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We have studied the diffusion of 3D nanovoids in a bcc solid by kinetic Monte Carlo simulations. The diffusion
coefficient as a function of the void size increases, reaches a maximum and then decreases. The first increase is
particularly interesting, as the diffusion of clusters is generally considered a decreasing function of the cluster size. We
attribute this behavior to a curvature-dependent energy barrier for mass transport. We propose an analytical modeling
of the void diffusion coefficient that reproduces the simulation data over the whole size range. In addition, for low
temperatures and small sizes, the void diffusion coefficient versus size displays valleys, i.e. regions where the diffusion
coefficient is smaller than the general trend. This behavior cannot be explained with analytical developments, and is
due to the formation of compact shapes for certain magic void sizes. In these shapes the atoms at the void surface are
strongly bound, displace less and thus also void diffusion is slower.

Voids play a critical role in determining mechanical, ther-
mal, electrical and optical materials properties. Understand-
ing the formation of voids during sintering of ceramics allows
predicting the strength and the reliability of the material'. In
metals, voids formed in the manufacturing process, can grow
and merge under tensile or shear stress, leading to fracture
and material failure?. Voids can lead to solid state dewetting
of thin films®. Under an electric field, voids drift and coalesce,
inducing failure of the electronic tracks used in circuits*>.
The formation of bubbles in irradiated materials is also of
particular concern. They are formed by the bombardment of
neutrons, heavy and light ions, electrons and y-rays®. The
gas contained in the bubbles can permeate out of the material,
leaving voids, as found by Griffioen et al.”. Components of
fission and fusion reactors can be significantly damaged by
the formation of bubbles and voids in nuclear power plants®.
The displacement by diffusion of voids in a material can lead
to the growth of pores and understanding it is important to pre-
dict and/or avoid possible changes of the material properties.
Furthermore, the diffusion of liquid inclusions in a solid ma-
trix shows strong similarities with void diffusion®!° . From
an analytical, continuum, point of view, the foundations of the
diffusional motion of pores in solids have been established
by Nichols!!, and Willertz and Shewmon'?. The growth by
coalescence and Ostwald ripening of voids has been investi-
gated by Goodhew and coworkers (see as an example'®) and
Evans'#. However, nanosized voids could behave differently
from the predictions of continuum theories.

In this work we investigate the diffusive motion of voids
of small size. While experimentally it is difficult to investi-
gate the displacement of nanovoids in bulk materials, atom-
istic simulations are perfectly suited to this aim.

‘We use a 3D kinetic Monte Carlo (KMC) model with atoms
occupying positions of a bec lattice. This structure has been
chosen because void and bubble diffusion has been histor-
ically studied for its importance in nuclear materials'!, in
particular tungsten, used in fusion reactors like ITER'S, and
iron (ferritic steels are candidate for both fission and fusion
reactors'®). We expect that our results will also be relevant
for other structures, but the details of the void diffusion will
be different. A general introduction on the KMC method
can be found in'”. In our model, each atom can jump to

FIG. 1. Two different views of the shape of a void in a bcc lattice
simulated with our KMC model. The void is a truncated dodecahe-
dron, with {100} and {110} facets. The {100} facets are marked
with a yellow cross. The void radius is 36a, kT = 0.4J".

unoccupied nearest-neighbor sites with rates proportional to
voexp|—(nJ +sJ')/(kT)], where n is the number of nearest
neighbors of the atom, J is the binding energy between nearest
neighbors, s is the number of second (or next-nearest) neigh-
bors of the atom, J' is the binding energy of second neigh-
bors, k is the Boltzmann constant and 7 is the temperature.
Vp is a jump attempt frequency that defines our time unit, we
take it equal to 1 for all atoms!®. Our simple energetic de-
scription, based on an additive binding energy, is the one used
in early crystal growth studies. It allows for predicting the
equilibrium shapes of crystals, calculating surface and interfa-
cial energies, determining adsorption isotherms, and has been
used for atomic modeling of epitaxy (see?'~2%). This approach
is still employed by many authors, especially in KMC simu-
lations, to predict trends, mechanisms and general behaviors
(see for instance?*27). In a bec lattice each position has max-
imum 8 nearest neighbors n and 6 second neighbors s. Within
our model, atoms cannot move out of lattice positions nor to a
position without neighbors. The simulation box has periodic
boundary conditions, meaning that an atom going out from
one side re-appears on the opposite side. We have taken J' as
the energy unit (equal to 1). 7’/ = 1.155 has been chosen so
that the shape of a void calculated with our model, shown in
figure 1, is constituted by {100} and {110} facets, and repro-
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duces well the experimental shape of bubbles in tungsten'.
It has been experimentally found that other bce solids, like
for instance Fe nanoparticles?, display a similar equilibrium
shape.

S

average squared displacement [a%]
°

0.00E+000 1.50E+012

7.50E+011
time [v, ]

FIG. 2. (a)-(c): schematics showing the displacement of a void as
a consequence of atomic displacement. Atoms at the void surface
(black), move in empty positions (blue). As a result, the void center
of mass displaces. (d): displacement of a void constituted by 330
empty positions, k7' = 0.5J. (e): average squared displacement as
a function of time for the void shown in (d). The error bar is the
standard deviation of < r2 >. Notice that when the time increases,
< r2 > is based on less measurements, and thus the error increases.
The slope of the linear fit through the black squares gives < r2 > /1.

In the simulations, atoms at the void surface randomly
diffuse, according to the jump probabilities defined above,
and as a consequence of many atomic jumps voids also dis-
place. Figures 2(a)-(c) schematically show in 2D the mo-
tion of atoms at a void surface, leading to the displacement
of the void center of mass. In 3D the diffusion coefficient
of a single vacancy can be written as equal to D = %F)Lz,
with T the jump frequency and A the jump length (see for
instance®® or the supplementary material in?%). Within our
model I' = vpexp( ’f}““ ), where E,, is the vacancy jump en-
ergy (jump energy of a bulk atom close to a single vacancy, i.e.
Eyqe =7J+6J"), and A=a+/3 /2. The average square displace-
ment < r> > is < r> >=T'A%. In our model D is exactly de-
fined for a single vacancy, for which I" and A2 are known; for a
void D can be obtained by measuring in simulations < % > /1,

D= %ﬁﬁ Figure 2(d) shows as an example the simulation
of the displacement of a void made of 330 empty positions.
The void squared displacement can be measured as a func-
tion of time in the simulations using the method detailed by
Bogicevic et al.>. The black squares in figure 2(e) show the
< r? > as a function of time for a void with 330 empty po-
sitions. The squared displacement is averaged over at least
30 measurements for each time. The slope of the linear fit
through the data points shown by the red dashed line gives
<rr> /.

‘We have repeated the procedure for voids of different sizes
and at different temperatures. Vacancies can detach from the
surface of moving voids, particularly for small voids and at
high temperatures, therefore small voids can change size dur-
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FIG. 3. (a): diffusion coefficient as a function of void size (num-
ber of empty positions N) in logarithmic scale, for different kT
Also the diffusion coefficient of single vacancies is shown. The
horizontal dotted lines are useful to compare the diffusion coeffi-
cient of single vacancies with that of voids. The dashed lines show
the agreement between the data points and the analytical expression
of equation 1. The parameters are ot = 0.3+0.2, Ey =7.7+0.1,
E; = 6.76 £ 0.09, common for the four temperatures, and yg =
0.126 £0.005,0.059 + 0.005,0.023 £ 0.005 and O for kT increasing
from 0.5 J' to 0.86 J'. Some valleys are visible for kT=0.5 J’, and
two of them are highlighted in (b) and (c), where the void size is in
linear scale. The full line is a guide for the eye.

ing the diffusive motion. Thus, for small voids, the diffusion
coefficient is not defined. Figure 3(a) shows the void diffu-
sion coefficient as a function of the void size (expressed as
the number of empty positions in the void N) in logarithmic
scale, for different temperatures. At low temperatures, the dif-
fusion coefficient D as a function of the cluster size does not
display a monotonic curve. Valleys (discussed later) are ob-
served for specific values of N, two of them are highlighted in
figure 3b and 3c. Furthermore, considering the general trend,
D increases up to a maximum from which it decreases. An
isolated vacancy is slower than intermediate-size voids, and
only large clusters diffuse slower than a vacancy. However the
size of voids diffusing slower than vacancies decreases when
the temperature increases. From analytical considerations'!,
voids are expected to diffuse less when their size increases
(see the supplementary material for a short summary). Inter-
estingly, the diffusion of adsorbates in confined spaces like
zeolite pores also follows a trend similar to that observed by
us (D increases, reaches a maximum and then decreases)3! =33,
In that case, the maximum is reached when the adsorbate di-
mensions match closely those of the pores. Also other au-
thors have found that confined spaces promote the transport
of adsorbates, for instance in the case of molecules in nano-
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channels®*, and for interstitial atoms of different sizes in a bee
lattice®. These results pertain to the diffusion of adsorbates
within a network of pores, while in our study we investigate a
distinct phenomenon, i.e. the diffusion of isolated voids that
are not interconnected.

However, a behavior similar to that described in figure 3
has been observed and explained in 2D, for monoatomic-deep
holes on surfaces?. The increase in mobility when N in-
creases observed for small void sizes is due to an increase
of the total jump frequency I related to the void curvature
(—1/R with R the void radius) and not only to the surface in-
crease: larger voids are less and less concave, the atoms at the
void surface are thus less bound and consequently the large-
void jump rate is higher than for small voids. The rate of
curvature change (% = ﬁ o« N=2/3) decreases for larger
voids. Therefore from a certain size it becomes negligible, and
D decreases when N increases as predicted by usual analyti-
cal considerations. After these qualitative arguments, we now
include the curvature effect in an expression to describe the
general trends observed in figure 3a. The diffusion coefficient
of a void can be written as D o< A2, in analogy with that of a
single vacancy. The void jump frequency I is proportional to:
(i) the number of atoms at the void surface (F<,~) oc R2); (ii) the
rate of displacement of atoms at the void surface; (iii) a term
to take into account the nucleation of a new facet at the void
surface (only the nucleation of a new facet leads to a net dis-
placement of the void). The displacement of atoms (term (ii))
depends on the void curvature, as written above, and we thus
write () o< exp w. Ey includes both an average en-
ergy of surface diffusion and an energy for the detachment of
atoms from flat surfaces. E| /R corrects E to take into account
the curvature effect (for small voids the energy to displace an
atom is on average larger than for large voids). Term (iii) can
be written as I'(;;) o< exp 7{?"?, where 7 is the step energy of
the new facet and g - R accounts for the facet dimension (pro-
portional to the void radius)'?3%37. The displacement length
A is inversely proportional to the void volume, i.e. A o< R™3.
Putting all together and considering that R o< N'/3:

Ey+Ey-N'3 yg-N*3

kT -N1/3
where o includes all the proportionality factors. We have fit-
ted the four diffusion coefficient versus size curves (dashed
lines in figure 3a) with equation 1, the agreement is very good.
In the fitting procedure we have used a single set of parameters
a, Ej, Ey, as they do not depend on the temperature. We have
considered different values of yg for the four data sets and
found that yg decreases when the temperature increases from
kT=0.5J' t0 0.6 and 0.7 J', and vanishes for kT=0.86 J'. This
is in agreement with the known behavior of the step energy,
that decreases with the temperature and vanishes above the
roughening transition temperature®3. Notice that for negli-
gible y (condition verified at high temperature) and large N,
the equation correctly predicts D o< N~4/3, i.e. the regime of
void motion limited by surface diffusion!!. This regime is
obtained for large voids at kT = 0.7J’ and 0.86J', as in fig-
ure 3(a) the slope of the log D versus logN curve reaches an
asymptotic value.

D:a-N’4/3-exp(f €Y}

Because of the yg dependence on temperature, it is not ap-
propriate to define a diffusion energy for the voids. However,
for the sake of comparison with a different phenomenon, i.e.
adsorbate diffusion in porous matrices>>%, we have measured
an effective energy for the diffusion of four voids with differ-
ent size. For each void size, this effective energy is found,

. . B —Eeff o
using the common expression D = Doexp —7*, from the
slope of the linear fit of InD versus 1/(kT). As detailed in
the supplementary material, we find E¢rr = 11.4+0.2,10.8 +
0.1,11.1£0.2 and 11.3+0.3 for N =10, 40, 90 and 310 re-
spectively. As expected, and as also found in matrices made
by a network of pores, the effective diffusion energy shows a
minimum for the fastest-diffusing cluster size N=40.

—
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FIG. 4. (a): Excess energy per unit surface as a function of cluster
size for the most cohesive shape at each N. (b): compact shapes of
clusters with N=58, 59 and 60 empty positions. The most compact
shape is obtained for N=59. Arrows show the missing and the addi-
tional empty positions that do not allow the clusters with N=58 and
N=60 to have a compact shape.

The valleys obtained for kT=0.5 J' and still visible at
kT=0.6 J' cannot be explained by general considerations on
I" or A. Clusters with specific sizes displace slower than voids
with similar dimensions because their number of empty posi-
tions is such that they can assume compact shapes, where the
cohesion energy of the atoms at the void surface is maximized.
Voids stay longer time in the compact shape and thus diffuse
slower. Notice that the formula reported in the literature to ob-
tain the perfect sizes of bcc dodecahedra®®*! does not apply
to bee truncated dodecahedra. For voids of different size, we
have calculated the cohesion energy of the atoms around each
void for the shape that maximizes cohesion. The most cohe-
sive shape is found in simulations by changing the shape of a
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void, and taking the shape that maximizes the system cohesive
energy (i.e. the sum of the binding energies of all the atoms).
The excess energy is found by substrating this energy from
the cohesive energy of a system without the void. The excess
energy is divided by N2/ to obtain a value per unit surface.
Figure 4a shows the excess energy of a system with a void as
a function of the void size. For N=15, 59, 169, 339, 1021,
minima are clearly observed. These voids can have the per-
fect compact shape of a symmetric truncated dodecahedron.
Figure 4b shows as an example the compact shapes for voids
with N=58, 59 and 60 empty positions. For N=59, the cluster
has the perfect, or magic, shape of a truncated dodecahedron,
with 12 {110} and 6 {100} complete facets, while the voids
with N=58 and N=60 have either a missing or an additional
empty position (see the arrows in figure 4b).

Other minima are also observed, for instance at N = 632.
These voids can present a compact shape (see figure 4a), that
is not perfectly symmetric. The minima in figure 3a corre-
spond to the minima of figure 4a. Notice that also voids with
a size close to that of perfect clusters can diffuse slowly, be-
cause the displacement of a void involves the motion of more
than one atom for the nucleation of new facets. Lai et al. have
explained this mechanism for 2D islands*>**. As an exam-
ple, in a void with one vacancy more than the size showing
a perfect shape, the excess vacancy can move longtime at the
void surface without a clear displacement of the entire clus-
ter, unless one or more other vacancies detach from a strongly
bound position of the perfect shape, and a new void facet is
formed.

The exact sizes of perfect clusters depend on the equilib-
rium shapes defined by our model, i.e. depend on the J/J'
ratio that we have used. For larger J/J' the equilibrium shape
of the voids is a less-truncated dodecahedron, and the number
of vacancies of perfect size clusters is shifted towards higher
values. For very large J/J', i.e. when the second-neighbors
bonds can be neglected, the sizes of perfect clusters are those
corresponding to not-truncated dodecahedra, i.e. N=15, 65,
175, 369, 671, 1105%.

To summarize, we have investigated the diffusion behav-
iors of small 3D voids in a bee solid. The void diffusion co-
efficient increases with the void size, reaches a maximum and
then decreases. This trend can be explained by the curvature
change when the void size increases. We have developed an
analytical expression of the void diffusion coefficient that in-
cludes the curvature effect and that reproduces very well the
simulation data. At low temperatures and small void sizes,
the diffusion coefficient as a function of size displays valleys
for voids with specific dimensions. This size effect is due to
the presence of voids that can assume compact shapes where
atoms are strongly bound, and therefore their displacement is
more difficult.

SUPPLEMENTARY MATERIAL

The supplementary material discusses the conventionally-
accepted analytical dependence of the diffusion coefficient on
the cluster size in three limiting cases: when the diffusion pro-

4

cess is limited by surface diffusion, by attachment/detachment
of atoms at the void surface, and by volume diffusion. Further-
more, we also show the data points and the linear fits used to
obtain the effective energies of four void sizes.

ACKNOWLEDGMENTS

This work has been supported by the ANR grant Ther-
motweez (ANR-22-CE09-0009-01). We thank G. Aissani for
performing some of the KMC simulations.

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

REFERENCES

IF. Wakai, G. Okuma, and N. Nishiyama, Materials today - proceedings 16,
4(2019).

2W. Weislik and S. Lipiec, Materials 15, 6473 (2022).

3S. Curiotto, A. Chame, C. V. Thompson, P. Miiller, and O. Pierre-Louis,
Applied Physics Letters 120, 091603 (2022).

4D. Yang, Y. C. Chan, and M. Pecht, Electromigration in thin films and
electronic devices: materials and reliability, chapter Electromigration in
flip-chip solder joints, page 285, Elsevier, 2011.

5S. Curiotto, P. Miiller, A. El-Barraj, F. Cheynis, O. Pierre-Louis, F. Leroy,
Applied Surface Science 469, 463 (2019).

SL. K. Mansur, Journal of Nuclear Materials 216, 97 (1994).

7C. C. Griffioen, J. H. Evans, P. C. De Jong, and A. Van Veen, Nuclear
Instruments and Methods in Physics Research B27, 417 (1987).

8G. S. Was, Journal of Nuclear Materials 367-370, 11 (2007).

9L. Gabrish, H. andKjeldgaard, E. Johnson, and U. Dahmen, Acta Materialia
49, 4259 (2001). Radetic, T. and Johnson, E. and Olmsted, D.L. and Yang,
Y. and Laird, B.B. and Asta, M. and Dahmen, U.

10T, Radetic, E. Johnson, D.L. Olmsted, Y. Yang, B.B. Laird, M. Asta,
U. Dahmen Acta Materialia 141, 427 (2017).

E. A. Nichols, Journal of nuclear materials 30, 143 (1969).

121, E. Willertz and P. G. Shewmon, Metallurgical transactions 1, 2217
(1970).

13P. J. Goodhew and S. K. Tyler, Proceedings of the Royal Society of London
A 377, 151 (1981).

147 H. Evans, Nuclear Instruments and Methods in Physics Research B196,
125 (2002).

K. D. Hammond, Materials Research Express 4, 104002 (2017).

16G. R. Odette, M. J. Alinger, and B. D. Wirth, Annual Reviews of Materials
Research 38, 471 (2008).

7A. F. Voter, Radiation Effects in Solids, Springer, NATO Publishing Unit,
Dordrecht, The Netherlands, 2005.

18for rough comparisons with real time, the attempt frequency could be taken
equal to a typical atom vibration frequency, 10'3 s~1.

191, Corso, S. Curiotto, E. Bernard, M. Cabie, C. Martin, L. Martinelli,
F. Cheynis, P. Miiller, F. Leroy, Nuclear Materials and Energy 37, 101533
(2023).

20F, Silly and M. R. Castell, Applied Physics Letters 87, 063106 (2005).

21B. Mutaftschiev, The atomistic nature of Crystal Growth, Springer series
in materials science, 2001.

22Y. Saito, Statistical Physics of Crystal Growth, World Scientic, Singapore,
1996.

23R. Kern, G. Le Lay, and J.-J. Metois, Basic mechanisms in the early stages
of epitaxy, North holland publishing Co, Current topics in materials science,
Vol 3, editor E. Kaldis, 1979.



AlIP
Publishing

£

240. Pierre-Louis, A. Chame, and Y. Saito, Physical Review Letters 99,
136101 (2007).

25p, Ghosh and M. Ranganathan, Surface Science 630, 174 (2014).

26J, Krug, H. T. Dobbs, and S. Majaniemi, Zeitschrift fur Physik B 97, 281
(1995).

27N. Combe and H. Larralde, Physical review B 62, 16074 (2000).

2D, A. Porter and E. K. E., Phase transformations in metals and alloys, Van
Nostrand Reinhold Company Ltd., 1981.

29S. Curiotto, P. Miiller, F. Cheynis, and F. Leroy, Applied Surface Science
552, 149454 (2021).

30A. Bogicevic, S. Liu, J. Jacobsen, B. Lundqvist, and H. Metiu, Physical
Review B 57, R9459 (1998).

31S. Yashonath and P. Santikary, Journal of Physical Chemistry 98, 6368
(1994).

32E. G. Derouane, J.-M. Andre, and A. A. Lucas, Journal of Catalysis 110,
58 (1988).

338. Yashonath and P. K. Ghorai, Journal of Physical Chemistry B 112, 665
(2008).

34]. Yuan, M. Gao, Z. Liu, X. Tang, Y. Tian, G. Ma, M. Ye, A. Zheng, Nature
Communications 14, 1735 (2023).

35g. Nag, M. Sharma, and S. Yashonath, The Journal of Chemical Physics
153, 244503 (2020).

36p, Wynblatt and N. A. Gjostein, Progress in Solid State Chemistry 9, 21
(1975).

3R, Leroy, A. El-Barraj, F. Cheynis, P. Miiller, and S. Curiotto, Physical
Review Letters 123, 176101 (2019).

38H. J. W. Zandvliet, O. Gurlu, and B. Poelsema, Physical Review B 64,
073402 (2001).

3], E. Avron, H. Van Beijeren, L. S. Schulman, and R. K. P. Zia, Journal of
Physics A: Mathematical and General 15, L81 (1982).

40R. Van Hardeveld and F. Hartog, Surface Science 15, 189 (1969).

41F H. Kaatz and A. Bultheel, Nano Express 14, 150 (2019).

42K. C. Lai, D.-J. Liu, P. A. Thiel, and J. W. Evans, The Journal of Physical
Chemistry C 122, 11334 (2018).

43K. C. Lai, J. W. Evans, and D.-J. Liu, The Journal of Chemical Physics
147, 201101 (2017).

#K.C.Lai,D.-J. Liu, and J. W. Evans, Physical Review B 96, 235406 (2017).



