = A 0 + A 2 ∆Y t-1 + (A 1 + A 2 -I)Y t-1 +
Third step: estimation of the vector model with error correction The two preceding specifications are estimated with or without a constant in the data and therefore, in both cases, with a single cointegration relation between y 1,t , y 2,t and y 3,t . The first specification is rejected because the three constants of the three equations are not significantly different from 0.

vecm.r1 = cajorls(sjf.vecm1, r = 1) vecm.r1 lm(formula = substitute(form1), data = data.mat)

The final estimate of the VECM on 28 observations is therefore: ∆y 1,t = -0.08∆y 1,t-1 + 0.32∆y 2,t-1 + 0.54∆Y 3,t-1 -0.85.(y 1,t-1 -0.87y 2,t-1 -0.54y 3,t-1 -12.92) ∆y 2,t = 0.2∆y 1,t-1 -0.62∆y 2,t-1 -0.64∆Y 3,t-1 +0.32.(y 1,t-1 -0.87y 2,t-1 -0.54y 3,t-1 -12.92) ∆y 3,t = 0.2∆y 1,t-1 -0.25∆y 2,t-1 -0.25∆Y 3,t-1 + 0.0089(y 1,t-1 -0.87y 2,t-1 -0.54y 

  (1:4, nrow = 2, ncol = 2)) acf(Y) pacf(Y) acf(d.Y) pacf(d.Y) For the original variable, the ACF is a slow decay function (indicating non-stationarity) and the PACF cuts at offset 1 or 2. For the differentiated variable, ACF breaks off and PACF cuts off after lag 1 -use AR (1) ? We will use the arima command to estimate the time series. library(tseries) # ARIMA(1,1,0) arima(d.Y, order = c(1,0,0)) # ARIMA(0,1,1) arima(d.Y, order = c(0,0,1)) # ARIMA(1,1,1) arima(d.Y, order = c(1,0,1)) # ARIMA(1,1,3) arima(d.Y, order = c(1,0,3)) # ARIMA(2,1,3) arima(d.Y, order = c(2,0,3)) Using R, we obtained the results in

  2 p n SC(p) = Ln[detΣ e ] + k 2 pLn(n) n with: k = number of system variables; n = number of observations; p = number of delays; Σ e = covariance variance matrix of model residuals.

r <= 1 |

 1 12.51 17.85 19.96 24.60 r = 0 | 38.51 32.00 34.91 41.07 Let's calculate the Johansen statistic:λ trace = -n k i=r+1 Ln(1 -λ i )pour r = 0 λ trace = -n.(Ln(1 -λ 1 ) + Ln(1 -λ 2 ) + Ln(1 -λ 3 ))λ trace = -28.0.928 + 0.297 + 0.150 = 38.50

  

  

  The signs of the two predictors NumCig has a positive influence on cancer. In converting these logits to odds ratios we find that OR (NumCig) = 1.19798 so an increase in the number of cigarettes leads to an increase in the probability of getting cancer by 19.79% with a 95% confidence interval for the odds ratio of cigarettes are [1.0512.1.5269].

		Estimate Std. Error z value Pr(> |z|)
	(Intercept)	-7.8040	4.3121	-1.81	0.0703
	NumCig	0.1806	0.0839	2.15	0.0313
	sexe	2.5584	1.8668	1.37	0.1705
	show that				

4 The Poisson regression

Poisson regression can be used to model Poisson-distributed counts based on quantitative or qualitative explanatory variables. The Poisson regression is similar to the regular multiple regression except that the dependent variable (Y) is an observed count variable that follows the Poisson distribution. Thus, the possible values of Y are the non-negative integers: 0, 1, 2, 3, and so on. It is assumed that large quantities are rare. In the Poisson regression, we assume that the Poisson incidence rate µ is determined by a set of k regression variables (the X's). The regression coefficients β 1 , β 2 , ..., β k are unknown parameters, estimated from a set of data. The basic Poisson regression model of an observation i is written:

  The original variable does not appear stationary. The differentiated variable appears stationary (although the variance increases).

	•	y t	y t	∆y t
	const	0.503	0.586	0.206
	y t-1	-0.0006	-0.0084	
				-0.445
	t		0.005	
	Test stat -0.26	-0.793	-6.86
	p value	0.927	0.96	0.001
	Conclusion is not sta-	trend is not	stationary
		tionary	stationary	
	attach(mydata)			
	Y = ppi			
	d.Y = diff(Y)			
	summary(Y)			
	summary(d.Y)			
	plot(t,Y)			
	plot(t[-1], d.Y)			

). Data are quarterly from 1960 to 2002. mydata= read.table("serie.txt",header=T)

Table 4

 4 

	:

  3,t-1 -12.92) 8 Conclusions R is a powerful and well-written open-source statistical software package. The examples provided in this paper merely scratch the surface of its extensive capabilities. We encourage readers to browse the extensive documentation and to visit the web to see examples of what R can do. All code and output files used in this paper can be obtained from the authors.

This result can be generalized to a representation VAR (p) with k variables in matrix form:

This model can be written in first differences in two ways:

or according to Y t-1 :

The matrix B i being functions of the matrix A i and π = p i=1 (A i -I) If the rank of the pi matrix (noted r) is (1 < r < k -1), then there are r cointegration relationships and the ECM representation is valid:

The Cointegration relationship tests:

Step 1 : calculating two residues u t and v t We perform two regressions: First regression:

We have the same explanatory variables, only the specification of the block of the variable to be explained is modified. u t and v t are the matrices of the residuals of dimension (k, n) with k = number of variables, n = number of observations.

Step 2 : calculation of the matrix allowing the calculation of the eigenvalues We compute four matrices of the variances-covariances of dimension (k, k) from the residuals u t and v t .

Then we extract the k eigenvalues of the matrix M of dimension k, k calculated as follows:

From these eigenvalues, we compute a statistic

with n = number of observations, λ i = i th eigenvalue of the matrix M, k = number of variables, r = rank of the matrix. This Johansen test works by excluding alternative hypotheses: Rank of the matrix π equal 0 (r = 0), H 0 : r = 0 against H 1 : r> 0; if H 0 is refused, we proceed to the next test (if λ trace < to the critical value read in the table, we reject H 0 ); Rank of the matrix π equal 1 (r = 1), that is H 0 : r = 1 against H 1 : r> 1; if H 0 is refused, we proceed to the next test; Rank of the matrix π equal 2 (r = 2), H 0 : r = 2 against H 1 r> 2; if H 0 is refused, proceed to the next test.

If, after refusing the different H 0 assumptions at the end of the procedure,

An illustrative example

Let three variables y 1,t , y 2,t and y 3,t be observed over 30 periods. We ask to test a possible cointegration and to estimate a VAR model or an error-correcting vector model if applicable.

First step: determination of the number of delays of the representation VAR in level The calculation of the AIC and SC information criteria for delays ranging from 1 to 3 -we do not go further because of the small number of observations -does not pose a problem. y = cbind (Y1, Y2, Y3) VARselect (y, lag.max = 3) Existence of a constant in the long term relation and not in the data (no deterministic trend), library(urca) sjf.vecm1 = ca.jo(y, type = "trace", ecdet ="const") summary(sjf.vecm1) The three eigenvalues of the matrix π, estimated by the maximum of likelihood, are equal to λ 1 = 0, 605; λ 2 = 0, 257; λ 3 = 0.139. Second step Rank of the matrix π equals 0 (r = 0), H0: r = 0 against H1: r> 0.