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Abstract—In this work, we are interested in density recon-
struction of road samples, aiming to guarantee road reliability.
To do so, a joint work between Routes de France and Cerema has
led to an electromagnetic (EM) bench, based on Exponentially
Tapered Slot Antennas (ETSA). A mathematical inversion model
is used to find the permittivity from antennas parameters,
using simulation of electromagnetic waves scattering. From
this permittivity, one can recover the density via the Complex
Refractive Index Model (CRIM) [1].

Index Terms—ETSA antennas, S-parameters, Electromagnetic
scattering, Inversion, Permittivity.

INTRODUCTION

Tomography has been widely used in several contexts. The
emergence of new mathematical and computational methods
has put electromagnetic waves on show, leading to a lot
of applications in medicine [2] or geosciences [3]. Yet, to
the best of our knowledge, an electromagnetic bench using
low cost equipments to find the permittivity of samples with
complex structure (from civil engineering or Earth sciences)
combined with recent mathematical approach has been rarely
considered.

I. EQUIPMENTS

The EM bench consists of three motors moving the two
antennas and the sample’s base, allowing x-y-z axis mea-
surements, see fig. 1. A Vector Network Analyzer (VNA)
is used for EM waves emission and reception, connected to
two ETSA antennas. They have been developped during I.
Boughanmi’s thesis [4] according to E. Guillanton’s work [5].

II. MATHEMATICAL BACKGROUND

A. Forward model

We start from Maxwell’s second order equation in time-
harmonic domain :

∇×∇× E − k20εE = 0, (1)

Fig. 1. ETSA Antennas used and EM bench.

where k0 = ω
√
µ0ε0 the propagation factor, ω = 2πf the

angular velocity and ε the relative permittivity, the unknown
looked for. Solving the scattering problem amounts to find
the scattered field Es such that E = Ei + Es with Ei the
incident field, leading to :

∇×∇× Es − k20εE
s = k20 (ε− 1)Ei. (2)

We also consider Perfectly Matched Layers [6] (PML), to
emulate an unbounded domain. In time-harmonic regime, the
PML formulation consists in applying a complex stretching
xi → Lxi

(xi)xi. This change of variables amounts in
replacing in equation (1) the derivative with respect to xi

by L−1
xi

∂xi .

∇×∇L × E − k20εLE = k20 (ε− 1)LEi , (3)

where
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The Finite Element Methods (FEM) discretisation is done by
Nedelec elements family [6] associated with the spaces :

Vh = {v ∈ H(curl,Ω) : v|K ∈ N1(K)∀ ∈ Ω}
N1(K) = [P0(K)]

3 ⊕ S1(K)

S1(K) = {s ∈ [P1(K)]
3
: s(x) · x = 0},

giving the following discretized forward problem :[
K− k20M(ε)

]
c (ε) = S(ε). (4)

We suppose here that the forward problem is solved for each
value of frequency f from the interval chosen by the user.

B. S-parameters

The VNA used gives S-parameters, that can be represented
as a ratio for each frequencies between In and Out fields
(X(f), Y (f)) according to the interested antenna, explained
in fig. 2.

Scatterer1st Antenna 2nd Antenna
X1(f)

Y1(f)

X2(f)

Y2(f)

Fig. 2. S-parameters scheme.

In our case, we consider the 1st antenna as the emitter and
the 2nd antenna as the receiver, i.e. the parameter S21(f). For
better clarity, we will denote S21(f) by S. From the electrical
field simulated at the receiving antenna, the associated S-
parameter is expressed as follow:

S =< E, P >,

where P is a vector simulating the rotational aspect of the
EM bench.

C. Inverse problem

The inverse problem consists in finding the permittivity
ε of the sample, given Smeas. Classically, this leads to the
following minimisation problem : Find ε that minimize

M (ε∗) = min
ε

1

2
||Smeas −F (ε) ||2 + 1

2
α||∇ε||2,

where F (ε) corresponds to Ssim obtained from the forward
problem solved given ε, i.e. :

F : ε ∈ Cnm → Ssim ∈ Cnr×nf .

Let r (ε) = Smeas −F (ε), the resolution of the minimisation
problem is done by a Newton type approach.
∗ Updating the permittivity ε at each iteration :

ε(k+1) = ε(k) + δε,

∗ where the variation δε given by :

J tJ δε+ J tr = 0.

The jacobian J (also called sensitivity matrix) is obtained by
the adjoint state method [7] :

J (ε) =< c̃(ε), S′(ε)− k20M′(ε)c(ε) >, (5)

where c̃(ε) is solution to the following adjoint problem :

(
K− k20M(ε)

)t
c̃(ε) = r′1 , (6)

where r′1 = ∂r
∂c .

A regularization term α||∆ε|| is used to get a well condi-
tionned problem. For a finite element type mesh (non uniform
tetrahedron), the Laplacian can be understood as a finite
differences scheme between neighbors tetrahedra, i.e. for a
tetrahedron wih a permittivity ε and adjacents tetrahedron
with permittivities εj , εk, εl, εm :

∆ε = ε− bjεj − bkεk − blεl − bmεm, (7)

where bi can be either equal to 1 (classic regularization), or
bi = f(ε − εi) for f(x) = c1(c2 + x2)−1. This technic is
called semi-quadratic regularization [8], and allows a non-
smooth solution. It is applied after a first convergence of the
inversion algorithm, working as a post-processing of the data
obtained. The coefficient α is updated everytime the norm
||Smeas − Ssim||2L2

reaches a plateau and is still less than a
tolerance chosen.

III. CALIBRATION

A. Transfer functions

Following S. Lambot idea [9], antennas can be represented
as source points emitting and receiving two signals Xi and
Yi, associated with transfer functions H (fig. 3). These allow
to take into accounts several aspects : incident and transmitted
waves from the antenna, reflected waves from the scatterer.
It also avoids the antennas modeling. We assume here that
every functions depend on the frequency f .

1st A
X1 Ht1

Hi1

Y1 Hr1

S. P. (⋆)
2nd A

X2

Hi2

Ht2

Hr2 Y2

Fig. 3. Antennas as point sources with their associated transfer functions.



The waves that bounces between the scatterer and the antenna
is also taken into account, and can be defined inside the
scattering problem (⋆) as shown in fig. 4. In this figure, M
depends on the theoretical incident field used. Here, Ei is
of the form ∇ × Φ, for Φ solution of (1) with εr = 1 (i.e.
Φ = H0(k0r)) representing spherical waves modelisation in
2D (for geometrical attenuation aspect). The use of basic
transfer functions theory leads to:

S =
MHr2Ht1

1−M (Hf1 +Hf2)
. (8)

X ′
1

Hf1 M

Y ′
1

X ′
2

Hf2

Y ′
2

Fig. 4. Scattering problem associated to the transfer functions.

B. Procedure
Transfer functions are estimated from the procedure ex-

plained in [9], readapted to our needs. Experimentation has
been done to generate a data set of different S value for sev-
eral distances d ∈ {0, ..., D} and 801 frequencies f ∈ [1, 8.5]
GHz:

1st Antenna 2nd Antenna
d

Using these measurements, and reorganizing equation (8) we
obtain the following least square problem:

Sd = SdMd (Hf1 +Hf2) +MdHr2Ht1 ,

where we wish to compute the transfer functions Hf1 , Hf2 ,
Hr2 and Ht1 . The problem is of the form A x = b with

∗ A ∈ CD×2, Ad,0 = SdMd

Ad,1 = Md

∗ x ∈ C2, x0 = Hf1 +Hf2

x1 = Hr2Ht1

∗ b ∈ CD, bd = Sd
21.

Solving it for each frequency f eventually gives the needed
function transfer vectors, used for taking into accounts the
antennas and the bench into our measurement.

C. Filtering
In equation (8), M is considered as the ”perfect” signal. In

practice, it is considered as the filtered, calibrated signal of
the measured data, Sc. Singling M out in (8) leads to:

Sc =
S

S (Hf1 +Hf2) +Ht1Hr2

.

The graph of fig. 5 shows the comparison between the S-
parameter used for the forward problem and the S-parameter
calibrated from the machine in free space conditions, in order
to validate the transfer functions.

Fig. 5. Real and imaginary part of S-parameter used for simulation and
measured after calibration.

IV. EM BENCH APPLICATION

A. 2D numerical validation

The data set used is the S-parameter measured at the
receiving antenna according to the rotation of the base sample
r and frequency f , giving a vector of measurement Smeas of
size nr × nf , indexed by l = f + rnf .

r ∈ [0, 2π] for nr = 8,
f ∈ [2, 4.6] GHz for nf = 20.

The inversion process is such that we have a first conver-
gence (||Smeas − Ssim||2 < 10−3) with classic L2-norm for
standard regularization, then a second with a semi-quadratic
regularization.

The measurements are
done from the permittiv-
ity shown in fig. 6. The
permittivity reconstruction
over the inversion process
is plotted in fig. 7, with
the associated L2-norm
error convergence between
Smeas and Ssim in fig. 8. Fig. 6. Permittivity map to recover.

Fig. 9 shows the permittivity reconstruction with the semi-
quadratic (SQ) regularization, applied after the first conver-
gence, with the coefficient bi related to the matrix regulariza-
tion. Fig. 10 shows the L2-norm error convergence associated.

B. Bench application

Two tests have been conducted to validate the approach.
The first one with Fontainebleau sand, whose permittivity is
known and allows to validate the whole model, and the second



Fig. 7. Evolution of map permittivity over the inversion process.

Fig. 8. L2-norm error convergence between Smeas and Ssim during inversion
process. At iteration 15, the algorithm considers it has reached a plateau,
changing α and allowing a new convergence.

Fig. 9. Evolution of map permittivity over the SQ inversion process, with
the coefficients bi associated to the regularization matrix.

one with a cylinder of road sample burried in sand, as shown
in fig. 11.

Fig. 10. L2-norm error convergence between Smeas and Ssim for SQ
regularization.

Fig. 11. 2D slice of the samples studied

For the first case, Fontainebleau sand has been tested thanks
to a EM resonant cavity, considered as a referent method, and
gave a permittivity mean of εSdF = 2.59. Since the 2D slice
is homogeneous, the algorithme converges in a few iterations
(fig. 12) and recover a sample with permittivity ε = 2.57.
Fig. 13 shows the S-parameter from the permittivity recover
and the machine S-parameter.

Fig. 12. Evolution of map permittivity for Fontainebleau sand over the
inversion process.



Fig. 13. S-parameter measured and calculated in time domain for the
Fontainebleau sand.

Second case points out the machine ability to find burried
object. Fig. 14 represents the reconstruction of the permit-
tivity, revealing the shape of the road cylinder in the last
iterations. The semi-quadratic regularization allows to clearly
see the sample’s shape, as shown in fig. 15. As for the
previous example, fig. 16 plots the S-parameters measured
and simulated from the permittivity recovered.

Fig. 14. Evolution of map permittivity for the burried sample test over the
inversion process.

Fig. 15. Map permittivity at the end of the SQ inversion process, with the
coefficients bi associated to the regularization matrix.

Fig. 16. S-parameter measured and calculated in time domain for the burried
sample test.

CONCLUSION

Future work

3D works are in progress, following the domain decom-
postion method described in [10]. Matrices associated to
each subdomains are used as pre-conditionners for a GMRES
resolution. First tests have been performed for a homogeneous
sample, to validate the algorithm and domain decomposition
method. The data set used is a vector of measurement Smeas of
size nsrc×nrec, indexed by l = s+rnsrc. The inversion is done
for one frequency without rotation, considering several source
point (as shown in fig. 17). Fig. 18 shows the convergence
rate between a Smeas from a homogeneous cylinder with ε = 3
and Ssim simulated over the iterations.

Fig. 17. Instance of different sources positions.

Fig. 18. L2-norm error convergence between Smeas and Ssim.



Last work are waiting for samples with known density
to study them and validate the whole density measurement
procedure since the main objective is to replace the standard
nuclear method used in laboratory to control this parameter.

Assessment

The modelisation of the bench and antennas as source
points, the implementation of the inverse problem resolution
and a semi-quadratic regularization method have been set
up thanks to this work. The 2D cases have been tested and
validated, and 3D cases are still in development.
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