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Abstract: Chiral resolution is a technique of choice, making it possible to obtain asymmetric and
enantiomerically pure compounds from a racemic mixture. This study investigated the behavior
of vancomycin when used as a chiral additive in high-performance liquid chromatography (HPLC)
to separate enantiomers of nonsteroidal anti-inflammatory drugs (NSAIDs), including ketoprofen,
ibuprofen, flurbiprofen, and naproxen enantiomeric impurities. We compared two achiral stationary
phases (C18 and NH2) to assess the impact of mobile phase composition and stationary phase on the
vancomycin retention time in the racemic resolution of drug enantiomers. Our results demonstrated
the successful enantioseparation of all drugs using vancomycin in the mobile phase (phosphate
buffer 0.05 M/2-propanol, 50/50) with an NH2 column. This enhanced separation on the NH2

column resulted from the chromatography system’s efficiency and vancomycin dimers’ stereoselective
interaction on the NH2 surface. This study underscores the importance of stationary phase selection
in the chiral resolution of NSAIDs with vancomycin as a chiral additive. It offers valuable insights
for future research and development of NSAID chiral separation methods, highlighting potential
vancomycin applications in this context.

Keywords: achiral stationary phases; enantiomeric separations; profen drugs; vancomycin chiral
mobile phase additive
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1. Introduction

Enantiomer separation holds significant importance, particularly within the pharma-
ceutical and environmental domains, due to the prevalence of chiral compounds such as
drugs and pesticides [1]. In some cases, only one of the enantiomers has a therapeutic
effect, while the other may exert opposed pharmacological activities or cause unwanted
side effects [2]. Hence, there is considerable interest in developing novel enantioseparation
techniques with enhanced efficiency and sensitivity. These methods are sought after to
achieve the stereoselective synthesis of enantiomers and ensure enantiomeric purity con-
trol, thereby preventing therapeutic disasters similar to the thalidomide incident of the
1960s [3,4]. Chromatography stands as one of the most effective techniques for enantiomer
separation, widely employed in both academic and industrial settings for analytical and
preparative objectives [5].

Practically, direct enantiomeric resolution is only feasible in chromatographic systems
that contain an appropriate chiral selector. This selector can be a chiral stationary phase
or be covalently bonded to the surface of the column packing material (linkage) or coated
onto the surface of the chromatographic support [6,7]. Enantioselective chromatography
can be achieved on achiral chromatographic columns by incorporating a specific chiral
selector such as a chiral mobile phase or a chiral mobile phase additive (CMPA) [8]. It is
also possible to use combinations of chiral selectors in the mobile phase in conjunction with
chiral stationary phases for this purpose [9,10].

In CMPA-based methods, the chiral selectors dissolved in the mobile phase interact
with the chiral analytes, forming transient diastereomeric complexes [11]. The separation
of enantiomers in this process is driven by differences in the formation kinetics or in the
relative stability of these transient diastereomeric complexes, as well as by variations in
their partitioning between the mobile phase and the stationary phase [12]. HPLC methods
utilizing CMPAs offer several advantages, including flexibility, the availability of a wide
range of available additives, and lower costs compared to those employing equivalent
chiral stationary phases (CSPs) [13].

Reversed-phase high-performance liquid chromatography (RP-HPLC) is a highly
prevalent analytical technique, accounting for approximately 70–80% of all analytical sepa-
rations. Due to its widespread use, considerable interest has been devoted to understanding
fundamental aspects of this technique. One such area that has garnered significant atten-
tion is mobile-phase optimization [14]. The typical approach for predicting the optimal
solvent composition for a specific separation problem involves chromatographing a set
of solutes using various combinations of mobile phases and expressing the retention time
through quantitative parameters and interactions [15,16]. Vancomycin has emerged as the
most widely employed glycopeptide among the various chiral selectors used for chiral
separation, whether as a stationary phase or as a chiral additive in the mobile phase [17,18].
Armstrong et al. were pioneers in introducing vancomycin for enantioseparation [19]. This
powerful chiral selector has been successfully utilized to resolve over 100 racemates, in-
cluding nonsteroidal anti-inflammatory drugs [20], antineoplastic drugs [1], pesticides [21],
and numerous N-derivatized amino acids [22]. Its versatility and effectiveness make it a
valuable tool in the field of enantioselective chromatography.

The unique structural features of vancomycin (Figure 1) make it an excellent chiral
selector in enantioseparations [17]. Its basket-like structure provides a hydrophobic environ-
ment that can accommodate the analytes, and steric effects and hydrophobic–hydrophobic
interactions can significantly contribute to the enantioselectivity of the separation [17,23].
The presence of the two sugar moieties also adds to the chiral recognition properties of
vancomycin [20]. Moreover, the π-acidic nature of the aromatic rings with two chlorine
substituents and ionic interactions involving the carboxyl and amino groups play a crucial
role in chiral recognition. These structural features allow vancomycin to selectively interact
with enantiomers, leading to the efficient separation of chiral compounds [17,21,23]. All
these polar and ionizable groups have a structure proximate to the ring structure and can
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establish strong hydrogen bonding and electrostatic interactions, respectively, with solute
molecules [24–26].
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Figure 1. Vancomycin structure.

The use of chiral selectors combined with achiral columns is a widely accepted method
for resolving chiral mixtures. The selectivity of the separation is dependent on the chro-
matographic conditions of both the stationary and the mobile phases. The effectiveness of
the method can vary due to differences in the column or the mobile phase. As a result, it is
crucial to determine the optimal chromatographic conditions for applying a chiral selector
such as a CMPA.

This study focused on investigating the behavior of vancomycin +under different
chromatographic conditions and determining the best conditions for its use as a chiral
selector. The key objective was to identify the experimental settings that would result in
the longest vancomycin retention time on the stationary phase, which would lead to the
optimal chromatographic conditions. To achieve a high chiral resolution of profen NSAID
drugs, the effect of buffer pH on vancomycin elution using achiral stationary phases such
as C18 and NH2 columns and the effect of organic solvent on vancomycin elution were
investigated. The comparison between C18 and NH2 columns has never been investigated
and constitutes the originality of the present research. Finally, the selectivity obtained was
evaluated by comparing the results with previous studies using the same samples and
chiral selector. Overall, this study provides a comprehensive description of vancomycin
behavior under different chromatographic conditions and identifies the optimal conditions
for using it as a chiral selector to improve the chiral resolution of profen NSAID drugs.
This study provides an alternative strategy to asymmetric synthesis, making it possible to
take advantage of the asymmetric nature of vancomycin in order to resolve the symmetry
present in racemic mixtures.
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2. Materials and Methods
2.1. Materials

The chromatographic experiments were conducted using the Shimadzu HPLC System,
manufactured in Tokyo, Japan. The system comprises various components, including an
LC-10AT vp pump, an SCL-10A vp system controller, an SPD-10AV vp UV/VIS detector,
an FCV-10AL low-pressure gradient unit, and a GT-104 degasser. To facilitate data collec-
tion and integration, a workstation equipped with Empower 2 software (Version 2.6.06)
was employed.

The HPLC columns used in this study for reversed-phase RP-HPLC were a C18
column (LiChrosorb® RP-18, 250 mm × 4.6 mm, 5 µm particle size) and an NH2 column
(LiChrospher® 100 NH2, 250 mm × 4.6 mm, 5 µm particle size), purchased from Merck
KGaA (Darmstadt, Germany).

The vancomycin reference standard was procured from Sigma Aldrich, based in
St. Louis, MO, USA. The solvents employed for HPLC, namely, acetonitrile (ACN), methanol
(MeOH), and 2-propanol (2-Pro), were also purchased from Sigma Aldrich in St. Louis,
MO, USA. Additionally, analytical reagent-grade potassium hydroxide (KOH), potassium
dihydrogen phosphate (KH2PO4), and phosphoric acid (H3PO4) were acquired from the
same supplier, Sigma Aldrich in St. Louis, MO, USA.

The water used for the preparation of all the mobile phases was purified with a Milli-Q
water purification system (Millipore, Billerica, MA, USA).

All the studied racemic profen NSAIDs, namely, ketoprofen, ibuprofen, flurbiprofen,
and naproxen enantiomeric impurities, were purchased from Sigma-Aldrich (St. Louis, MO,
USA). All substances were injected as 1.0 mg/mL methanol solutions in a 10 µL injection
volume. The chemical structures of the analytes are shown in Figure 2.

2.2. Liquid Chromatography Method

The mobile phases utilized in the experiment consisted of a combination of different
compounds and solvents, including phosphate buffer solution (PBS) 0.05 M, acetonitrile
(ACN), methanol (MeOH), 2-propanol (2-Pro), and the free vancomycin chiral selector.
These mobile phases were prepared at different pH and with different concentrations of
vancomycin, using a 50/50 (v/v) mixture of PBS and organic modifier. To prepare the
mobile phases, vancomycin was dissolved in pure buffer, and the appropriate amount of
solvent was then added. Before use, the eluents were sonicated for a minimum of 15 min.

The 0.05 M PBS solution was prepared by dissolving 6.80 g of potassium dihydrogen
phosphate (KH2PO4) in 1000 mL of distilled water, and then the pH of the final solution
(pH 4.5) was adjusted to pH 4.0 using phosphoric acid. Using phosphate buffer as the
mobile phase (polar solvent), it was determined how the pH affected the elution of van-
comycin by the evaluation of the retention times at different pH values of the buffer varying
from 4.0 to 6.5 in steps of 0.5 units. The same method as for the PBS pH 4.0 solution was
followed to prepare 0.05 M PBS solutions with pH values higher than 4.5 (5.0, 5.5, 6.0, and
6.5), except that the pH was adjusted using potassium hydroxide 0.1 M.

In the chromatographic analysis conducted after incorporating organic solvents (ACN,
MeOH, and 2-Pro) into the PBS mobile phase, the impact of the organic solvents was
examined. The mobile phase was filtered through a 0.45 µm Whatman filter (Sigma-
Aldrich, St. Louis, MO, USA) and then sonicated for 1 min before being finally used at a
flow rate of 0.8 mL/min.
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3. Results and Discussion

Vancomycin was chosen as the mobile phase additive, while two achiral columns,
a LiChrosorb C18 RP-18 column and a LiChrospher NH2 column, both with different
chemically bonded chains, were evaluated for the enantioseparation of profen NSAIDs.
Therefore, the impact of the stationary phase structure on the retention and enantiomeric
separation of profen NSAIDs, as well as the impact of the buffer pH on vancomycin
elution and retention time and the effect of the organic compound in the mobile phase on
vancomycin elution were studied.

3.1. Effect of the Buffer pH on Vancomycin Elution

The elution behavior of vancomycin is significantly influenced by the pH of the mobile
phase. The pH of the buffer used in the mobile phase plays a crucial role in determining
the charge state of vancomycin, which, in turn, affects its elution time and peak shape.

Maintaining a precise pH control is particularly important when choosing chromato-
graphic conditions for reversed-phase chromatography. This control governs the relative
concentrations of protonated and unprotonated species [27]. The distribution between the
non-polar stationary phase and the polar mobile phase directly impacts the retention times
of compounds.

Phosphate buffers are widely preferred and extensively used due to their advantages,
such as high purity, cost-effectiveness, and the ability to produce excellent chromatographic



Symmetry 2023, 15, 2154 6 of 21

results [28]. Additionally, these buffers can function optimally within useful pH ranges,
which makes them a popular choice in analytical applications.

Vancomycin is an amphoteric (polybasic) molecule with charged amino, carboxyl, and
phenol groups. For the ionization function of vancomycin, the estimated pKa constant
values were calculated using Marvin Sketch software (version 20.11). The pKa values of the
ionizable groups in vancomycin are reported in Figure 3. The tautomerization constants
of various species and their concentration ratios can be calculated to determine the pKa
values for various functional groups.
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Figure 3. The different pKa values of the ionizable groups in vancomycin.

Vancomycin can change from a cation to an anion by altering the pH because of its
macro-constant value. In the studied pH range (from pH 4.0 to pH 7.0), acid–base equilib-
rium can be observed, where vancomycin becomes charged as a result of the ionization
of the vancosamine amino group, the side chain amino group, and the carboxyl group
(Figure 4). At a low pH, the dissociation of the carboxyl group does not take place, and
vancomycin ionization decreases (Figure 4a), while it increases, reaching its maximum,
at pH 6.0 (Figure 4b). Furthermore, vancomycin acquires two positive charges and one
negative charge, due to carboxylate, starting from pH 6.0, and phenolate groups appear in
multiple overlapping stages (Figure 4c). In a strongly basic solution (pH 12.0), vancomycin
bears four negative charges represented by three phenolate groups and one carboxylate
group (Figure 4d), as opposed to a strong acid solution (pH 2.0), where vancomycin bears
two positive charges represented by the vancosamine amino group and the side chain
amino group of an amino acid residue [29].
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3.2. Effect of the pH on the Retention Time of Vancomycin

In high-performance liquid chromatography (HPLC), the retention time of vancomycin
can be affected by the pH of the mobile phase. Vancomycin is classified as a polar compound
and, at neutral pH, carries a net positive charge. Typically, when analyzing vancomycin, a
reversed-phase mode is employed, where a nonpolar stationary phase is used, and a polar
mobile phase is utilized to elute the compound [30]. This combination of stationary and
mobile phases allows for the effective separation and elution of vancomycin during the
chromatographic process.

The retention time of vancomycin is directly related to the strength of the interactions
between the vancomycin molecule and the stationary phase, as well as the mobile phase.
At low pH (acidic conditions), vancomycin is more protonated, which increases its overall
polarity. This increased polarity leads to a stronger interaction with the polar stationary phase,
and as a result, the retention time of vancomycin is longer. Conversely, at high pH (basic
conditions), vancomycin is less protonated, which decreases its overall polarity [29]. This
leads to weaker interactions with the stationary phase, and as a result, the retention time of
vancomycin becomes shorter. Therefore, pH plays a critical role in controlling the retention
time of vancomycin in HPLC. By adjusting the pH of the mobile phase, the retention time of
vancomycin can be controlled and optimized for a particular analytical method [31,32].

By increasing vancomycin retention time on the stationary phase through appropriate
chromatographic conditions, the activated sites can interact with the analyte and establish
stronger interactions with the mobile phase [33].

According to different stationary phases, the vancomycin retention time varied with the
buffer pH (Figure 5). It was found that as the buffer pH increased, the vancomycin retention
time increased, reaching the max value at pH 5.5 with the octadecyl column and at pH 6.0
with the amino column. Above the buffer pH of 6.0, the vancomycin retention time decreased.
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The relative hydrophobicity of vancomycin species at a specific pH has an impact
on retention overall. The outcome is the result of hydrogen bonding and van der Waals
interactions with ionizable vancomycin, which produce the most ionized species between
pH 5.5 and pH 6.0. Furthermore, the retention times on octadecyl columns are much longer
than those on amino columns. Even though the surface of C18 is more hydrophobic than
that of the amino column, vancomycin can bind to the amino column through hydrogen
bonds and Van der Waals interactions [16].

3.3. Effect of the Mobile Phase on Vancomycin Elution

The impact of the concentration of the organic modifier is a significant aspect in
reversed-phase liquid chromatography (RPLC), because optimizing the selectivity of this
method often involves adjusting the mobile phase composition by adding organic solvents.
Apart from the concentration, the choice of the organic modifier holds importance. It has
been observed that using different organic modifiers can alter the retention mechanism.
The organic modifiers weaken hydrogen bonding interactions and aid in the desorption
of polypeptides from the column surface [34,35]. By carefully selecting and adjusting the
organic modifier, scientists can fine-tune the chromatographic separation of the compounds
of interest and achieve better resolution and elution.

After optimizing the pH for achieving maximum vancomycin retention, this research
focused on examining the impact of the organic solvent added to the mobile phase on the
retention time of vancomycin. In reversed-phase high-performance liquid chromatography
(RP-HPLC), three organic solvents, namely, acetonitrile, methanol, and 2-propanol, are
commonly used due to their excellent optical transparency at the detection wavelengths
required for peptide and protein analysis [36].

Table 1 presents the results we obtained, showcasing the effect of the nature of the
organic solvent on vancomycin retention time. This investigation helps in understanding
how different organic solvents can influence the retention behavior of vancomycin in a
chromatographic system, providing valuable insights for method optimization and for
achieving the desired separation performance.

Table 1. Effect of the organic phase nature on vancomycin elution.

Mobile Phase Composition
Retention Time

in Amino Column
(min)

Retention Time
in Octadecyl Column (min)

PBS 0.05 M pH 6.0 5.57 6.22

PBS 0.05 M pH 6.0/ACN (50/50) 5.60 3.06

PBS 0.05 M pH 6.0/MeOH (50/50) 7.95 4.05

PBS0.05 M pH 6.0/2-Pro (50/50) 10.70 3.82

According to the data, the influence of the organic solvent differed significantly de-
pending on whether we employed the amino or the octadecyl column. Indeed, the retention
time of vancomycin was longer on the C18 column when methanol was used than when
acetonitrile was used. Because methanol is more polar than acetonitrile, the hydroxyl group
of methanol can participate in hydrogen bonding.

The retention time of vancomycin on the C18 column was shorter when 2-propanol
was used instead of methanol. This was because the solvents’ polarities differ and because
2-propanol includes donor and acceptor hydrogen sites in its chemical structure.

On the NH2 column, the organic modifier increased the vancomycin retention time
because the organic solvent solubilized the NH2 groups on the surface of the amino column
and in the vancomycin side chain. The solubilization of these groups increased hydrogen
bonding and van der Waals interactions [32]

Compared to methanol and acetonitrile, 2-propanol determined an increase in the
vancomycin retention time. The higher viscosity and lower polarity of 2-propanol are
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thought to be the cause of this variation. Additionally, the hydrophobicity of 2-propanol is
higher than that of methanol, which explains the longer retention time for the NH2 system
containing 2-propanol, compared to that for the RP-18 system.

3.4. Effect of the Stationary Phase on the Vancomycin Retention Time

The effect of the stationary phase type on the vancomycin retention efficiency was
examined using two different columns packed with C18 and NH2 stationary phases. The
obtained chromatograms are shown in Figure 6. In terms of peak separation efficiency, it is
evident that, when using the ligand-exchange chromatography technique, the retention
time of vancomycin on the NH2 column (t = 10.81 min) was superior to that on the C18
column (t = 3.70 min). These findings suggest that enantioseparation depends on the
kind of stationary phase used, although both stationary phases we used are achiral and
present the same interaction characteristics when coming into contact with target species
for elution [7]. Unfortunately, the non-selective retention of uncomplexed vancomycin on
the C18 phase significantly contributed to the observed inefficient separation process [37].
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Figure 6. The chromatogram of vancomycin elution from RP-18 and NH2 stationary phases. (a) C18
column (LiChrosorb® RP-18, 250 mm × 4.6 mm, 5 µm particle size), (b) NH2 column (LiChrospher®

100 NH2, 250 mm × 4.6 mm, 5 µm particle size); mobile-phase composition: 50:50 (v/v) pH 6.0
phosphate buffer 0.05 M/2-propanol.

The retention mechanism on the C18 surface column could involve van der Waals
interactions between vancomycin and the C18 alkyl chain caused by London, Keesom,
or Debye forces, as well as hydrogen bonding interactions between a vancomycin donor
molecule and residual silanols.

On the NH2 surface column, in addition to Van der Waals interactions and hydrogen
bonds, electrostatic interactions were established between the functional groups present in
vancomycin and the surface of the stationary phase when the carboxyl group COOH of the
vancomycin side chain was deprotonated, leading to the formation of the negative RCOO−

ion, and the amino group of the column was protonated, forming the positive NH3
+ ion,

under the considered experimental conditions.
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Moreover, the retention time is related to the total interfacial surface of an RP packing
and is based on a hydrophobic association between the solute and the hydrophobic ab-
sorbent on the surface. The vancomycin retention time on a reversed-phase (RP) packing is
explained by Horvath’s solvophobic theory of interactions [16,33–38], which are classified
into three types.

Firstly, vancomycin molecules interact through Van der Waals forces, which encom-
pass London, Keesom, or Debye forces, when they come into contact with each other.
Additionally, within the vancomycin molecule, electrostatic intramolecular interactions
occur between charged amino acids in the side chain, while intermolecular interactions
take place between two charged vancomycin molecules. On the other hand, hydrogen
bonding occurs between acceptor and donor groups within the glycopeptide molecule.

Secondly, two types of interactions can occur between vancomycin and the mobile
phase buffer solution. The dissolution of vancomycin in the buffer solution results in a
negative free energy change, involving Van der Waals and electrostatic interactions. The
energy associated with Van der Waals interactions is roughly proportional to the molecular
surface area of vancomycin, while the electrostatic forces depend on the dielectric constant
of the phosphate buffer and the dipole moment of vancomycin [39]. Finally, vancomycin
can interact with the stationary phase, while most of the molecules are exposed on the
mobile phase and only one part of vancomycin (the side chain) is in contact with the
reversed phase [37].

3.5. Enantioselective Separations of Profen NSAIDs

According to the obtained results in the first part of this study, the 2-propanol/buffer
0.05 M pH 6.0 (50:50 by volume) mixture was chosen as the ideal mobile phase for the
addition of vancomycin, and the achiral NH2 column was chosen as the stationary phase,
since it showed higher retention. These findings suggest that polar or ionic interactions
contribute to the retention mechanism, but hydrophobic interactions dominate in the
reverse-phase separation mode.

The impact of varying the vancomycin concentration in the mobile phase, from 0 to
2 mM, on the retention of profen NSAIDs on the NH2 column was investigated. The results
obtained from these experiments are summarized and compared in Table 2.

Remarkable improvements in enantioselectivity were observed upon the addition
of vancomycin. Elevating the vancomycin concentration resulted in increased retention,
which proved highly beneficial for enantiomer discrimination. These results support those
obtained in our previous research on ketoprofen where the concentration of vancomycin
was set at 2 mM, which provided the reproducible values of the retention times t1 and t2
used in this present study [20].

Both selectivity and resolution of the tested molecules exhibited enhancement with
the increasing vancomycin concentration. Figure 7 graphically illustrates the variations in
enantiomer resolution and selectivity as vancomycin was added. Additionally, as indicated
in Table 2, there was a simultaneous increase in selectivity and resolution with the rise in
the CMPA concentration.

The best resolution in the separation of the ibuprofen enantiomers was obtained using
2 mM vancomycin in the mobile phase (Figure 8a). This result was due to the dimerization
of vancomycin as a consequence of its high concentration, which promoted hydrophobic
interactions in its basket-like structure [5,40,41].
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Table 2. Influence of vancomycin concentration in the mobile phase on the retention time of profen
drugs at a flow rate of 0.8 mL/min. The initial mobile phase consisted of pH 6.0 phosphate buffer
(0.05 M)/2-propanol (50/50); t1 and t2 represent the retention times of the drug enantiomers.

Profen Drugs Molarity of Vancomycin
(mM) Retention Time (min)

Ibuprofen

0 4.420

0.5
t1 = 4.530

t2 = 4.881

1.0
t1 = 4.325

t2 = 4.854

1.5
t1 = 4.216

t2 = 4.924

2.0
t1 = 4.152

t2 = 5.075

Flurbiprofen

0 3.854

0.5
t1 = 4.215

t2 = 4.882

1.0
t1 = 4.621

t2 = 4.958

1.5
t1 = 4.401

t2 = 5.274

2.0
t1 = 4.406

t2 = 5.281

Ketoprofen

0 4.605

0.5
t1 = 5.134

t2 = 5.477

1.0
t1 = 5.358

t2 = 6.874

1.5
t1 = 6.217

t2 = 10.584

2.0
t1 = 6.879

t2 = 14.130

Naproxen

0 3.080

0.5
t1 = 1.211

t2 = 3.154

1.0
t1 = 1.325

t2 = 3.885

1.5
t1 = 1.889

t2 = 4.251

2.0
t1 = 2.867

t2 = 5.308
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(d) Naproxen.
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The chromatograms resulting from the separation of racemic NSAIDs, including
ketoprofen, ibuprofen, and flurbiprofen, are displayed in Figure 8. The use of low con-
centrations of vancomycin as a chiral selector was found to improve the enantiomeric
resolution of these profen drugs. The best resolution for the separation of ibuprofen enan-
tiomers was achieved using 2 mM vancomycin in the mobile phase, as shown in Figure 8a.
The obtained results can be explained by vancomycin dimerization stimulated by high
vancomycin concentrations, which intensified the hydrophobic interactions within the
vancomycin molecule [5,40,41]. Previous studies obtained a selectivity of up to 1.74 for
ibuprofen enantiomers when using vancomycin in chiral stationary phases, but with a
low resolution, which was also observed when using vancomycin as an additive in the
mobile phase [17,42,43]. However, in this study, a selectivity of 1.33 and a high resolution
of 3.17 were achieved using 2 mM vancomycin as a CMPA in phosphate buffer 0.05 M/2-
propanol (50/50) in the reversed-phase mode, with the achiral NH2 column serving as the
stationary phase.

To separate the flurbiprofen enantiomers, we successfully used 1.5 mM vancomycin
in the mobile phase, which induced vancomycin dimerization (Figure 8b). When 2 mM
vancomycin was added to the mobile phase, we were able to achieve a selectivity of 1.23
and a resolution of 2.29 for flurbiprofen. These results are comparable to those obtained by
Tesarova et al., who used 3 mM vancomycin with a C8 achiral column [44], and are superior
to those obtained when vancomycin was used as a chiral column [42]. The addition of the
chiral selector increased the retention time of flurbiprofen compared to when the chiral
selector was not added to the mobile phase [45]. The observed difference in retention times
is attributable to the interactions between the vancomycin chiral selector, the stationary
phase, and flurbiprofen [18,46,47].

As the concentration of vancomycin in the mobile phase increased, the chiral resolution
and selectivity of the ketoprofen racemate also increased [20,48]. On an achiral NH2 column,
ketoprofen was separated with a good selectivity of 2.17 and a short retention time at a
concentration of 2 mM vancomycin (Figure 8c). We started the resolution of ketoprofen
using 0.5 mM vancomycin as a CMPA, which yielded a selectivity of 2.17 and a resolution
of 4.78. This result is similar to the findings of Bouchair et al. [43], who used vancomycin
as a chiral column and obtained a selectivity of 2.02 and a resolution of 3.62. In addition,
this result is superior to those obtained by Guo et al., who used the same selector at a
concentration of 3 mM as a CMPA and the C18 column and obtained a selectivity of 1.20
and resolution of 1.95 [49].

The use of an amino column as the stationary phase and of a mobile phase consisting
of propanol/phosphate buffer (pH 6.0, 0.05 M) (50:50, v/v) with vancomycin as a chiral
selector was found to be optimal for identifying the enantiomeric impurities of S-naproxen
(Figure 9). This result was attributed to the establishment of various interactions between
vancomycin and naproxen, such as hydrogen bonding and electrostatic and Van der Waals
interactions [50,51]. The testing of the chiral purity of S-naproxen under these chromato-
graphic conditions resulted in a good selectivity of 2.15 and a high resolution of 2.5. Similar
results were obtained in the optical purity test of S-naproxen using vancomycin as a chiral
column, while no previous studies using vancomycin as a CMPA are available [50–52].

The effect of vancomycin concentration on resolution and selectivity in the racemic
separation of profen drugs depends on several factors, including the concentration of
vancomycin, the properties of the profen drugs, and the experimental conditions.
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In Figure 10, it is observed that increasing the concentration of vancomycin in the
mobile phase improved the resolution (Figure 10a) and selectivity (Figure 10b) of the racemic
separation of the examined profen drugs. This was due to the increased interaction between
the stationary phase and the enantiomers in the racemic mixtures, resulting in a better
separation and higher resolution and selectivity. Therefore, adjusting the concentration of
vancomycin as a chiral selector in the mobile phase can be an effective strategy for optimizing
the chiral separation of profen drugs. Stronger interactions between the analyte–vancomycin
complex and the immobilizing surface could be the cause of the increased retention seen at
higher vancomycin concentrations [20,23].
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Figure 10. Effect of the vancomycin concentration in the mobile phase on resolution (a) and selectivity
(b) of profen NSAIDs.

This phenomenon contributed to the overall improvement in resolution and selectivity
of the chiral separation process. It is important to note that there is a limit to the effect of
vancomycin concentration on resolution and selectivity in the racemic separation of profen
drugs. Beyond a certain point, increasing the concentration of vancomycin may not lead
to further improvements in separation and may even result in decreased resolution and
selectivity. This is due to the overloading of the stationary phase and the formation of
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vancomycin aggregates [23,53]. Therefore, it is crucial to determine the optimal vancomycin
concentration for each analyte experimentally. In this study, the optimal concentration was
found to be around 1.5 mM, which was high enough to provide good separation but not so
high as to lead to decreased resolution and selectivity.

The vancomycin–analyte complex forms interactions within the mobile phase before
engaging with the stationary phase [23,53]. However, it should be noted that vancomycin in
the mobile phase may also adsorb onto the achiral stationary phase before vancomycin–analyte
interactions take place [22]. As a result, the retention mechanism is typically a hybrid of
these two possibilities. Both the structure of the stationary phase and the composition of
the mobile phase influence the extent of adsorption of the vancomycin chiral selector on
the surface of the stationary phase [22,54].

The presence of vancomycin dimers in solution, as reported by numerous authors [17,55], is
an intriguing aspect that influences the mechanism of analyte interaction with vancomycin
as a chiral mobile phase additive (CMPA). The dimerization of vancomycin seems to
enhance its affinity for analytes containing carboxyl groups. The higher stability of these
dimers likely leads to the proper conformation required for the chiral recognition of these
analytes, which could explain the increased retention observed in experiments with higher
vancomycin concentrations. Furthermore, utilizing vancomycin as a CMPA offers a more
flexible separation approach compared to using it solely as a chiral stationary phase,
providing greater control over the separation process and ultimately resulting in improved
resolution and selectivity.

4. Conclusions

This study aimed to explore the potential of vancomycin as a chiral additive for the
enantioseparation of various NSAIDs, including ketoprofen, ibuprofen, flurbiprofen, and
chiral impurities of S-naproxen. Several factors, such as type of achiral column (C18 and
NH2), mobile phase pH, polarity, and vancomycin concentration, were investigated for
their effects on the separation process.

Through reverse-phase chromatography, employing an achiral NH2 column and a
mobile phase consisting of phosphate buffer 0.05 M and 2-propanol (50/50) at pH 6, the
effective enantiomeric separation of profen derivatives using vancomycin as a mobile
phase additive was achieved. Notably, this study revealed that lower concentrations of
vancomycin (ranging from 0.5 to 2 mM) led to improved enantiomeric resolutions.

This research provides valuable insights into employing vancomycin as a chiral selec-
tor in the chromatographic separation of NSAIDs, and the identified optimal conditions
hold promise for future research in this domain. The enhanced enantioseparation on the
NH2 column was attributed to the high separation efficiency of the analytical chromatog-
raphy system and the stereoselective interaction of vancomycin dimers with the surface
of the NH2 column. Overall, this study suggests that the spatial arrangement of the dis-
solved chiral selector facilitates its interaction with profen analytes, and the formation of
vancomycin dimers enhances chiral discrimination.
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