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We have studied the diffusion of 3D nanovoids in a bcc solid by kinetic Monte Carlo simulations. The diffusion

coefficient as a function of the void size increases, reaches a maximum and then decreases. The first increase is

particularly interesting, as the diffusion of clusters is generally considered a decreasing function of the cluster size. We

attribute this behavior to a curvature-dependent energy barrier for mass transport. We propose an analytical modeling

of the void diffusion coefficient that reproduces the simulation data over the whole size range. In addition, for low

temperatures and small sizes, the void diffusion coefficient versus size displays valleys, i.e. regions where the diffusion

coefficient is smaller than the general trend. This behavior cannot be explained with analytical developments, and is

due to the formation of compact shapes for certain magic void sizes. In these shapes the atoms at the void surface are

strongly bound, displace less and thus also void diffusion is slower.

Voids play a critical role in determining mechanical, ther-

mal, electrical and optical materials properties. Understand-

ing the formation of voids during sintering of ceramics allows

predicting the strength and the reliability of the material1. In

metals, voids formed in the manufacturing process, can grow

and merge under tensile or shear stress, leading to fracture

and material failure2. Voids can lead to solid state dewetting

of thin films3. Under an electric field, voids drift and coalesce,

inducing failure of the electronic tracks used in circuits4,5.

The formation of bubbles in irradiated materials is also of

particular concern. They are formed by the bombardment of

neutrons, heavy and light ions, electrons and γ-rays6. The

gas contained in the bubbles can permeate out of the material,

leaving voids, as found by Griffioen et al.7. Components of

fission and fusion reactors can be significantly damaged by

the formation of bubbles and voids in nuclear power plants8.

The displacement by diffusion of voids in a material can lead

to the growth of pores and understanding it is important to pre-

dict and/or avoid possible changes of the material properties.

Furthermore, the diffusion of liquid inclusions in a solid ma-

trix shows strong similarities with void diffusion9,10 . From

an analytical, continuum, point of view, the foundations of the

diffusional motion of pores in solids have been established

by Nichols11, and Willertz and Shewmon12. The growth by

coalescence and Ostwald ripening of voids has been investi-

gated by Goodhew and coworkers (see as an example13) and

Evans14. However, nanosized voids could behave differently

from the predictions of continuum theories.

In this work we investigate the diffusive motion of voids

of small size. While experimentally it is difficult to investi-

gate the displacement of nanovoids in bulk materials, atom-

istic simulations are perfectly suited to this aim.

We use a 3D kinetic Monte Carlo (KMC) model with atoms

occupying positions of a bcc lattice. This structure has been

chosen because void and bubble diffusion has been histor-

ically studied for its importance in nuclear materials11, in

particular tungsten, used in fusion reactors like ITER15, and

iron (ferritic steels are candidate for both fission and fusion

reactors16). We expect that our results will also be relevant

for other structures, but the details of the void diffusion will

be different. A general introduction on the KMC method

can be found in17. In our model, each atom can jump to

FIG. 1. Two different views of the shape of a void in a bcc lattice

simulated with our KMC model. The void is a truncated dodecahe-

dron, with {100} and {110} facets. The {100} facets are marked

with a yellow cross. The void radius is 36a, kT = 0.4J′.

unoccupied nearest-neighbor sites with rates proportional to

ν0 exp[−(nJ + sJ′)/(kT )], where n is the number of nearest

neighbors of the atom, J is the binding energy between nearest

neighbors, s is the number of second (or next-nearest) neigh-

bors of the atom, J′ is the binding energy of second neigh-

bors, k is the Boltzmann constant and T is the temperature.

ν0 is a jump attempt frequency that defines our time unit, we

take it equal to 1 for all atoms18. Our simple energetic de-

scription, based on an additive binding energy, is the one used

in early crystal growth studies. It allows for predicting the

equilibrium shapes of crystals, calculating surface and interfa-

cial energies, determining adsorption isotherms, and has been

used for atomic modeling of epitaxy (see21–23). This approach

is still employed by many authors, especially in KMC simu-

lations, to predict trends, mechanisms and general behaviors

(see for instance24–27). In a bcc lattice each position has max-

imum 8 nearest neighbors n and 6 second neighbors s. Within

our model, atoms cannot move out of lattice positions nor to a

position without neighbors. The simulation box has periodic

boundary conditions, meaning that an atom going out from

one side re-appears on the opposite side. We have taken J′ as

the energy unit (equal to 1). J
J′ = 1.155 has been chosen so

that the shape of a void calculated with our model, shown in

figure 1, is constituted by {100} and {110} facets, and repro-
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duces well the experimental shape of bubbles in tungsten19.

It has been experimentally found that other bcc solids, like

for instance Fe nanoparticles20, display a similar equilibrium

shape.

FIG. 2. (a)-(c): schematics showing the displacement of a void as

a consequence of atomic displacement. Atoms at the void surface

(black), move in empty positions (blue). As a result, the void center

of mass displaces. (d): displacement of a void constituted by 330

empty positions, kT = 0.5J. (e): average squared displacement as

a function of time for the void shown in (d). The error bar is the

standard deviation of < r2 >. Notice that when the time increases,

< r2 > is based on less measurements, and thus the error increases.

The slope of the linear fit through the black squares gives < r2 > /t.

In the simulations, atoms at the void surface randomly

diffuse, according to the jump probabilities defined above,

and as a consequence of many atomic jumps voids also dis-

place. Figures 2(a)-(c) schematically show in 2D the mo-

tion of atoms at a void surface, leading to the displacement

of the void center of mass. In 3D the diffusion coefficient

of a single vacancy can be written as equal to D = 1
6
Γλ 2,

with Γ the jump frequency and λ the jump length (see for

instance28 or the supplementary material in29). Within our

model Γ = ν0 exp(−Evac
kT

), where Evac is the vacancy jump en-

ergy (jump energy of a bulk atom close to a single vacancy, i.e.

Evac = 7J+6J′), and λ=a
√

3/2. The average square displace-

ment < r2 > is < r2 >= Γλ 2t. In our model D is exactly de-

fined for a single vacancy, for which Γ and λ 2 are known; for a

void D can be obtained by measuring in simulations < r2 >/t,

D = 1
6
<r2>

t
. Figure 2(d) shows as an example the simulation

of the displacement of a void made of 330 empty positions.

The void squared displacement can be measured as a func-

tion of time in the simulations using the method detailed by

Bogicevic et al.30. The black squares in figure 2(e) show the

< r2 > as a function of time for a void with 330 empty po-

sitions. The squared displacement is averaged over at least

30 measurements for each time. The slope of the linear fit

through the data points shown by the red dashed line gives

< r2 > /t.

We have repeated the procedure for voids of different sizes

and at different temperatures. Vacancies can detach from the

surface of moving voids, particularly for small voids and at

high temperatures, therefore small voids can change size dur-

FIG. 3. (a): diffusion coefficient as a function of void size (num-

ber of empty positions N) in logarithmic scale, for different kT .

Also the diffusion coefficient of single vacancies is shown. The

horizontal dotted lines are useful to compare the diffusion coeffi-

cient of single vacancies with that of voids. The dashed lines show

the agreement between the data points and the analytical expression

of equation 1. The parameters are α = 0.3± 0.2, E0 = 7.7± 0.1,

E1 = 6.76 ± 0.09, common for the four temperatures, and γg =
0.126±0.005,0.059±0.005,0.023±0.005 and 0 for kT increasing

from 0.5 J′ to 0.86 J′. Some valleys are visible for kT =0.5 J’, and

two of them are highlighted in (b) and (c), where the void size is in

linear scale. The full line is a guide for the eye.

ing the diffusive motion. Thus, for small voids, the diffusion

coefficient is not defined. Figure 3(a) shows the void diffu-

sion coefficient as a function of the void size (expressed as

the number of empty positions in the void N) in logarithmic

scale, for different temperatures. At low temperatures, the dif-

fusion coefficient D as a function of the cluster size does not

display a monotonic curve. Valleys (discussed later) are ob-

served for specific values of N, two of them are highlighted in

figure 3b and 3c. Furthermore, considering the general trend,

D increases up to a maximum from which it decreases. An

isolated vacancy is slower than intermediate-size voids, and

only large clusters diffuse slower than a vacancy. However the

size of voids diffusing slower than vacancies decreases when

the temperature increases. From analytical considerations11,

voids are expected to diffuse less when their size increases

(see the supplementary material for a short summary). Inter-

estingly, the diffusion of adsorbates in confined spaces like

zeolite pores also follows a trend similar to that observed by

us (D increases, reaches a maximum and then decreases)31–33.

In that case, the maximum is reached when the adsorbate di-

mensions match closely those of the pores. Also other au-

thors have found that confined spaces promote the transport

of adsorbates, for instance in the case of molecules in nano-
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channels34, and for interstitial atoms of different sizes in a bcc

lattice35. These results pertain to the diffusion of adsorbates

within a network of pores, while in our study we investigate a

distinct phenomenon, i.e. the diffusion of isolated voids that

are not interconnected.

However, a behavior similar to that described in figure 3

has been observed and explained in 2D, for monoatomic-deep

holes on surfaces29. The increase in mobility when N in-

creases observed for small void sizes is due to an increase

of the total jump frequency Γ related to the void curvature

(−1/R with R the void radius) and not only to the surface in-

crease: larger voids are less and less concave, the atoms at the

void surface are thus less bound and consequently the large-

void jump rate is higher than for small voids. The rate of

curvature change (
d(−1/R)

dR
= 1

R2 ∝ N−2/3) decreases for larger

voids. Therefore from a certain size it becomes negligible, and

D decreases when N increases as predicted by usual analyti-

cal considerations. After these qualitative arguments, we now

include the curvature effect in an expression to describe the

general trends observed in figure 3a. The diffusion coefficient

of a void can be written as D ∝ Γλ 2, in analogy with that of a

single vacancy. The void jump frequency Γ is proportional to:

(i) the number of atoms at the void surface (Γ(i) ∝ R2); (ii) the

rate of displacement of atoms at the void surface; (iii) a term

to take into account the nucleation of a new facet at the void

surface (only the nucleation of a new facet leads to a net dis-

placement of the void). The displacement of atoms (term (ii))

depends on the void curvature, as written above, and we thus

write Γ(ii) ∝ exp
−(E0+E1/R)

kT
. E0 includes both an average en-

ergy of surface diffusion and an energy for the detachment of

atoms from flat surfaces. E1/R corrects E0 to take into account

the curvature effect (for small voids the energy to displace an

atom is on average larger than for large voids). Term (iii) can

be written as Γ(iii) ∝ exp
−γ·g·R

kT
, where γ is the step energy of

the new facet and g ·R accounts for the facet dimension (pro-

portional to the void radius)12,36,37. The displacement length

λ is inversely proportional to the void volume, i.e. λ ∝ R−3.

Putting all together and considering that R ∝ N1/3:

D = α ·N−4/3 · exp(−E1 +E0 ·N1/3 + γg ·N2/3

kT ·N1/3
) (1)

where α includes all the proportionality factors. We have fit-

ted the four diffusion coefficient versus size curves (dashed

lines in figure 3a) with equation 1, the agreement is very good.

In the fitting procedure we have used a single set of parameters

α , E1, E0, as they do not depend on the temperature. We have

considered different values of γg for the four data sets and

found that γg decreases when the temperature increases from

kT=0.5 J′ to 0.6 and 0.7 J′, and vanishes for kT=0.86 J′. This

is in agreement with the known behavior of the step energy,

that decreases with the temperature and vanishes above the

roughening transition temperature38,39. Notice that for negli-

gible γ (condition verified at high temperature) and large N,

the equation correctly predicts D ∝ N−4/3, i.e. the regime of

void motion limited by surface diffusion11. This regime is

obtained for large voids at kT = 0.7J′ and 0.86J′, as in fig-

ure 3(a) the slope of the logD versus logN curve reaches an

asymptotic value.

Because of the γg dependence on temperature, it is not ap-

propriate to define a diffusion energy for the voids. However,

for the sake of comparison with a different phenomenon, i.e.

adsorbate diffusion in porous matrices33,35, we have measured

an effective energy for the diffusion of four voids with differ-

ent size. For each void size, this effective energy is found,

using the common expression D = D0 exp
−Ee f f

kT
, from the

slope of the linear fit of lnD versus 1/(kT ). As detailed in

the supplementary material, we find Ee f f = 11.4±0.2,10.8±
0.1,11.1± 0.2 and 11.3± 0.3 for N =10, 40, 90 and 310 re-

spectively. As expected, and as also found in matrices made

by a network of pores, the effective diffusion energy shows a

minimum for the fastest-diffusing cluster size N=40.

FIG. 4. (a): Excess energy per unit surface as a function of cluster

size for the most cohesive shape at each N. (b): compact shapes of

clusters with N=58, 59 and 60 empty positions. The most compact

shape is obtained for N=59. Arrows show the missing and the addi-

tional empty positions that do not allow the clusters with N=58 and

N=60 to have a compact shape.

The valleys obtained for kT=0.5 J′ and still visible at

kT=0.6 J′ cannot be explained by general considerations on

Γ or λ . Clusters with specific sizes displace slower than voids

with similar dimensions because their number of empty posi-

tions is such that they can assume compact shapes, where the

cohesion energy of the atoms at the void surface is maximized.

Voids stay longer time in the compact shape and thus diffuse

slower. Notice that the formula reported in the literature to ob-

tain the perfect sizes of bcc dodecahedra40,41 does not apply

to bcc truncated dodecahedra. For voids of different size, we

have calculated the cohesion energy of the atoms around each

void for the shape that maximizes cohesion. The most cohe-

sive shape is found in simulations by changing the shape of a
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void, and taking the shape that maximizes the system cohesive

energy (i.e. the sum of the binding energies of all the atoms).

The excess energy is found by substrating this energy from

the cohesive energy of a system without the void. The excess

energy is divided by N2/3 to obtain a value per unit surface.

Figure 4a shows the excess energy of a system with a void as

a function of the void size. For N=15, 59, 169, 339, 1021,

minima are clearly observed. These voids can have the per-

fect compact shape of a symmetric truncated dodecahedron.

Figure 4b shows as an example the compact shapes for voids

with N=58, 59 and 60 empty positions. For N=59, the cluster

has the perfect, or magic, shape of a truncated dodecahedron,

with 12 {110} and 6 {100} complete facets, while the voids

with N=58 and N=60 have either a missing or an additional

empty position (see the arrows in figure 4b).

Other minima are also observed, for instance at N = 632.

These voids can present a compact shape (see figure 4a), that

is not perfectly symmetric. The minima in figure 3a corre-

spond to the minima of figure 4a. Notice that also voids with

a size close to that of perfect clusters can diffuse slowly, be-

cause the displacement of a void involves the motion of more

than one atom for the nucleation of new facets. Lai et al. have

explained this mechanism for 2D islands42–44. As an exam-

ple, in a void with one vacancy more than the size showing

a perfect shape, the excess vacancy can move longtime at the

void surface without a clear displacement of the entire clus-

ter, unless one or more other vacancies detach from a strongly

bound position of the perfect shape, and a new void facet is

formed.

The exact sizes of perfect clusters depend on the equilib-

rium shapes defined by our model, i.e. depend on the J/J′

ratio that we have used. For larger J/J′ the equilibrium shape

of the voids is a less-truncated dodecahedron, and the number

of vacancies of perfect size clusters is shifted towards higher

values. For very large J/J′, i.e. when the second-neighbors

bonds can be neglected, the sizes of perfect clusters are those

corresponding to not-truncated dodecahedra, i.e. N=15, 65,

175, 369, 671, 110540.

To summarize, we have investigated the diffusion behav-

iors of small 3D voids in a bcc solid. The void diffusion co-

efficient increases with the void size, reaches a maximum and

then decreases. This trend can be explained by the curvature

change when the void size increases. We have developed an

analytical expression of the void diffusion coefficient that in-

cludes the curvature effect and that reproduces very well the

simulation data. At low temperatures and small void sizes,

the diffusion coefficient as a function of size displays valleys

for voids with specific dimensions. This size effect is due to

the presence of voids that can assume compact shapes where

atoms are strongly bound, and therefore their displacement is

more difficult.

SUPPLEMENTARY MATERIAL

The supplementary material discusses the conventionally-

accepted analytical dependence of the diffusion coefficient on

the cluster size in three limiting cases: when the diffusion pro-

cess is limited by surface diffusion, by attachment/detachment

of atoms at the void surface, and by volume diffusion. Further-

more, we also show the data points and the linear fits used to

obtain the effective energies of four void sizes.
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