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In this article, we present our relocatable distributed collection library. Building on top of the AGPAS for Java library, we provide a
number of useful intranode parallel patterns as well as the features necessary to support the distributed nature of the computation
through clearly identi
ed methods. In particular, the transfer of distributed collections’ entries between processes is supported via
an integrated relocation system. �is enables dynamic load-balancing capabilities, making it possible for programs to adapt to
uneven or evolving cluster performance. �e system we developed makes it possible to dynamically control the distribution and
the data �ow of distributed programs through high-level abstractions. Programmers using our library can, therefore, write
complex distributed programs combining computation and communication phases through a consistent API. We evaluate the
performance of our library against two programs taken from well-known Java benchmark suites, demonstrating superior
programmability and obtaining better performance on one benchmark and reasonable overhead on the second. Finally, we
demonstrate the ease and bene
ts of load balancing and a more complex application, which uses the various features of our
library extensively.

1. Introduction

Modern supercomputers that rely on many-core processors
provide a large level of parallelism, both within a node and
between nodes. On the other hand, Beowulf clusters can
provide a �exible environment for smaller-scale computa-
tions. However, the performance of distributed programs
may su�er if potential disparities in the hardware used are
not addressed. Writing programs that can execute e�ciently
on either such systems and achieve good performance on
both is, therefore, a challenge.

Writing parallel and distributed programs is inherently
di�cult, with many dedicated languages, runtime libraries,
and programmingmodels attempting to reduce the di�culty
by introducing abstractions to programmers. MPI [1] de-

nes a standard for communication between processes, but
it does not provide support for intraprocess parallelism,
forcing programmers to rely on other libraries such as

OpenMP in hybrid MPI approaches [2–4]. While such
approaches allow for high-performance applications to be
developed, they require programmers to become experts in
multiple programming models and libraries.

�e Partitioned Global Address Space (PGAS) pro-
gramming model introduces elements that allow pro-
grammers to grasp the distributed nature of their program
directly from the language used. Several languages adopt this
programming model, including UPC, Chapel, and Haba-
nero-Java [5–9]. UPC supports the distribution of arrays
across processes, giving the illusion of a shared-memory
environment to programmers using “shared” pointers that
live in the global address space. It is, however, not possible to
choose a custom distribution or to dynamically modify the
distribution after array creation. Chapel also allows pro-
grammers to select cyclic, block-cyclic distributions for their
collection, but similarly does not allow subsequent changes
to this distribution.
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On the other hand, Charm++ [10, 11] proposes a unified
programming model for parallel and distributed computa-
tion. *e chare abstraction is used to represent a relocatable
object processing unit, with “messages” sent to and from
chares representing a remote procedure call. Load-balancing
is done by using the Charm++ runtime following pre-
implemented strategies, surrendering the distribution con-
trol to the system. *is makes developing location-aware
programs difficult. Also, the order into which messages are
processed is nondeterministic, which can cause difficulties if
the program needs to produce deterministic results.

Our objective is to allow programmers to manage the
entry distribution of collections both explicitly and dy-
namically. We aim at providing support for common
computation and communication patterns on these dis-
tributed collections as well as common parallel patterns
within a host. To this effect, we introduce in this article our
relocatable distributed collection library.

Relying on a combination of the APGAS for the Java
programming model [12] and MPI, our library makes it
possible to write complex distributed and parallel programs
with ease. *e distribution management of entries in our
distributed collections is explicit, making it possible for
programmers to freely re-organize entries over the course of
the program execution through high-level abstractions. We
introduce the notion of “teamed operation” to describe
computation or communication patterns that involve
multiple processes. We also propose a number of intranode
parallel patterns, such as reductions and producer/receiver.
Our distributed collections come with an API close to that of
the Java standard library, providing a sense of familiarity to
programmers who are then capable of reusing any prior
knowledge.

To demonstrate the benefits of our library, we ported two
programs from well-known benchmark suites [13, 14]. We
demonstrate superior programmability and performance
one of them, and reasonable overhead on the second. We
also demonstrate the capability of a simulator featuring
complex communication patterns to dynamically balance its
load on a Beowulf cluster featuring uneven performance
across compute nodes thanks to the features of our library.

*e remainder of this article is organized as follows. We
start by recalling some useful background in Section 2. We
then formally introduce key concepts of our relocatable
distributed collections in Section 3. In Section 4, we
showcase the main features of our library using actual
distributed programs written with our library. We then
discuss specific design choices and select implementation
details in Section 5. We evaluate the performance of our
library in Section 6 before discussing related work in Section
7. Finally, we conclude and discuss future work in Section 8.

2. Background

2.1. APGAS for Java. *e Partitioned Global Address Space
(PGAS) is a programming model that brings specific con-
structs to handle locality to a programming language. X10
further expands the PGAS programming model into
asynchronous PGAS (AGPAS) by providing support for

asynchronous activities through dedicated keywords [15].
*e APGAS for Java library [12] mimics the keywords of X10
using static methods to bring the expressiveness of themodel
to the Java language. With this library, Java effectively be-
comes an APGAS language.

An example “Hello World” program written with
APGAS for Java is presented in Listing1. In APGAS for Java,
class Place on line 2 is used to represent the locality and
corresponds to a process running on a host. *e process
allocation to physical computer is decided when launching a
program, with a typical approach consisting of assigning one
process (or “Place”) per host. Method asyncAt is used to
spawn an asynchronous activity on the place specified as
parameter. *e variables and objects used in the asyn-
chronous activity are automatically serialized to be trans-
mitted to process they are run.*e finish method on line 1 is
used to wait until all asynchronous activities transitively
spawned within its closure complete. In the example shown
in Listing 1, the main thread running on Place 0 will not
progress further than the finish method until all places have
written their “Hello” message on the standard output.

2.2. Combining APGAS withMPI. *ere are several projects
that bring MPI to the Java programming language [16–18],
most often through a compatibility layer implemented be-
tween the Java program and the “native” C MPI calls using
Java Native Interface.

*e APGAS for Java and MPI runtimes are quite
compatible. Each process becomes the combination of an
APGAS “Place” and an MPI “rank” and the terms “process,”
“Place,” and “rank” can, therefore, be used interchangeably
in this context. One difference when combining APGAS for
Java and MPI is that unlike pure MPI programs, only rank/
place 0 runs the program “main.” Code is executed on other
ranks through asynchronous activities managed by AGPAS.

3. Relocatable Distributed Collection Library

In this section, we present the fundamental concepts in-
troduced in our distributed collections library. We start by
introducing some supplements to the existing APGAS
constructs in Section 3.1. We then define what a distributed
collection is in the context of the APGAS programming
model in Section 3.2. We then present the notion of local
handle in Section 3.3. We then introduce the notion of
teamed operation and how our collections support intranode
parallelism in Sections 3.4 and 3.5.

Actual use-cases for our library will be presented in
Section 4, while design and implementation details are
detailed in Section 5.

3.1. Supplement to theAPGAS for JavaLibrary. As part of our
library, we introduced some classes that supplement the
existing APGAS constructs. While these additions have little
technical merit on their own, they bring some convenience
to the programming model of APGAS and are use
throughout our library. *e most significant addition for the
purposes of our library consists in class TeamedPlaceGroup.
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Class TeamedPlaceGroup represents a group of APGAS
places and proposes a broadcastFlat method taking a closure
as parameter. *is method spawns the provided closure in
an asynchronous activity on each place within the group and
returns when the provided closure has completed on all
places. A “world” group that contains all the places par-
ticipating in the computation is initialized by our library and
can be obtained through the TeamedPlaceGroup.getWorld()
method. Other groups containing a subset of the “world” can
be created at will.

We introduce Listing 2 to illustrate the benefit of using
class TeamedPlaceGroup. Notice that the broadcastFlat
method call on line 2 replaces the finish/asyncAt loop used
in Listing 1. Overall, it is a practical shorthand that simplifies
programs by mimicking the MPI programming style within
a clearly identified block. We use it extensively when writing
programs with our library. Internally, it carries an MPI
communicator that is used by our library to communicate
information between the places participating in the group. A
number of convenience methods that translate APGAS
places into MPI ranks and vice versa are also provided.

3.2. Relocatable DistributedCollections. In the context of the
APGAS programming model, a distributed collection con-
sists in a group of local handles linked by a globally unique
identifier. We say that a collection is defined on a group of
places to represent the fact that a collection has a handle on
each place belonging to this group. When creating a new
distributed collection, the TeamedPlaceGroup on which the
collection will be defined is given to the constructor as a
parameter. *e main collections we provide with our library
are summarized in Table 1.

Bag<T>. *e Bag collection (and its distributed variant
DistBag) consists in a (distributed) iterable set. Duplicated
entries are allowed. Special care was taken to its internal
structure for it to efficiently receive elements from multiple
concurrent threads.

CachableArray<T>. A cacheable array takes the form of
an array containing objects that need to be replicated on
each host and may be periodically updated. Custom seri-
alization and deserialization methods can be specified to use
a user-chosen object to transport the updates to replicas.

ChunkedList<T>. Class ChunkedList and its distributed
variants propose a collection that handles elements in
multiple one-dimension arrays mapped from ranges of long
indices. We call each of these arrays mapped from a range of
indices a “chunk.” Individual elements can be accessed and

set through their long index. Some computations and/or
manipulations on the distributed collections can be applied
on ranges of entries.

We developed variants based on this class, which allow
for more specific behaviors such as guaranteeing that
chunks are unique across all hosts, or for chunks to be
replicated on other hosts. *is enables the support of
various distributed applications in which the replication of
entries, entry distribution tracking, or other features are
desired.

DistMap<K,V>. *e distributed map DistMap is a ge-
neric distributed map taking K objects as keys and V objects
as values. DistMultiMap is similar, but allows for multiple
values to be mapped to a single key.

Before diving into specific features of our library, let us
first illustrate the notion of local handle and teamed oper-
ation with the sample program of Listing 3 and the ac-
companying Figure 1.

3.3. Local Handle of a Distributed Collection. In Listing 3, a
distributed map using String for both keys and values is
created on line 2.*is distributed collection is defined on the
entire “world”; that is, it will have a local handle on every
process participating in the computation. *en, a first entry
is inserted on the running process on line 3. *e call to
method put only acts on the local handle registered on this
place. As such, the “main”:“running” entry is only be reg-
istered on the Place 0 handle.

On line 5, a second call to method put registers new
entries into the distributed map. In this case, however, since
the call is contained in a broadcastFlat method call, every
place adds a new entry to their local handle. Contrary to
ordinary objects, the distributed collections used inside a
closure are not copied to the remote processes but instead
allocated on the fly. As a result, the dmap handles on Place
1–3 do not contain the entry previously placed in the handle
of Place 0. We provide more details about this topic in
Section 5.1.

Note that the key used to place new entries on line 5
differs on each host due to the APGAS method call here(),
which returns the Place object representing the currently
running process. Each local handle, therefore, contains a
different key (“place(0),” “place(1)” etc.) mapped to the
String “says hello,” as is reflected in the contents of each local
handle of dmap in Figure 1(a).

*is illustrates the fact that conforming to the AGPAS
programming model, all accesses to our distributed

(1) finish(()− >{
(2) for (Place p: places()) {
(3) asyncAt(p, ()− > {
(4) System.out.println(“Hello from”+ here()));
(5) }
(6) }
(7) });

LISTING 1: Distributed hello world program with APGAS for Java.
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collections are “local” in the sense that APGAS asynchro-
nous activities only ever interact with the handle of the
distributed collection located on the process they are
running.

3.4. Teamed Operations. Teamed operation is a generic term
that we use to describe operations or computations, which
involve some form of coordination or communication be-
tween the processes participating in the computation. In
Listing 3 from line 6 onwards, we present one such teamed
operation supported by our library in the form of an entry
relocation between the handles of the distMap distributed
collection.

A “collective move manager” is first created on line 6.
*is object is used to register entries of our distributed
collections to be transferred from a handle to another. In this

case, only the first place decides to relocate the main:running
entry to Place 1, with all other places keeping their current
entries. *e transfer is performed on line 10 when the
mm.sync() method is called by all the places participating in
the computation.*e final state of the distributed map dmap
is what is presented in Figure 1(b). In particular, note that
the main:running entry has been removed from the handle
on Place 0 and inserted into the handle of Place 1.

*ere are a variety of “teamed operations” implemented in
our library supporting various features, including reductions,
entry relocation, and replication. We will introduce the most
significant of them in the next section. *e key unifying
characteristic of all our teamed operations is that they require
the communication and synchronization between an asyn-
chronous activity from each Place within a certain place group.

In the example presented above, the group of processes
participating in a teamed relocation is determined by the

Table 1: Collection classes proposed by our library.

Collection Description
Bag<T> Iterable set
DistBag<T> Distributed variant of class Bag
CachableArray<T> Array used to share and replicate information across processes
ChunkedList<T> Arbitrary long-index array
DistChunkedList<T> Distributed variant of chunkedList
DistCol<T> Variant of DistChunkedList whose distribution is tracked
CachableChunkedList<T> Variant of DistCol whose entries can be replicated on multiple hosts
DistMap<K, V> Distributed map from K to V objects
DistConcurrentMap<K, V> Variant of DistMap with additional protections against concurrency
DistIdMap<V> Distributed map from long indices to V objects, its distribution is tracked
DistMultiMap<K, V> Distributed map from K objects to multiple V objects

Place 0 Place 1

“main” : “running”
“place (0)”: “says hello”

“place (1)”: “says hello”

: dMap handle

Place 2 Place 3

“place (2)”: “says hello” “place (3)”: “says hello”

(a)

Place 0 Place 1

Place 2 Place 3

“main” : “running”
“place (0)”: “says hello”

“place (1)”: “says hello”
“main” : “running”

“place (2)”: “says hello” “place (3)”: “says hello”

dMap.moveAtSync (“main”, place (1), mm);

(b)

Figure 1: State of the distributed map “dMap” in a 4-process execution of the Listing 3 program. (a) Before entry relocation and (b) after
entry relocation.

(1) TeamedPlaceGroup world�TeamedPlaceGroup. getWorld();
(2) world.broadcastFlat(()− > {
(3) System.out.println(“Hello from”+ here());
(4) });

LISTING 2: Equivalent program to Listing 1 using class TeamedPlaceGroup.
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TeamedPlaceGroup object passed to the constructor of the
collective move manager on line 6. Here, the world place
group is used, meaning that every place in the computation
needs an asynchronous activity to call mm.sync() before
they can respectively resume their progress even if they do
not send/receive any entry as part of the collective
relocation.

Teamed operations pair nicely with the broadcastFlat
method of class TeamedPlaceGroup, whose purpose is
precisely to launch an asynchronous activity on each place of
an identified group. *ere is, however, no requirement to
call “teamed operations” from within a matching broad-
castFlat. *is gives more experienced programmers the
freedom to implement complex synchronization patterns by
combining the usual finish/async constructs of APGAS for
Java with the teamed operations proposed by our library. For
instance, if we wanted to allow Place 2 and Place 3 to
continue their progress while Place 0 and Place 1 exchange
entries, a different TeamedPlaceGroup containing only the
first two places could be used when creating the collective
relocator on line 6, with only Place 0 and Place 1 calling the
mm.sync() method of that relocator on line 10.

3.5. Support for Intranode Parallelism. As we will demon-
strate in the next section, all our distributed collections
feature typical forEach, reduce, and other such methods that
take a closure as argument.*is closure is then applied to the
entries contained in the local handle of the distributed
collection. Parallel variations of these methods are also
implemented, allowing programmers to benefit from a
multithreaded runtime without having to manually schedule
the required threads.

Internally, we rely on the APGAS finish/async pair of
constructs to spawn and control the threads needed for
the parallel variants of these methods. For ChunkedList
and its variants, we allocate entries evenly between the
threads available on the local host. *is is made trivial by
the nature of this collection whose entries are recorded by
ranges.

Spawning explicit activities on the library side also helps
when objects dedicated to a single thread are needed by the
computation pattern. *is is the case for instance of the
parallel producer/receiver pattern, reductions, and “accu-
mulators,” presented in Section 4.2, Section 4.7, and Section
4.11 respectively.

In each of these computation patterns, our library
handles to allocation of the necessary objects for the threads
to work in isolation from one another. *is lightens the
burden on programmers, refocusing the program on the
computation at hand rather than the schedule needed to
support intranode parallelism.

4. Motivating Cases

In this section, we develop the abstractions available to
programmers using examples taken from distributed pro-
grams written with our library. We rely on the distributed
implementation of the PlhamJ financial market simulator, a

distributed K-means implementation, and the N-body
simulation MolDyn.

Following a brief presentation of each program, we il-
lustrate the abstractions and features they rely on in dedi-
cated subsections. *e features are presented in order of
appearance in their respective applications, but the reader
may choose to forego this order and browse by feature
category: intranode parallelism, teamed relocation, and
replication.

4.1. PlhamJ. Plham is a financial market simulator first
implemented in X10 [19]. Simulations are prepared using a
JSON configuration file, which details the agents, markets,
sessions, and events that will occur during the simulation.
Users of this program can prepare trader implementations
by extending the included Agent class. *e simulator pro-
duces configurable outputs based on the information
available over the course of the simulation, with the pro-
duced results deterministic following an initial seed. In-
ternally, several “runners” implementations are available
(sequential, parallel . . .).

A round of the Plham simulator comprises the following
steps. First, agents place orders based on the current market
information. Secondly, buy and sell orders placed by agents are
matched to contract trades, updating the state of the market.
Lastly, agents that have contracted a trade during this round are
informed.*ese steps then repeat using the updated state of the
markets for as many rounds as specified in the simulation
configuration.

To make use of larger-scale computer clusters, a dis-
tributed version of the Plham simulator is available. In this
implementation, traders are distributed over multiple pro-
cesses to leverage the greater parallelism of the underlying
distributed runtime. However, this poses a number of
challenges as the computation in charge of matching buy
and sell orders needs to remain centralized on a single
process (arbitrarily the first process, place 0) to provide the
opportunity for high-frequency traders to place orders based
on the most up-to-date market information.

As a consequence, we need to

(i) Propagate the updated state of the market to all the
hosts participating in the simulation.

(ii) Relocate the Order objects placed by agents to the
centralized order-processing host.

(iii) Dispatch the contracted trade notifications to the
processes that hold the intended Agent recipient.

To further complicate matters, if one of the processes
takes longer than the others to compute the orders of the
agents it was assigned, the progress of the entire program is
delayed. In nondedicated clusters, such a load unbalance can
be caused by disparities in the hardware used to support the
distributed computation (different CPUs, different fre-
quencies or number of cores), or by other processes com-
peting for resources. *is poses a challenge as it is not
reasonable to create a specific initial distribution for each
cluster and/or simulation. Moreover, even “ideal” distri-
butions would not be able to react to dynamic changes in the
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cluster’ performance. While we could implement dynamic
load-balancing of agent across hosts to resolve these situ-
ations as they occur, this poses a problem when sending
contracted trade information to agents as their location will
evolve dynamically over time.

PlhamJ is the Java implementation of Plham and was
rewritten using the features of our distributed collection
library. *is gave us the opportunity to revisit the imple-
mentation of some communication patterns as well as in-
tegrating a simple dynamic load balancer within the
simulator. Under the distributed implementation of this
simulator, a round takes place in 5 main computation and
communication steps represented in Figure 2:

(1) *e updated state of the markets is broadcast to its
replicas on the agent-handling processes.

(2) *e agent-handling processes collect the orders of
the agents they hold.

(3) *ese orders are gathered on the order-handling
process.

(4) *e order-handling process tries to match sell orders
with buy orders, creating an AgentUpdate object for
each agent involved in a trade. Meanwhile, the agents
are balanced between the other processes so that they
all take roughly the same time during the order
submission step. In our load-balanced version, this is
done every few rounds.

(5) *e agent updates are dispatched to their respective
Agent location (step 5.1) where the targeted agents
are informed are then informed of the trades they
made (step 5.2).

Place 0 Place 1 Place 2 Place 3

#2
#4
#7

#2
#4

#7
Ø

Ø

(1) Market information broadcast

(2) Order submission
(3) Order relocation to “master”

(4) Order handling

(5.1) Contracted trade info relocation

(5.2) Agent update

:
:
:

:
:

:

(4 -optional) Balancing of agents between Places

Order instance

AgentUpdate instance

Object relocation

Computation

CachableArray <Market> markets
handle (original / replica)

DistBag <Order> orderBag handle

DistMultiMap <Long,AgentUpdate>
contractedOrders handle

DistCol <Agent> handle

Agent instance

Market instance

Figure 2: Figurative representation of the communications and computations processes that take place during a round of the Plham
simulation.
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In the following subsections, we detail the accompanying
code and the various features of our library that support this
implementation.

In an effort not to overwhelm the reader, we chose to
introduce the relevant code piece by piece in each subsec-
tion. Listing 4 consolidates all of them into a single listing.

4.1.1. Replication: Cacheable Array. In the Plham simulator,
the most up-to-date market information is located inMarket
objects located on the order-processing place. To replicate
the updated state of the market information to the other
processes in the computation, we rely on class Cacha-
bleArray as shown in Listing 5.

*e replicas on the other processes are updated using the
teamed operation broadcast of line 15. *is method is called
by all hosts participating in the computation and also serves
as a synchronizing mechanism between the asynchronous
activities running the simulation on each host.

*e two methods given as parameter to this function,
pack and unpack, are, respectively, used to extract infor-
mation from the market objects and record it into a Mar-
ketUpdate object, and to update the market replica based on
the information contained in the MarketUpdate object. *is
allows the user to choose any object to carry the data
necessary to update the objects.

4.1.2. Intranode Parallelism: Producer/Receiver. In the sec-
ond step of a PlhamJ iteration, every agent is asked to submit
its orders based on the current Market information. *is
consists in calling method submitOrders on every Agent
object participating in the computation.*ismethod returns
a list of orders, with agents able to place a single, multiple, or
no orders at all. In Figure 2, we represented a total of 14
orders submitted by the agents during step (2).*e order are
collected into the DistBag “orderBag.”

*e corresponding code is shown in Listing 6. *e
method parallelToBag called on line 5 relies on the in-
ternal features of class DistBag to allow multiple threads
to concurrently place the orders into the local handle of
this collection. *is method takes two parameters. *e
first one is a closure taking an Agent and an “order-
Collector” as parameter. *is closure will be applied to

every agent in the local agents handle in parallel, with the
“orderCollector” taking the value Bag instance being used
to collect the orders. *e second parameter to method
parallelToBag is the Bag into which all collected objects
will be placed.

In this particular case, empty or null lists returned by
agents that choose not to place any new order for this round
are discarded using the condition on line 9. In cases where
every entry in the collection produces an object to record in
the specified bag, more simple signatures of the paral-
lelToBag method can be used.

4.1.3. Teamed Relocation: Gather. After each place has
gathered the orders placed by its agents, all the orders are
relocated to the order-processing place where they will
match to create trades.

*is is performed when each host calls the gather
method of class DistBag, as shown on line 15 of Listing 6.
*is method is a teamed operation, which needs to be called
on every handle of the distributed collection orderBag for
the calling activities to progress. As such, it is used as a
synchronization point between place 0 (which does not
produce orders during the second step) and the other agent-
processing places.

When the relocation has completed and all the orders
produced during this rounds have been relocated to place 0,
the order-matching computation of step (4) begins on Place
0.

4.1.4. Teamed Relocation: Dispatch. During the order-
handling process, each trade contracted results in two
AgentUpdate objects to be created, one for each Agent
involved in the trade.

In Figure 2, we show 2 trades to be contracted: one trade
between agents #2 and #4, and a second trade between agents
#2 and #7. *ese agent updates are placed into the con-
tractedOrders distributed multimap at the index matching
their intended agent recipient. In other words, if agent #2
(contained in collection agents) contracts a trade, the “agent
update” containing this information is placed at index #2 in
the contractedOrders handle of Place 0.

(1) TeamedPlaceGroup world�TeamedPlaceGroup. getWorld();
(2) DistMap< String, String> dMap�new DistMap<>(world);
(3) dMap.put(“main,” “running”);
(4) world.broadcastFlat(()− >{
(5) dMap.put(here(), “says hello”);
(6) CollectiveMoveManager mm�new CollectiveMoveManager(world);
(7) if (here()� � place(0)) {
(8) dMap.moveAtSync(“main,” place(1), mm);
(9) }
(10) mm.sync();
(11) });

LISTING 3: Distributed map creation, record insertion, and relocation example.
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To inform the agents of the trades they contracted during
this round, the entries of contractedOrders first need to be
relocated to the location of their intended recipient. *is is
done as part of step (5.1) where the current distribution of
collection agents is used to determine the new location of
each entry in the multimap.

*e corresponding code is shown in Listing 7. First, the
current distribution of agents is retrieved on line 6. *is is
possible thanks to the distribution tracking mechanism
integrated in class DistCol, which contains the agents par-
ticipating in the simulation. *en, the entries of collection
contractedOrders are relocated at the place where the

(1) // Simulation-related collections
(2) CachableArray<Market> markets; // market information
(3) DistCol<Agent> agents; // agents
(4) DistBag<List<Order>> orderBag; // orders submitted by agents
(5) DistMultiMap< Long, AgentUpdate> contractedOrders; // trades contracted by agents
(6) // Runtime variables
(7) TeamedPlaceGroup world�TeamedPlaceGroup.getWorld(); // group of places involved in the computation
(8) boolean isMaster� here()� � place(0); // orders are handled by master� place(0)
(9) long accumulatedOrderComputeTime� 0l; // time spent on agent order-submission as part of (step 2)
(10) int lbPeriod� 10; // load-balance period (configurable)
(11) int iter; // current iteration number
(12)
(13) world.broadcastFlat(() -> {
(14) // (1) Broadcast the updated state of markets
(15) markets.broadcast(MarketUpdate:pack, MarketUpdate:unpack);
(16) // (2) Submit agent orders
(17) long startOrder� System.nanoTime();
(18) if (!isMaster) agents.parallelToBag((agent, orderCollector) -> {
(19) List<Order> orders� agent.submitOrders(markets);
(20) if (orders !�null && !orders.isEmpty()) {orderCollector.accept(orders);}
(21) }, orderBag);
(22) accumulatedOrderComputeTime� System.nanoTime() - localSubmitTime;
(23) // (3) Collect all orders on the ’’master’’ place(0)
(24) orderBag.team().gather(place(0));
(25) // (4) Match buy and sell orders, populating `contractedOrders`
(26) finish(()->{
(27) // (4 - optional) balance the agents between places 1..n
(28) if (iter % lbPeriod� � 0) {
(29) async(()->{
(30) // Exchange time information between hosts
(31) long [] computationTime�world.allGather1(accumulatedOrderComputeTime);
(32) CollectiveMoveManager mm� new CollectiveMoveManager(world); // prepare a relocator
(33) performLoadBalance(computationTimes, mm); // various relocation strategies possible
(34) mm.sync(); // perform the relocation
(35) accumulatedOrderComputeTime� 0l; // reset accumulated order-submission time
(36) agents.updateDist(); // update the agents’ distribution after relocation
(37) });
(38) }
(39) if (isMaster) {handleOrders();} // details of this procedure omitted
(40) });
(41) // (5) Inform the agents of the trades they made
(42) // (5.1) Relocate contracted trade information to agents’ location
(43) LongRangeDistribution agentDistribution� agents.getDistribution();
(44) contractedOrders.relocate(agentDistribution);
(45) // (5.2) Update the agents that contracted a trade
(46) if (!isMaster) contractedOrders.parallelForEach((idx, updates) -> {
(47) // Retrieve the agent targeted by the update
(48) Agent a� agents.get(idx);
(49) // Apply each update for this agent
(50) for (AgentUpdate u: updates) {a.executeUpdate(u);}
(51) });
(52) }); end of broadcastFlat block

LISTING 4: Main procedure of the PlhamJ distributed simulator.
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corresponding agent is located by calling method relocate on
line 8.

*is method is a teamed operation, which relocates the
entries it contains to match the distribution given as pa-
rameter. In this particular example, the location of Agent is
recorded in a mapping from ranges of indices to Place
objects. *is distribution is assimilated as a distribution
from long indices to Place object by class DistMultiMap to
determine the new location of each individual key recorded
in contractedOrders.

For the illustration purposes of Figure 2, we assume that
both agent #2 and #4 are located on place 1, while place 2
holds agent #7. *e entries of the contracted trade infor-
mation are, therefore, relocated according to this distribu-
tion; contractedOrders entries with keys #2 and #4 are
relocated to Place 1, and the entry with key #7 is relocated to
Place 2. Place 3 holds no agents that were able to make a
trade in this round.

In step (5.2), each agent that contracted trades during the
previous round receives its updates in parallel using a typical
parallelForEach shown from line 9 to 17 in Listing 7. *e
signature used here takes both the index (idx) and the list of
updates (updates) contained in collection contractedOrders
as parameter. *is allows retrieval of the targeted agent
instance on line 12 by calling agents.get(idx).

4.1.5. Teamed Relocation: Load Balancing. In the situation
presented in Section 4.2, the order submission of agents
takes place in parallel on several processes. Initially, agents
are distributed evenly across processes. However, this may
not be ideal as disparities in the hosts used or the presence of

competing processes on said host may introduce imbalance
in the cluster.

As a result, some hosts take longer than other to process
the agents they hold, delaying the progress of the entire
simulation. We represented this in Figure 2 by different
arrow lengths in step (2), with Place 1 taking longer than all
the other hosts to complete the order submission.

Fortunately, our relocatable distributed collection li-
brary allows us to take measures when such a case occurs.
In the PlhamJ simulator, we introduced a load balancer
mechanism shown in Listing 8. On each host, the amount
of time dedicated to computing the orders is accumulated
into the local accumulated Order Compute Time variable
(not shown in previous listings, refer to lines 17 and 22 of
Listing 4). After a chosen number of iterations have
elapsed, the optional load-balancing step is triggered on
line 9. *e load-balancing is performed in a dedicated
asynchronous activity spawned using the APGAS async
method. *is means the load balancing (lines 9 to 19 in
Listing 8) is done concurrently to the order-handling on
Place0 (method handleOrders on line 21). *e program
progresses to the following step only when both the order
handling and the load-balancing have completed thanks to
the finish of line 7, which contains both of these
operations.

*e transfer of agents is made using a collective relocator,
as was previously introduced in Section 3.4. To determine
the number of agents to transfer, the processes first exchange
the amount of time they each spent on the order submission
part of the main loop using an allGather1 call on lines 13–14.
*is information serves as the basis for each host to decide if
it gives agents away inside the performLoadBalance method

(1) DistCol<Agent> agents;
(2) DistBag<List<Order>> orderBag;
(3) world.broadcastFlat(() -> {
(4) // (2) Submit agent orders
(5) if (!isMaster) agents.parallelToBag((agent, orderCollector) -> {
(6) List<Order> orders� agent.submitOrders(markets);
(7) if (orders !�null && !orders.isEmpty()) orderCollector.accept(orders);
(8) }, orderBag);
(9) // (3) Collect all orders on the ’’master’’
(10) orderBag.team().gather(place(0));
(11) });

LISTING 6: Parallel order collection and relocation in the Plham simulator.

(1) CachableArray<Market> markets;
(2) world.broadcastFlat(() -> {
(3) // (1) Broadcast the updated state of markets
(4) markets.broadcast(MarketUpdate:pack, MarketUpdate:unpack);
(5) });

LISTING 5: Replication of Market objects in the PlhamJ simulator.
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called on line 15. In this method, the agent instances to
relocate are registered into the collective relocator previously
created on lines 11–12.

As a first approach, we chose to relocate agents from the
most overloaded process to the most underloaded process.
We call this simplistic load-balancing strategy “level-ex-
tremes.” We will be able to revisit this part in later work to
implement more sophisticated strategies.

*e agents are then transferred between the handle of
collection agents when the teamed method sync is called
on line 16. In Figure 2, we represented this by one agent
held by Place 1 being relocated to Place 2 to reflect the
load-balancing decision based on previous iterations. In
reality, entire ranges of agents will be relocated,
depending on how severely unbalanced the situation is.
*e counter that tracks the time spent computing the
agents’ orders is then reset on line 17 so that the next

load-balancing round takes information relevant to this
new distribution.

We offer more details about the ways programmers can
use to relocate entries of our distributed collections in
Section 5.2.

4.1.6. Distribution Tracking. In the absence of an integrated
entry location record, managing a distribution record
manually comes with tremendous effort. In essence, tracking
the location of entries of a distributed collection requires the
active maintenance of a second distributed collection, with
each insertion, removal, and transfer of an entry in the first
collection requiring an update into the second. *is would
greatly obfuscate the code and increase the chances of in-
troducing bugs into the program.

In our library, we have implemented the facilities that
allow for the tracking of entry location and relocation in two

(1) DistCol<Agent> agents;
(2) DistMultiMap< Long, AgentUpdate> contractedOrders;
(3) world.broadcastFlat(() -> {
(4) // (5) Inform the agents of the trades they made
(5) // (5.1) Relocate contracted trade information to agents’ location
(6) LongRangeDistribution agentDistribution� agents.getDistribution();
(7) contractedOrders.relocate(agentDistribution);
(8) // (5.2) Update the agents that contracted a trade
(9) if (!isMaster) contractedOrders.parallelForEach((idx, updates) -> {
(10) // Retrieve the agent targeted by the update
(11) Agent a� agents.get(idx);
(12) // Apply each update for this agent
(13) for (AgentUpdate u: updates) {a.executeUpdate(u);}
(14) });
(15) }); // end of broadcastFlat block

LISTING 7: Dispatch of contracted order updates and agent update.

(1) DistCol<Agent> agents; // agents
(2) int lbPeriod� 10; // load-balance period (configurable)
(3) int iter; // current iteration number
(4) world.broadcastFlat(() -> {
(5) finish(()->{
(6) // (4 - optional) balance the agents between places 1..n
(7) if (iter % lbPeriod� � 0) {
(8) async(()->{
(9) // Exchange time information between hosts
(10) long [] computationTime�world.allGather1(accumulatedOrderComputeTime);
(11) CollectiveMoveManager mm�new CollectiveMoveManager(world); // prepare a relocator
(12) performLoadBalance(computationTimes, mm); // various relocation strategies possible
(13) mm.sync(); // perform the relocation
(14) accumulatedOrderComputeTime� 0l; // reset accumulated order-submission time
(15) agents.updateDist(); // update the agents’ distribution after relocation
(16) });
(17) }
(18) if (isMaster) handleOrders(); // details of this procedure omitted
(19) });
(20) });

LISTING 8: Load Balance step in PlhamJ simulator.
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of our distributed collections, the distributed arbitrary index
array DistCol, and the distributed map DistIdMap. *e
premise of tracking the location of a distributed collection’s
entries implies that there exists some way to uniquely
identify each entry. In both of these collections, individual
entries can be identified by their unique long index.

Our distribution tracking system associates each index
with the location (Place) of the associated record. However,
in a concern for efficiency, we do not keep a location record
for each individual index in the case of class DistCol. Instead,
we rely on range descriptions of locations to reduce the
number of key/value pairs necessary to record of the location
of each entry in these distributed collections.

*e information concerning entries relocated between
handles or entries added/removed from a handle is not
eagerly propagated to the other handles of the distributed
collection. Instead, our distribution management pro-
poses a teamed update method through which the local
distribution records of a collection are reconciled to
reflect the actual distribution at the moment of the call.
We took care in the implementation of this process to
only communicate the distribution changes that occurred
since the previous updateDist call in order to minimize
the amount of information exchanged. *is is a teamed
operation, which consists in reconciling the distribution
information contained in each handle of the distributed
collection.

In the PlhamJ simulator, we use class DistCol to contain
the agents participating in the computation. It is the dis-
tribution tracking facilities of this class that allow us to
dynamically relocate agents over the course of the simulation
without compromising the dispatch of contracted trades
update as was laid out in Section 4.4. After agents have been

relocated, method updateDist is called on line 18 of Listing 8
to refresh the distribution information contained in each
handle. As a result, the distribution of agents obtained on
line 6 of Listing 7 during the subsequent contracted trade
dispatch will be up-to-date, guaranteeing that each agent
involved in a trade receive their intended updates in step (5)
of the PlhamJ round.

4.2. K-Means. K-Means is an iterative clustering algorithm,
which separates points into a predefined “k” number of
clusters. *ere are three steps in a K-means iteration.
Starting with randomly selected initial centroids, each point
is assigned to the cluster of its closest centroid. *en, the
average position of each cluster is computed. Finally, the
point closest to each average position is chosen as the new
centroid for the next iteration.

We chose to adapt the K-means algorithm from the Java
Renaissance benchmark suite [13]. We rely on class Dis-
tChunkedList to contain the points subject to the algorithm.
In this distributed version, each place participating in the
computation takes care of the points it contains in its local
handle. Listing 9 presents the main computation loop of our
distributed K-means implementation. *e assignment of
each point to a cluster is done in parallel using a paral-
lelForEach method call on line 12. On the other hand, the
average cluster position and the selection of the next cen-
troid are implemented as teamed reductions on lines 17 and
22, respectively. First, we will discuss the implementation of
a reducer and its embedded support for parallelism in
Section 4.7. *en, we will discuss the difference between a
“local” reduction and the “teamed” reduction used in K-
means in Section 4.8.

(1) TeamedPlaceGroup world�TeamedPlaceGroup.getWorld();
(2) DistChunkedList<Point> points; // initialization omitted
(3) double[][] initialClusterCenter; // randomly chosen
(4)
(5) world.broadcastFlat(() -> {
(6) double[][] clusterCentroids� initialClusterCenter;
(7) for (int iter� 0; iter< repetitions; iter++) {
(8) final double[][] centroids� clusterCentroids;
(9) // Assign each point to a cluster
(10) points.parallelForEach(p -> p.assignCluster(centroids));
(11)
(12) // Compute the avg position of each cluster
(13) AveragePosition avgClusterPosition� points.team().
(14) parallelReduce(new AveragePosition(K, DIMENSION));
(15)
(16) // Compute the new centroid of each cluster
(17) ClosestPoint newCentroids� points.team().
(18) parallelReduce(new ClosestPoint(K, DIMENSION, avgClusterPosition));
(19)
(20) // Update the centroids for the next iteration
(21) clusterCentroids�newCentroids.closestPointCoordinates;
(22) }
(23) });

LISTING 9: Distributed K-means implementation with our collection library.
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4.2.1. Intranode Parallelism: Reduction. To compute a re-
duction on the objects of one of our collection, a “reducer”
object needs to be prepared. *is is the nature of classes
AveragePosition and ClosestPoint, which are used on lines
16 and 21 of Listing 9. *ese classes are in charge of
computing the average cluster positions and the new cen-
troids, respectively. Both of these classes are user-defined
and extend the generic abstract class Reducer provided by
our library.

As part of a Reducer implementation, programmers
need to provide 3 methods:

(i) *e newReducer method, which creates a new in-
stance of the reducer.

(ii) *e reduce(T) method, which reduces the given T
object into this reducer instance.

(iii) *e merge(R) method, which merges the contents
of the reducer given as parameter into this instance.

When creating a custom reduction object, the pro-
grammer need not care about concurrency. Our library
ensures that no reducer object is used concurrently by
multiple threads.

When computing a parallel reduction, each thread
participating in the computation is given its own dedicated
reducer instance obtained through the newReducer()
method of the reducer object supplied as parameter. Each
thread then calls method reduce(T) on the entries of the
collection it was allocated with its dedicated reducer in-
stance. When all threads have reduced their attributed en-
tries, the reducer objects are merged back into a single
instance using method merge(R) to obtain the final result.

4.2.2. Teamed Reduction. A local reduction consists in a
reduction computed on the entries contained in a single
local handle. A teamed reduction on the other hand is a
reduction, which is computed on all the entries contained
in all the local handles of a distributed collection. *ey are
accessible through a special team() method to distinguish
them from the reduction, which operates on the local
handle only. In other words, method parallelReduce(R)
operates on the contents of the local handle of a distributed
collection, while method team().parallelReduce(R) used in
the K-means implementation shown in Listing 9 computes
the reduction on the contents of the entire distributed
collection.

A teamed reduction takes place in two stages. First, a
“local” reduction is computed following the process detailed
in the preceding section. *en, the local results of each
handle are merged together into a single instance, which is
then returned as the result by each of the calling activities.
Internally, an MPI allReduce call is made to communicate
and compute the global result of the reduction across all
running processes. *e MPI communicator used to make
this call is the one of the TeamedPlaceGroup on which the
collection is defined. *e registration of the user-supplied
reducer object necessary to use MPI object reductions is
made automatically by our library.

*e underlying use of MPI routines remains hidden
from the user. *e only practical consequence is that the
teamed reduction call is blocking until all handles of the
distributed collection complete their local reduction and
exchange their results, after which each thread resumes its
progress.

4.3. MolDyn. MolDyn is a molecular simulation part of the
Java Grande benchmark suite [14] implemented with the
MPI/Java compatibility layer MPJ [17]. It consists in a
N-body simulation with all the force interaction between all
the particles computed. *e particles are replicated on every
host, with each host responsible for computing a subset of
the force interactions. *is information is then communi-
cated between all hosts before updating the position and
velocity of each particle.

An iteration of the distributed MolDyn program takes
place in three stages. First, a subset of the force interactions
between the particles is computed on each host. *en, the
force subjected to each particle is summed across hosts using
an MPI allreduce call. Finally, the position and velocity
vectors of particles are updated.

We ported this benchmark using our distributed col-
lections library to a hybrid implementation taking advantage
of the multithreaded capabilities available within each
process. *e arrays of double used in the original imple-
mentation were converted to Particle objects managed by a
CachableChunkedList.

Contrary to the previous examples we showed in this
section, the computation pattern brought by MolDyn is
no longer strictly “owner-based.” Instead of a particle
operating based on its own information, it is the inter-
action between each pair of particles that serves as the
basis for the computation. To support such patterns, we
introduced class RangedListProduct. *is class is used to
represent combination pairs between the entries of two
ChunkedLists as depicted in Figure 3 and provides a
number of iterators and forEach methods that act on the
pairs it contains.

As we did for PlhamJ, we will introduce the features
needed to support this program piece by piece in the fol-
lowing subsections. *e consolidated MolDyn program can
be found in Listing 10. *e reader familiar with this
benchmark will notice that the temperature scaling and the
performance tracking are absent from the code we present
here. *ese parts are included in our actual program, but we
chose to omit them here to focus on the core part of the
program.

4.3.1. Replication: CachableChunkedList. We use the
CachableChunkedList distributed collection to contain the
particles of the simulation. Similar to the CachableArray
previously discussed in Section 4.1, this collections allows for
entries to be replicated on multiple hosts. However, unlike
the CachableArray, CachableChunkedList allows for mul-
tiple handles to be the primary owners of certain ranges of
entries where the former only allows a single source to
update the replicas.
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In the case of the MolDyn simulator, the particles are
initialized on the first process in the distributed system. At
the start of the computation, these entries are replicated on
the other hosts by calling the share method on lines 8–12 in
Listing 11. *is teamed method takes one or multiple ranges
as parameter and replicates the matching ranges of entries
on the other hosts. In this particular case, only the first
process shares the range of initialized particles on line 9,
while the other processes (that do not contain any entries)
merely receive the ranges shared by the other processes by
calling the share method without arguments on line 11.

4.3.2. Ranged List Product. Creating a product between two
ranged lists is done by calling a factory methods provided by
class RangedListProduct. In Listing 12, this is done on line 9
where the newProductTriangle method is called. *e ranged
list containing the particles is given as argument to this
method as it takes the role of both operands. We note that
this method eliminates the mirrored pairs as depicted in
Figure 3: only the pairs residing in the upper triangle are
included in the product object.

In a second stage, the pairs of entries to process by each
host are determined by calling the teamedSplit method on
line 11. *is method performs two operations. First, it splits
the pairs contained in the product into tiles, creating as
many columns and lines as was specified as parameter. If we
assume that there are 100 particles in the simulation and that
5 columns and 5 rows are created, each tile will cover and
area of 20× 20 pairs, as depicted in Figure 3.

*en, a new instance of RangedListProduct containing a
subset of the created tiles is returned.*e TeamedPlaceGroup

given as parameter is used to determine the number of hosts
involved in the “split.” *e running process’ position inside
the group and the seed are used to select the assignments
returned by this method call.

Although not communication takes place, we still
consider this operation to be “teamed” as it needs to be called
with the same parameters on all processes participating in
the computation to operate correctly. *is guarantees that
every tile gets processed by at least one host as depicted in
the lower part of Figure 3.

We note that the use of tiles in our implementation
differs from the original MolDyn implementation where the
rows of the upper triangle are allocated to each host in a
cyclic manner.

4.3.3. Intranode Parallelism: Accumulator. *e conversion
to a hybrid implementation, which uses local parallelism to
compute the force interaction between the particles, brings
about an additional challenge compared to the single-
worker-per-host implementation of the Java Grande
benchmark. In the original implementation, the force sum
can be written directly to the particles. However, in a hybrid
implementation, this is no longer possible as there would a
risk that two threads concurrently write the contribution of
interactions involving the same particle. To address this
issue, we introduced what we call accumulators to our
library.

*is mechanism (no relation to the LongAccumulator or
the DoubleAccumulator classes from the standard atomic
package) is used by threads participating in a parallel
computation to store information independently from one
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Figure 3: Illustration of the teamed split product used to represent the particle interaction pairs in our MolDyn implementation.
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(1) TeamedPlaceGroup world�TeamedPlaceGroup.getWorld();
(2) LongRange particleRange�new LongRange(0, nbParticles);
(3) CachableChunkedList<Particle> particles;
(4) world.broadcastFlat(() -> {
(5) if (world.rank()� � 0) {
(6) particles.share(particleRange);
(7) } else {
(8) particles.share();
(9) }
(10) });

LISTING 11: Particle replication in MolDyn.

(1) TeamedPlaceGroup world� 2 TeamedPlaceGroup.getWorld();
(2) LongRange particleRange�new LongRange(0, nbParticles);
(3) CachableChunkedList<Particle> particles;//Init omitted
(4) int Ndivide� 5;//Number of columns/lines into which the product pairs are split
(5) long seed� 0;//Seed used to assign the tiles to hosts
(6) world.broadcastFlat(() − > {
(7) //Replicate the particles across process
(8) if (world.rank()� � 0) {
(9) particles.share(particleRange);
(10) } else {
(11) particles.share();
(12) }
(13) //Prepare the interaction pairs
(14) RangedList<Particle> prl� particles.getChunk(particleRange);
(15) RangedListProduct< Particle, Particle> product�RangedListProduct.newProductTriangle(prl, prl);
(16) //Split interactions into tiles and assign them to hosts
(17) product� product.teamedSplit(Ndivide, Ndivide, world, seed);
(18) //Prepare an accumulator for the force computation
(19) Accumulator<Sp> acc�new AccumulatorCompleteRange<>(particleRange, Sp:newSp);
(20) for (i� 0; i< iter; i++) {
(21) //Compute the force contribution of each pair
(22) product.parallelForEachRow(acc, (Particle p, RangedList<Particle> pairs, tla) − > {
(23) force(p, pairs, tla);
(24) });
(25) //Merge all the force contributions in the accumulators back into the designated particles
(26) particles.parallelAccept(acc, (Particle p, Sp a) − > p.addForce(a));
(27) //Sum the force contributions across all hosts for each particle
(28) particles.allreduce((out, Particle p) − > {
(29) out.writeDouble(p.xforce);
(30) out.writeDouble(p.yforce);
(31) out.writeDouble(p.zforce);
(32) }, (in, Particle p) − > {
(33) p.xforce� in.readDouble();
(34) p.yforce� in.readDouble();
(35) p.zforce� in.readDouble();
(36) }, MPI.SUM);
(37) //Move the particles based on the computed force
(38) particles.parallelForEach(p − > move());
(39) }
(40) });

LISTING 10: Hybrid MolDyn implementation.
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another. *e Accumulator object serves as a factory for
multiple “thread-local accumulators,” which are objects
dedicated to an individual thread during a parallel com-
putation. In turn, each of these “thread-local accumulators”
will contain individual objects of any user-chosen type into
which information can be stored at a specified index. *ese
individual objects are initialized using the function given as
parameter at the time of the Accumulator creation.

An accumulator’s lifecycle takes place in 3 phases: (1)
creation, (2) accumulation of information into the accu-
mulator, and (3) acceptance of the accumulated information
by an existing collection. In the case of MolDyn, the

accumulator used during the force computation is created
on lines 14 of Listing 12. *e type used to store information
in regard to each particle is class Sp, which contains 3 double
members to represent the “x, y, z” force components.

*e force computation takes place on lines 18, 19. Let us
briefly detail what method parallelForEachRow does. *e
closure it takes as parameter will be applied to each row of
the tiles contained in the underlying RangedListProduct.*e
first parameter of the closure Particle p consist in the first
half of the particle pairs to compute within this method,
while the second half of the pairs are provided by the second
RangedList<Particle> pairs argument. Inside method force,

(1) TeamedPlaceGroup world�TeamedPlaceGroup.getWorld();
(2) LongRange particleRange� new LongRange(0, nbParticles);
(3) CachableChunkedList<Particle> particles;
(4) int Ndivide� 5;
(5) long seed� 0;
(6) world.broadcastFlat(() -> {
(7) // Prepare the interaction pairs
(8) RangedList<Particle> prl� particles.getChunk(particleRange);
(9) RangedListProduct< Particle, Particle> product�RangedListProduct.newProductTriangle(prl, prl);
(10) // Split interactions into tiles and assign them to hosts
(11) product� product.teamedSplit(Ndivide, Ndivide, world, seed);
(12)
(13) // Prepare an accumulator for the force computation
(14) Accumulator<Sp> acc�new AccumulatorCompleteRange<>(particleRange, Sp:newSp);
(15)
(16) // Compute the force contribution of each pair
(17) product.parallelForEachRow(acc, (Particle p, RangedList<Particle> pairs, tla) -> {
(18) force(p, pairs, tla);
(19) });
(20)
(21) // Merge all the force contributions in the accumulators back into the designated particles
(22) particles.parallelAccept(acc, (Particle p, Sp a) -> p.addForce(a));
(23) });

LISTING 12: Force interaction computation using RangedListProduct and Accumulators in MolDyn.

(1) TeamedPlaceGroup world�TeamedPlaceGroup.getWorld();
(2) CachableChunkedList<Particle> particles;
(3) world.broadcastFlat(() -> {
(4) // Sum the force contributions accross all hosts for each particle
(5) particles.allreduce((out, Particle p) -> {
(6) out.writeDouble(p.xforce);
(7) out.writeDouble(p.yforce);
(8) out.writeDouble(p.zforce);
(9) }, (in, Particle p) -> {
(10) p.xforce� in.readDouble();
(11) p.yforce� in.readDouble();
(12) p.zforce� in.readDouble();
(13) }, MPI.SUM);
(14) // Move the particles based on the computed force
(15) particles.parallelForEach(p ->move());
(16) });

LISTING 13: Force reduction on each particle in the MolDyn simulation.
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the force resulting of each interaction is stored into the Sp
instance dedicated to the involved particles. *e thread-
dedicated Sp instances are available through the third pa-
rameter of the closure: tla. *is parameter is populated by
our library using the acc accumulator given as the first
parameter to the parallelForEachRow method on line 17.

Finally, the information stored in the various Sp objects
is used to apply changes to the particles using the paral-
lelAccept method as demonstrated on lines 22 of Listing 12.
*e closure given as parameter to the parallelAccept
method sums the force vectors contained in the various Sp
instances into the dedicated member of the particles. In-
ternally, this closure is applied to each Sp instances pre-
pared for each thread that participated during in the
“accumulation” phase.

Here, we demonstrated the use of the accumulator for a
single computation before using it to modify a collection. It
is also possible to perform multiple accumulations on
various collections before “accepting” the accumulator.

4.3.4. Replication: Reduction. After the force contribution
computed on each host has been completed and integrated
into the local replicas of each particle, the replicas all bear
different force components due to the different subset of
interactions that was computed on each host. To reconcile
the force subjected to each particle, a reduction is made on
each particle shared by the local handles of the Cacha-
bleChunkedList used to support the program.

*is is done on lines 5–13 in Listing 13 using method
allreduce. *is is a specific feature of class Cacha-
bleChunkedList operating on the entries shared across hosts.

Unlike the teamed reduction discussed in the context of K-
means in Section 4.8, in this situation, each particle replica of
matching indices is reduced into a single instance and stored
back into the local handle of the particles collection.

Contrary to previous examples of object relocation and
replication, we demonstrate here the capabilities of our li-
brary to support primitive-type communication patterns. In
this case, the force information is converted from each
particle into three double using the first closure running
from lines 5 to line 8. *en, the MPI operation MPI.SUM is
used to reduce these raw types. Finally, the reduced values
are written back into the particle entries in each host using
the second closure running from lines 9 to 12.

Internally, buffer arrays of the appropriate length are
automatically allocated based on the number of entries
shared between hosts and the number of raw types used to
describe each entry.*is allows for more efficient use of MPI
functionalities as serializing the entire particle object and
implementing a custom reduction on this object is not
necessary here.

After the force subjected to each particle has been
consolidated across all hosts, each particle “moves” (i.e.,
updates its position and velocity vector) on line 15 of
Listing 13, concluding an iteration of the program.

5. Design and Implementation

In this section, we detail select design elements and
implementation topics of our distributed collection library
that were not detailed in the preceding section. We also
briefly demonstrate how to compile and execute programs
with our library.

(1) DistBag<Integer> bag;
(2) DistChunkedList<Element> cl;
(3) DistMap< String, String>map;
(4) TeamedPlaceGroup world�TeamedPlaceGroup.getWorld();
(5) final int n�world.size();
(6) world.broadcastFlat(() -> {
(7) // Prepare the collective relocator
(8) CollectiveMoveManager mm� new CollectiveMoveManager(world);
(9) Place destination� place((here().id + 1)%n);
(10)
(11) // Relocation in bulk
(12) bag.moveAtSyncCount(20, destination, mm);
(13)
(14) // Relocation by range
(15) for (LongRange range: cl.ranges()) {
(16) cl.moveRangeAtSync(range, destination, mm);
(17) }
(18)
(19) // Relocation by key-> destination function
(20) Function< String, Place> relocationRule � (String key) -> destination;
(21) map.moveAtSync(relocationRule, mm);
(22)
(23) mm.sync(); // Perform the transfer
(24) });

LISTING 14: Rotation of entries between processes using a collective relocator.
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5.1. Lazy Allocation of Local Handles. For every distributed
collection whose classes we presented in Table 1, there is in
reality one instance of the corresponding class on each
process on which the collection is defined. *ese instances
implement what we refer to as the “local” handles of dis-
tributed collections.

When a distributed collection is created, a local handle
bearing a globally unique identifier is created on the process
on which the constructor was called. Handles on the other
processes are not created immediately. Instead, we imple-
mented a “lazy” allocation mechanism to create the handles
of distributed collections on the other processes. Under this
mechanism, the local handle of a collection is allocated on
remote hosts the first time a distributed collection is used in
an asynchronous activity executed on a remote host.

We resolved these issues by modifying the serialization
of our distributed collections such that the table of global
ids is checked upon deserialization. If there are no bindings
for the global id of the distributed collection being dese-
rialized, the constructor is called to create the local handle
and bind it this global id on this place. If there was already
an object bound to this global id (meaning this is not the
first time a closure with this distributed collection is called
on this host), then the deserialization resolves to the
existing handle.

In the example presented in Listing 3, the local handle for
the dmap collection on Place 0 is allocated during the
construction on line 2. *e handles on the other hosts are
created as part of the deserialization of the lambda-ex-
pression running from lines 4 to 11, prior to its execution on
these hosts.

Using this mechanism has the advantage of removing
synchronizations over the entire cluster each time a col-
lection is created. Instead, the local handles of every dis-
tributed collection are created little by little as they become
necessary. *ere is no risk of executing an asynchronous
activity on a collection whose local handle is not initialized,
as the mere fact that a collection is used in the activity
guarantees that the local handle will be created (if it does
not already exist) as part of this activity deserialization
process.

5.2.RegisteringEntries forRelocation. One of the key features
of our distributed collections library lies in its ability to
relocate entries of a distributed collection between its
handles. Our library builds on and expands a scheme first
developed in X10 [20].

As briefly introduced in Section 3.2, the CollectiveMo-
veManager can be used to transfer entries belonging to one
or multiple collections between all or a subset of the pro-
cesses participating in the computation, this group being
specified at construction using a TeamedPlaceGroup in-
stance. *e transfer is initiated when the sync() method is
called on all the places of the group it operates on.*is call is
blocking until it is called on all places involved in the re-
location. As such, the collective relocator mechanism is a
synchronization point between asynchronous activities
participating in the computation.

*e novelty with our library compared to the original
scheme lies in the variety of ways programmers can register
entries for relocation. *ese methods are defined through
modular interfaces implemented by our various collections,
improving consistency and reducing future development
effort. *ey allow programmers to specify what entries need
to be relocated by specifying relevant arguments and the
“move manager” used to perform the transfer.

Let us introduce the program of Listing 14 to illustrate
the various ways entries of our distributed collections can be
marked for relocation. *is program demonstrates a single
collective relocation used to relocate objects belonging to
multiple collections. For the sake of simplicity, we chose to
make each process send entries to its neighboring (rank +

1)%n process, but this is in no case a limitation of the re-
location system as entries originating from a process can be
relocated to multiple other processes.

Relocation in bulk is available to all of our distributed
collections. *ey feature a method called move-
AtSyncCount, which is used to relocate the specified number
of entries. *e library decides which entries are relocated
without the input of the programmer. In Listing 14, this
method is used to transfer 20 entries contained in each bag
handle to their neighbor on line 12. *is is the only available
relocation method for the distributed set DistBag<T> as
individual entries in this collection are devoid from any
“identity.”

Relocation by range or by key is possible for distributed
collection in which entries are identified by a unique
identifier. We distinguish between collections where entries
can be identified by a key, such as DistMap and Dis-
tMultiMap, and collections where entries can be designated
through an entire range, such as DistChunkedList and its
derivatives. In our library, this is enforced using two generic
interfaces RangeRelocatable<R> and KeyRelocatable<K>,
which define a number of signatures for methods moveR-
angeAtSync and moveAtSync, respectively.

We demonstrate the relocation using a range on line 16
of Listing 14. Using the loop of lines 15–17, all the ranges
contained in collection cl are marked for relocation to the
neighboring host. It is not an obligation to specify a range,
which corresponds exactly to a “chunk” contained by the
local handle. Programmers can specify a range, which either
spans several of the “chunks” contained in the local handle
or is a subrange of a single chunk. In this case, the existing
chunks will be split as necessary before relocation.

On line 21, the entries of the distributed map are all
marked for relocation using the relocationRule function
defined just above. Internally, the relocationRule function is
applied to each key contained in the local handle to de-
termine their respective destination. In this example, the
“key” parameter is not used in relocationRule, which always
return the same Place object as the destination, but more
sophisticated implementations are entirely possible.

5.3. Communication Patterns for Entry Relocation. When
registering some entries for relocation into a move man-
ager, our library actually registers a pair of serializer and
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deserializer into the move manager instance provided as
argument. When the sync() method of the collective
relocator is called, the serializer is called to convert the
targeted objects into bytes. *e deserializers are also
written to the byte array.

In a collective relocation, each place therefore obtains an
array of bytes (possibly empty) to send to every other place
participating in the computation. *e transfer of objects is
then performed in two steps. First, the number of bytes to be
sent by each process participating in the transfer is ex-
changed with an MPI Alltoall call using the underlying
communicator of the TeamedPlaceGroup specified with the
constructor of the CollectiveMoveManager.*is allows each
process to know how many total bytes to expect and prepare
buffer arrays of the appropriate size.*en, the byte arrays are
exchanged between the processes using anMPI Alltoallv call.
Each host then proceeds to deserialize the bytes it received
and place the entries into their respective collection handle.
Due to the blocking MPI calls used to perform the relo-
cation, the sync method of the CollectiveMoveManager is a
synchronizing call between asynchronous activities running
on different processes.

*e same general process is used to implement other
features of the library. In the case of the market replication in
PlhamJ shown in Listing 15, the closures provided as ar-
gument to the broadcast method are used to produce the
objects being transferred (in this case instances of class
MarketUpdate) and to update theMarket replicas located on
the remote host. Our library takes care of serializing and
deserializing the objects used as intermediary vessels. *en,
MPI Bcast calls are used instead of Alltoall as the order-
handling process is the sole source of information. Similarly,
the order relocation performed in Listing 6 relocates all the
entries of collection orderBag to the first process of the
distributed program. After the serialization of the entries to
transfer, Gather and Gatherv MPI calls are used as there is
only one “recipient” in this communication pattern.

5.4. Using the Library, Compilation, and Execution. Our li-
brary comes in the form of a Maven project available on
GitHub under the terms of the Eclipse Public License v1.0 at
the following URL: https://github.com/handist/collections.
git. At the time of writing, the current version is v1.2.0. All
the necessary dependencies used by our project, namely, a
slightly customized version of the APGAS for Java library
and the MPJ-Express library, are downloaded automatically.
It is therefore sufficient to add our library as a dependency to
any Java project to be able to compile programs that use our
library, including on systems on which MPI is not installed.

As we rely on theMPJ-Express library [17] to provide the
MPI calls to our program, it is necessary for the “native” part
of this library to be compiled beforehand on the execution
environment. Fortunately, this is thoroughly explained in
the MPJ-Express documentation.

Listing 15 shows a generic command used to launch a
program with our library. Programs are launched with the
mpirun command as can be seen on line 1. *e number of
processes and their allocation on hosts are specified with the

usual MPI options. In the example shown on Listing 15, 4
processes allocated according to the specified hostfile are used.

*e Java command is then used to launch the processes
part of the computation. *e classpath is specified as per
usual using the -cp option on line 2. On line 3, the location of
the MPJ-Express shared library is specified using the
-Djava.library.path option. As per the MPJ-Express com-
pilation instructions, this shared library is customarily
placed under the ${MPJ_HOME}/lib directory.

We provide a specific launcher with our library, which
takes up the role of themain class, as can be seen on line 4.*e
user’s main class is then passed as the first argument to our
launcher, with the programs arguments following after that.

6. Evaluation

*e goal of our evaluation is threefold. First, we want to
establish the greater programmability of our library when
writing distributed programs. Secondly, we want to establish
the performance of programs written with our library
against equivalent ones. Lastly, we want to verify that load-
balancing techniques made possible by our library are ca-
pable of adapting distributions to match uneven or evolving
cluster performance.

We use three applications (all our programs are freely
available on GitHub in the following repositories: https://
github.com/handist/collections-benchmarks, https://github.
com/plham/plhamJ) for the purposes of our evaluation, the
K-means benchmark adapted from the Java Renaissance
benchmark suite [13], the N-Body molecular simulation
MolDyn adapted from the Java Grande benchmark suite
[14], and our financial market simulator PlhamJ. All three
are presented in Section 4.

We first discuss matters related to programmability in
Section 6.1. We then compare the performance of the
original K-means and MolDyn implementation against the
versions we implemented with our library in Section 6.2.
Finally, we establish the capabilities of our high-level load-
balancing features using PlhamJ in Section 6.3. We used
OACIS [21] to manage the large number of executions
necessary for this evaluation.

6.1. Programmability. Programmability is a difficult criteria
to judge. Comparing programs using quantitative criteria
such as lines of code (loc) can be done, but such criteria alone
cannot be used to determine whether some model or library
is beneficial or not. An abstraction supporting a particular
pattern may reduce the amount of code necessary, but if it is
too specific or convoluted to be used in other applications
the claim of better programmability is weak. On the other
hand, qualitative criteria may be controversial or subject to a
certain level of subjectivity.

We believe our library brings significant gains in pro-
grammability thanks to three key characteristics: (1) its
support for local parallelism, (2) the notion of “teamed
operation,” and (3) the high-level support for distribution
management. Concerning the support for local parallelism,
as we demonstrated in Section 4, our distributed collections
provide multiple parallel methods taking closures as
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arguments. *is approach re-centers programs on the actual
computation at hand rather than how the parallelism is
supported. On this matter, the comparison between the K-
means implementation with our library and the original Java
Renaissance suite [13] is particularly interesting.

In the Renaissance K-means implementation, the points
are managed by range explicitly in order to implement the
“recursive task” implementation required by the Java
ForkJoinPool. By comparison, the range management re-
mains totally internal to the ChunkedList class we use in our
implementation. *e range management remains also ab-
sent from the classes used to support the reductions needed
by the algorithm. As a result, the total size of the distributed
K-means written with our library (excluding argument
parsing and initialization) amounts to just over 200 lines of
code compared to over 400 lines of code for the Renaissance
implementation. Moreover, the legibility of the program is
entirely preserved despite its distributed nature, as made
evident by Listing 9.

Moreover, the management by the library of thread-
dedicated data structures greatly simplifies programs for
what would otherwise become a cumbersome imple-
mentation. Our library allocates just the necessary data
structures to support the number of available threads on
the system. *is remains entirely transparent to the pro-
grammer who may use the various parallel methods
knowing that the appropriate number of threads will be
spawned even if the number of threads available varies
from a host to another.

*e second gain brought by our library comes by the
introduction of teamed operations on our distributed col-
lections. *ese methods define the scope of their inter-
vention by using either the group of processes on which the
supporting collection is defined, or by specifying the group
explicitly in a constructor (as is the case for the collective
relocator).*is contributes to the clear identification of both
the hosts that are involved in said teamed operation and the
synchronizing point between the asynchronous activities
running on a different host.

*is is particularly evident in the case of PlhamJ, where
the first hosts perform different tasks than the others. In this
application, the teamed methods serve both as the necessary
communication support to implement the program and as
the synchronization point used to determine the completion
of a remote procedure. For instance, the order submission of
agents cannot start until the teamed market information
broadcast is received by the local host. Similarly, the order
handling on the first process cannot start until the orders
submitted by each agent for this round are received through
the teamed gather operation.

Finally, programmers have complete and dynamic
control over the entry distribution of the distributed col-
lections. *e high-level relocation abstractions we provide
makes this management easy, with supporting features such
as the distribution tracking countering the challenging
nature of a dynamic distribution where necessary. *e most
prominent example of this lies in PlhamJ where agents are
relocated from hosts to hosts to balance the computational
load while the distribution tracking ensures that information
meant for a specific agent reaches its destination. Internally,
the management of entries by range makes this both elegant
and efficient.

6.2. Performance Comparison against Original Benchmark
Implementation. To verify that our distributed collections
library provides reasonable performance, we compare the
performance of two programs written with our library
against reference benchmark implementations of K-means
[13] and MolDyn [14]. We conduct our performance
evaluation on the OakForest-PACS supercomputer, which
features 68 core Xeon Phi CPU, using up to 64 compute
nodes. *e hardware and software environment used on the
OakForest-PACS supercomputer are summarized in Table 2.

6.2.1. K-means. *e original Renaissance benchmark
operates on a single process. We compare it against two
implementations of K-means prepared with our library: a
“single-host” version and the distributed “teamed” version
previously introduced in Section 4.

We perform our evaluation in weak scaling from 1 to 64
hosts, increasing the number of points proportionally to the
number of hosts involved in the computation.We run theK-
means algorithm for 30 iterations and compare the iteration
time between the implementations. *e details of the pro-
gram parameters we used are shown in Table 3.

*e results are presented in Figure 4 where we plot the
minimum, first quartile, third quartile, maximum, and av-
erage iteration time obtained with each program version.

With the “small” parameter configuration, the average
iteration time is kept just below 500ms with the Renaissance
benchmark. Our implementation on a single host is 20%
faster. *is higher performance is maintained on 4 hosts
(12% faster than Renaissance) despite the communication
needed by the reductions. However, our implementation is
not capable to scale further with such short iteration times.
Over the course of the “teamed” program executions, we
witnessed a few particularly long iterations, the longest of
which occurred on a 16-host execution and lasted just under
4 seconds. *is drives the average iteration time upwards

(1) mpirun − np 4 − − hostfile ${HOSTFILE} ∖
(2) java − cp collections− v1.2.0.jar:program.jar ∖
(3) − Djava.library.path� ${MPJ_HOME}/lib ∖
(4) handist.collection.launcher.Launcher ∖
(5) ${MAIN_CLASS} ${ARG1} ${ARG2}

LISTING 15: Command used to launch a program with our distributed collection library.
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despite the overwhelming majority of iterations completing
within 500ms.

We are not certain as to what causes this phenomenon.
We believe it could be explained by some of the processes in
the cluster performing garbage collection with unfortunate
timing and delaying the communication with the other
processes during the teamed reductions of the program.*is
would in turn delay the progress of the entire program as the
other processes are stuck waiting on the result of the
reduction.

In the second “large” K-means, the number of clusters is
dramatically increased compared to the “small” parameter.
As a result, the computational load consisting of assigning
each point to a cluster becomes predominant over the two
reductions and the iteration times increase for the Renais-
sance version to an average of 28.3 seconds. Our single-host
implementation, however, maintains an average iteration
time far below, just under 11 seconds.

*is performance gap between the Renaissance imple-
mentation and our single-host implementation can be
explained by the higher memory consumption (and more
frequent garbage collection) of the Fork/Join implementa-
tion. While the Renaissance version is capable of delivering
short iteration times, as is made clear by the minimum it-
eration time of 13.2 s, it is not capable of sustaining them
over the entire course of the execution. Our distributed
implementation also shows better performance than the
original implementation, with the average iteration times
kept below 15 s up to 64 hosts. Under this higher compu-
tational load, the performance trouble witnessed under the
“small” configuration is absorbed. *e iteration times ob-
tained in the 64 hosts configuration are 30% longer than our
“single-host” version, but remain half that of the Renais-
sance implementation.

6.2.2. MolDyn. *e original Java Grande version of MolDyn
built on MPI uses 1 thread per host. Against the original
version, we compare two versions implemented with our
library: a single-threaded version (Handist ST) similar to the
original implementation and a hybrid version (Handist
Hybrid), which uses multiple threads on each process.

We run the MolDyn benchmark in strong scaling (the
same problem size for increasing cluster size) on the Oak-
Forest-PACS supercomputer from 1 to 64 hosts with 32,000
particles. We use 68 threads per process for our hybrid
implementation, resulting in its parallelism level with a
single process to be slightly higher than the Java Grande and
the ST version with 64 hosts. We measure the total com-
putation time of the simulation after a short warmup. *e
computation times and the efficiency of each program
version are presented in Figure 5. An ideal efficiency of
100%, that is, perfect scaling, wouldmean that increasing the
computational resources by a factor n yields execution times
n times shorter.

First, comparing the Java Grande version against our
single-thread (ST) implementation, we note a 20% increase
in computation time. We believe this is a reasonable amount
of overhead considering the fact we moved away from the
primitive-type arrays to use objects to store the particles in
our ST and hybrid implementations. *e efficiency for both
the ST and Java Grande versions follows the same pattern,
decreasing down to 78% on 64 hosts.

*is can be explained by the nature of the computation
at hand. In all three versions of MolDyn studied here, the
time taken by the “allreduce” sum of the forces across hosts
takes a total of about 5 seconds of the total computation
time, irrespective of the number of hosts or threads used. On
the Java Grande and Handist ST executions from 1 to 16
hosts, the computation time was dominated by the force
computation. As can be seen in Figure 6, this is no longer the
case on 64 hosts where the “allreduce” part represents about
15% of the computation time. As the parallelism increases
and the force interaction computation time decreases, this
incompressible part of the program takes up a relatively
larger part of the total computation time, decreasing
efficiency.

Secondly, our hybrid implementation shows a slightly
different efficiency pattern compared to the other imple-
mentations. Its efficiency for the 1 host/68 threads config-
uration loses an additional 17 percentage points of efficiency
compared to the similar level of parallelism of the STversion
running on 64 hosts. *is is mostly imputable to the
overhead brought about by the use of the accumulator
mechanism in the hybrid version. Also, the fact that we used
an entire host for each single-threaded Java Grande and
Handist ST gives those versions a certain advantage. In
future work, we hope to be able to reduce the overhead
brought by the use of the accumulator mechanism by in-
troducing alternative implementations that would only al-
locate ranges on a per-need basis rather than allocating the
complete range from the start.

We are able to further reduce the execution time down to
just over 10 seconds with the hybrid version running on 16
hosts (1088 total threads), albeit with decreasing efficiency.
*e execution on 64 hosts shows it is counterproductive to
stretch the program any further, with the total computation
time increasing from 10 to 12 seconds. As can be seen in
Figure 6, the computation time is dominated by the “all-
reduce” part of the computation on hybrid executions with
larger parallelism.

Table 2: Hardware and software environment on the OakForest-
PACS supercomputer.

Property Value
Processor Intel Xeon Phi 7250 (1.4GHz, 68 cores)
RAM 96GB DDR4
Java version Open JDK 1.8.0_222

MPI version Intel MPI with MPJ-Express v0_44 Java native
bindings

Table 3: K-means benchmark parameters.

Configuration “Small” “Large”
Nb of points/host 10 million
Point dimension 3 5
Number of clusters 50 2000
Iterations 30
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6.3.DynamicLoadBalancing inPlhamJ. *e objectives of the
evaluation conducted with our PlhamJ distributed financial
simulator is twofold. First, we want to demonstrate the ca-
pability of a distributed program to adapt itself to the uneven
performance of the cluster on which it is runs thanks to the
features of our library. Second, we want to verify that the load-
balancing measures we implemented in PlhamJ are able to
react to dynamic changes in the cluster performance.

We perform the evaluation on our Beowulf cluster
composed of two types of hosts: “piccolo” hosts, which
feature a 4-core CPU, and the higher-parallelism “harp”
host, which features two 12-core CPUs. *e detailed
hardware characteristics are outlined in Table 4. We use up

to 5 hosts in three different cluster configurations sum-
marized in Table 5.

In Config A, we use a typical approach consisting of
allocating one process oneach “piccolo.” *e order-pro-
cessing process is allocated on one host, while the three other
hosts are dedicated to agents’ order submission.

In Config B, we allocate an additional agent-processing
process on the host holding the order-processing host (5
processes on 4 piccolos). *is choice of allocation can be
justified by the fact that the process that handles the
orders remains idle while the agents are making their
submission. *ere is therefore some amount of com-
puting resources left untapped on the server hosting the
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Figure 4: K-means iteration times. *e brackets and boxes represent the minimum, 1st quartile, 3rd quartile, and maximum values,
while the cross corresponds to the average value of 5 sample runs or 30 iterations each. (a) Small configuration and (b) large
configuration.
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handling of orders in which we try to leverage with this
second configuration.

Finally, in Config C, we add the “harp” host as an order-
handling process compared to Config B. *e challenge of
ConfigC lies in the nature of this additional server, which brings
more parallelism than the identical “piccolo” hosts used so far. It
is therefore difficult to predict a priori what a good distribution
of agents should be with such a cluster configuration.

To simulate dynamic changes in performance, we in-
troduced a parasite program called “Disturb.” *is program
runs concurrently to our simulator and computes an

artificial 20 seconds load on one of the hosts. When the 20
seconds have elapsed, another host is chosen as the victim.
*e sequence of hosts “disturbed” by this program is de-
terministic following an initial seed to allow us to reproduce
its effects over multiple executions.

We compare the performance of our “level-extremes”
load-balancing strategy previously discussed in Section 4.5
against the fixed uniform distribution without load balance
“no lb.” *e results are presented in Figure 7.

We are able to draw two conclusions from the PlhamJ
executions without the Disturb program. First, our basic
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Figure 5: Computation time and efficiency of the MolDyn benchmark on the OakForest-PACS supercomputer.

0
5

10
15
20
25
30
35
40
45
50

Ja
va

 G
ra

nd
e 6

4 
H

H
an

di
st 

ST
 6

4 
H

H
an

di
st 

H
yb

rid
 1

 H

H
an

di
st 

H
yb

rid
 4

 H

H
an

di
st 

H
yb

rid
 1

6 
H

H
an

di
st 

H
yb

rid
 6

4 
H

ex
ec

ut
io

n 
tim

e (
s)

configuration

force
allreduce
other

0
5

10
15
20
25
30
35
40
45
50

de
 6

4 
H

T 
64

 H

rid
 1

 H

rid
 4

 H

d 
16

 H

d 
64

 H

(
)

Figure 6: Computation time breakdown of the higher-parallelism executions of the MolDyn benchmark.
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load-balancing incurs no overhead in our distributed PlhamJ
simulator as demonstrated under the “Config A” results.
Execution times for the static and the load-balanced version
are almost identical at 75.3 and 76.0 seconds in this con-
figuration where no load-balancing is required. *is can be
explained by the fact that the (hypothetical) transfer of
Agents between hosts takes place concurrently to the order
handling on the first process. In our experience, the transfer
of Agents completes before the order handling and thus does
not negatively impact performance.

Secondly, this basic load-balancing technique is capable
of handling an uneven cluster configuration, as can be seen
in the execution time of PlhamJ under Config B and Config
C. *e “level-extremes” strategy perform better than its
counterpart with its computation time shorter by 8 and
12%.

Depending on the configuration, our load-balancing
strategy delivers execution times between 7 and 15% shorter
than the fixed uniform agent distribution. *e distribution
of agents over time during an execution under Config C is
presented in Figure 8(a). *e distribution becomes stable
after only 30 iterations (4 seconds into the simulation).
Seeing as piccolo 0 hosts both the order-handling process
and an agent-handling process, it ends up containing fewer
agents than its piccolo 1–3 counterparts. Also, the higher
parallelism available to the process allocated on our “harp”
server is made evident by the fact it obtains over a third of
the total agents in the simulation.

*e experiments with the parasite program presented in
Figure 7 also show that our basic load-balancing strategy is
capable of handling dynamic changes in the cluster per-
formance, with execution times between 8 and 15% shorter
depending on the configuration.

In Figure 8(b), we show the evolution of the agent
distribution under Config A w/Disturb. Under this con-
figuration, the only source of disparities between the hosts
performance is the presence of the parasite program on one
of the hosts. At the beginning of the simulation, the server
hosting process piccolo 3 is being disturbed, resulting in
some of its agents to be offloaded to the other processes.
*en, starting between the 70th and 80th iteration of the
simulation, the disturb process moves to piccolo 1. As a

result, agents are moved away from piccolo 1 and the
previously disturbed piccolo 3 is assigned more agents. In
the last part shown on this graph, the disturb programmoves
to piccolo 0, which hosts the process dedicated to processing
the orders. As a result, there is no longer a discrepancy in the
available processing power between the piccolo 1, 2, and 3.
Our load balancer, therefore, redistributes the agents evenly
between hosts starting from the 160th iteration of the
simulation.

7. Related Work

*e concept of distributed collections is not new. *e work
we present here bears resemblance with earlier work from
Lee & Gannon [22] in which they define the Distributed
Collection Model for the pC++ programming language.
Under this model, a distributed collection contains elements
that can be referenced through a globally unique handle. A
distribution describes how the elements are assigned to the
virtual processors used at runtime. Parallelism is supported
by sending a message to the collection, which will in turn
invokes the specified method on all elements of the col-
lection. It is also possible to send such a message to a subset
of the virtual processors. One peculiarity of this model is the
capability for individual elements to obtain information
from the structure of the collection (i.e., their position in a
1D array or 2D grid). One limitation of this programming
model is that there is a single main control thread for the
program resulting in calls on an entire collection to be
synchronous. Under the APGAS programming model, this
constraint is relaxed, with the progress of asynchronous
activities on various hosts being only halted if some com-
munication between hosts is needed as part of the activity.
While multiple distribution strategies are available in this
language, there is also no obvious mechanism that would
allow to modify the distribution of a collection.

Charm++ [10, 11] relies on problem overdecomposition
into many “Chares” to dynamically relocate them on pro-
cessing elements based on information obtained through
profiling and selectable policies. *is means that the pro-
grammer does not have to manage distribution or locality as
the control is surrendered to the Charm++ runtime. While

Table 4: Hardware characteristics of our uneven Beowulf cluster.

Machine type “Piccolo” “Harp”
Nb of servers 4 1

Processor Intel Xeon E3-1230 V2 (3.3GHz, 4 cores) Dual Intel Xeon E5-2680 V3
(2.5GHz, 24 cores combined)

RAM 16GB DDR4 128GB DDR4
Java version OpenJDK v1.8.0_312
MPI version Open MPI v3.1.6 with MPJ-Express v0_44 Java native bindings

Table 5: Cluster configuration summary.

Configuration Description
Config A 4 processes on 4 piccolos (no load unbalance expected)
Config B 5 processes on 4 piccolos (piccolo 0 hosts the order-handling process and one agent-handling process)
Config C 6 processes on 4 piccolos and 1 harp (piccolo 0 hosts the order-handling process and one agent-handling process)
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this is certainly acceptable for some applications, others will
benefit from the explicit data placement and careful local
parallelism that our library provides. *e Charm++
“NodeGroup” concept could be used to represent the “local
handle” of a distributed collection as we introduced it in this
article. *e syntax used in Charm++ to specify on which
chare some action is performed finds an equivalent in the
asyncAt construct of the APGAS programming model.
However, in Charm++, a branched chare needs to be defined
on all processors participating in the distributed compu-
tation. *ere is no support for sending a message to a subset
of the processors as this is fundamentally not compatible
with the Charm++ programming model, which remains
agnostic to chare location. One advantage of APGAS over
Charm++ is that the completion of certain asynchronous
activities can be elegantly controlled through the finish/
async model. *is is important for simulations where a
higher level of control over the completion of asynchronous
tasks is needed.

Some of the benchmarks we used to demonstrate the
performance of our library could be programmed using the
MapReduce model of Hadoop. As its core, Hadoop involves
overdecomposing a problem in a set of independent tasks,
which can then be scheduled on a computation cluster.
Some work has shown that Habanero-Java combined with
Hadoop can be more efficient both in terms of memory
consumption and execution time by taking advantage of
multithreading [23]. However, the target for our parallel
and distributed collection is different. We focus on a more
fine-grained level of parallelism than Hadoop, with pro-
grams that present more intractable communication
patterns.

Chapel is a programming language developed as part of
the DARPA’s high productivity computing systems program

[6, 7]. It allows the distribution of arrays through Block,
Cyclic, and Cyclic Block distributions. With an initial array
defined, pieces of it can be relocated using these predefined
distributions. However, Chapel does not support this feature
for maps (or associative domains per the Chapel idiom). We
support several variants of distributed maps in our collection
library, including multimaps, with the capabilities of freely
relocating mappings on any host over the course of the
program execution. Deitz et al. [24] explored improving the
programmability and the performance of distributed scans
and reductions in Chapel and MPI. In particular, they
supplement MPI with a set of preprocessor directives that
automatically generate the code to make user-defined par-
allel and distributed reductions.

More recently, XscalableMP (XMP) [25] has introduced
compiler directives for C and Fortran that allows a program
to be distributed and parallelized automatically. However,
the XMP only supports distributed arrays where we also
support other data structures. An interesting feature XMP
supports is the notion of “shadowing.” Given a nested for
loop, if the computation needs to access neighboring data,
the compiler directives of XMP are capable of generating
code to access data points, which may be located on remote
hosts. We can work around this limitation with our library
using “owner/replica” schemes, but not in a manner quite as
elegant as XMP.

UPC is an extension of the C programming language
implementing the PGAS programming model [5], using
“private” and “shared” pointers to denote local and remote
data. UPC’s distributed arrays make it easy to spread data
across processes in cyclic distributions. If data accessed
through a shared pointer are located on a remote process, the
UPC compiler inserts the code necessary to transfer the data,
providing the illusion of a shared-memory environment to
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Figure 7: Execution time of the Plham simulation depending on the cluster configuration.
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the programmer.*is can be a source of performance issues,
with work focusing on optimizing these communication
patterns [26].

*ere are a number of parallels to be drawn between
UPC++ [27] and our work. UPC++ is also a PGAS

language that provides remote procedure call (RPC) using
futures and promises, analogous to the asyncAt method
used in APGAS for Java. Unlike UPC from which it is
derived, shared pointers cannot be dereferenced directly
in UPC++ v1.0, making communication between
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processes explicit in the program. *e same approach is
taken in APGAS for Java where the constructs provided
need to be used to access remote memory. While no
abstractions as elegant as the finish/async is provided to
detect quiescence, the use of futures allows programmers
to describe which task or computation should be per-
formed after the completion of some previous one. *is is
lacking in the system we use where the finish construct
does not allow programmers to interleave completion
dependencies. *e distributed objects concept available to
UPC++ programmers is equivalent to our local handles.

Another approach close to ours is PCJ [28]. *is pure
Java library brings a PGAS programming model to Java,
relying on elegant annotations to mark the variables that
belong to the global address space.*e library also provides
collective communications operating on the variables of the
global address space such as broadcast, scatter, reduce, and
others [29]. While close, the programming models
employed by PCJ and APGAS for Java differ from PCJ that
uses numbered “threads” as the main support for com-
putation, with potentially multiple threads hosted within a
single JVM. In terms of program semantics, the PCJ threads
would correspond to MPI ranks, but the collective com-
munications between the threads are factorized by the
supporting JVMs. With the APGAS for Java library, the
Place abstraction strictly corresponds to a single JVM, with
multiple asynchronous activities running in shared
memory on the same process. One advantage of PCJ over
our approach lies in the fact that it supports these collective
communications using a pure Java-based implementation,
while we rely onMPI.*is means that PCJ is easily portable
to nontraditional HPC infrastructures such as the cloud
[30].

While the runtime we rely on combines APGAS for Java
[12] and MPI, we cannot consider it to be “MPI +Apgas” as
we rely primarily on APGAS to manage code execution
locality and termination. MPI is only used internally for
specific communication patterns. Our approach of a library
to support parallel and distributed programs differs from
approaches involving dedicated programming languages in
that we make it possible for programmers to directly use any
previous knowledge of a popular programming language
Java.

8. Conclusion and Future Work

In this article, we presented our relocatable distributed
collection library for the Java AGPAS programming model.
Our library allows users to write complex parallel and
distributed programs by providing clear abstractions to
handle both parallelism and distribution.

We established the programmability gains and the
performance of our system using two well-known Java
benchmarks. Using the PlhamJ financial market simulator,
we demonstrated the capability of programmers to balance
the computational load between hosts using the integrated
relocation mechanisms of our library.

*e library we presented here will serve as the basis for
several future works. We are currently working on a load

balancer integrated with the library capable of relocating
entries of a distributed collection as a distributed compu-
tation is taking place [31]. Under this system, an action to
perform on every element of the collection is given as a
closure by the programmer and our library takes care of
applying the given closure to every elements in the dis-
tributed collection, potentially relocating some entries along
the way if load unbalance occurs.

We did not cover topics related to resilience in this
article. Additions to the X10 implementation of the APGAS
programming model have been made to this effect [32], but
they have yet to fully trickle down to their Java counterpart
on which we rely on. We do plan to implement features that
will allow programmers to easily back up the (distributed)
state of their collections into checkpoints, making it possible
to recover after a failure.

Finally, we are considering introducing support for
elasticity to our library. Posner and Fohry recently dem-
onstrated this possibility with the APGAS for Java runtime
[33]. We believe our library would be a great help to pro-
grammers in such situations where the number of running
processes increases and decreases over time thanks to the
support for relocation features. We already identified
PlhamJ as an application that would benefit from such
capabilities.

Data Availability

*e experimental data can be obtained from the corre-
sponding author upon request. *e source code used in the
work presented here is freely available in the following 3
GitHub repositories: https://github.com/handist/collections,
https://github.com/handist/collections-benchmarks, and
https://github.com/plham/plhamJ.
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