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INTRODUCTION

As the workload and complexity of deep training continue to grow, there is a rising trend of scaling training processes across parallel resources. The use of accelerators, with their outstanding efficiency at performing variable-precision floating point operations, has unleashed the efficiency of deep learning training, and is a major part in the overall success that machine learning systems have enjoyed in recent years. When increasing the training scale on distributed systems, fault tolerance becomes a critical aspect to ensure a robust training progress. The larger the system, the more prone to failures, whether due to hardware malfunctions, network issues, or software errors. These failures can disrupt the training process, leading to data loss, wasted computation, and increased training time. In addition, deployments in the cloud may exhibit higher failure rates, even at modest scale, and may provide additional incentives for scaling up or down (e.g., expanding or shrinking) the training operation based on external factors, such as spot node pricing. To address these challenges, fault tolerance mechanisms are employed to ensure that deep learning training can withstand failures and continue running seamlessly. Fault tolerance techniques encompass various strategies, including checkpointing [START_REF] Jayasekara | Optimizing checkpoint-based fault-tolerance in distributed stream processing systems: Theory to practice[END_REF][33] [START_REF] Zhou | Hycor: Fault-tolerant replicated containers based on checkpoint and replay[END_REF], replication [START_REF] Distler | Byzantine fault-tolerant state-machine replication from a systems perspective[END_REF], and error detection [START_REF] Egan | Fault-tolerant control of an error-corrected qubit[END_REF]. Checkpointing involves periodically saving the state of the training process, enabling it to resume from a recent checkpoint in the event of a failure. Replication involves creating multiple copies of the model or data, allowing the training to continue using an alternative copy in case of failure [START_REF] Rajagopal Setlur | An efficient fault tolerant workflow scheduling approach using replication heuristics and checkpointing in the cloud[END_REF] [START_REF] Kamal | Replication Based Fault Tolerance Approach for Cloud[END_REF]. Error detection and recovery mechanisms focus on identifying and mitigating errors during the training process, ensuring that the model's integrity is preserved and training progresses uninterrupted [START_REF] Zhao | FT-CNN: Algorithm-based fault tolerance for convolutional neural networks[END_REF].

In addition to fault tolerance, the elastic scaling of deep learning resources has become increasingly important. Deep learning models often require substantial computational resources, including processors, memory, and storage, to train effectively. Elastic scaling involves dynamically adjusting the available resources based on the workload and demand [START_REF] Or | Resource elasticity in distributed deep learning[END_REF]. This flexibility enables efficient utilization of resources, ensuring that the deep learning system can scale up or down as needed, optimizing performance and cost efficiency. Elastic Horovod [START_REF]Horoovd[END_REF] has emerged as an advanced and widely embraced solution in enterprise clouds for effectively handling dynamic host changes during distributed data parallel training. This powerful framework leverages communication libraries such as Gloo [START_REF]Gloo[END_REF] for CPU operations and NCCL [START_REF]NCCL[END_REF] for GPU operations. With support for popular training engines like TensorFlow and PyTorch as backends, Elastic Horovod has established itself as a cutting-edge choice for managing training processes in a flexible and scalable manner within enterprise cloud environments. As the demand for large scale training on supercomputer-scale machines continues to rise, there is a need for alternative elastic training solutions that can effectively employ the type of high performance network capabilities and minimize overhead costs. In response to this demand, we present an innovative approach that harnesses the capabilities of User Level Fault Mitigation (ULFM) in Open MPI [START_REF] Losada | Fault tolerance of MPI applications in exascale systems: The ULFM solution[END_REF].

This paper is organized as follows. Section 2 provides some background about machine learning, elasticity in machine learning algorithms, and the ULFM communication library; Section 3 describes our design for fault tolerant machine learning; Section 4 presents an experimental evaluation of our approach while Section 5 presents prior and related works, before Section 6 concludes.

BACKGROUND 2.1 Fault tolerance in distributed training

In the context of deep learning, fault tolerance refers to the capability of continuing the training without significant disruption from unexpected events, errors or failures. Unexpected events include hardware issues, such as memory crashes, network disconnection, or software failures. The introduction of fault tolerance mechanism ensures the program can be recovered from such unexpected events without a substantial loss of the work already finished, as a consequence, prevents the need to re-execute the program from the scratch.

Typical fault tolerance technologies include checkpointing and shutdown-restart recovery [START_REF] Nicolae | Towards scalable checkpoint restart: A collective inline memory contents deduplication proposal[END_REF][31] [START_REF] Nicolae | Deepfreeze: Towards scalable asynchronous checkpointing of deep learning models[END_REF]. In the checkpoint mechanism, the state of the training, including model parameters and state of optimizers, is regularly saved to stable storage. With this information, even if a fault occurs, the system can roll back to the latest saved checkpoint and resume the training from that state, aiming to reduce the overhead of repeating execution.

Recently, techniques like algorithm-based fault tolerance [START_REF] Roffe | Evaluation of algorithm-based fault tolerance for machine learning and computer vision under neutron radiation[END_REF][38], which involves incorporating redundancy in the algorithms themselves to detect and correct errors [START_REF] Kumar | Making convolutions resilient via algorithm-based error detection techniques[END_REF]. As deep learning models and the infrastructures used to train them continue to scale, developing effective and efficient fault tolerance mechanisms becomes an increasingly important challenge. It's also important to balance the overhead of fault tolerance mechanisms with their benefits, as these mechanisms can add additional computational or storage costs. Current research is focused on devising fault tolerance techniques that are not only effective at handling faults but also efficient and scalable to keep up with the evolving scale of deep learning. 

Elastic training

Elastic training refers to the ability of a distributed deep learning training process to dynamically adjust to the changes in the availability of computational resources [START_REF] Chen | Elastic parameter server load distribution in deep learning clusters[END_REF][36] [START_REF] Wu | Elastic deep learning in multi-tenant GPU clusters[END_REF]. Essentially, it allows the system to add or remove nodes during the training process based on the resource availability and demand [START_REF] Nicolae | DeepClone: Lightweight state replication of deep learning models for data parallel training[END_REF]. Elastic training has the potential to optimize resource utilization, minimize training time, and, in cloud-based pay-as-you-go scenarios, reduce the cost associated with computational resources. Key benefits aside, implementing elastic training in deep learning introduces new challenges. One of the main challenges is maintaining model consistency when nodes are added or removed. For instance, when new nodes are incorporated, the training process must ensure that the model's state is efficiently synchronized across all nodes, including the new ones. Similarly, when nodes are removed, whether due to failure or resource reallocation, the system needs to devise strategies to recover the lost computation or redistribute the workload amongst the remaining nodes. Furthermore, the training process must be resilient enough to handle any interruptions due to changes in the computing environment and resume from where it left off without any significant loss in training progress. Achieving such robustness often requires sophisticated checkpointing strategies and efficient communication protocols.

𝐶 fault_recovery = 𝐶 checkpoint_saving × 𝑓 𝑟𝑒𝑞 saving + 𝐶𝑜𝑢𝑛𝑡 fault × (𝐶 checkpoint_loading + 𝐶 re-configuration + 𝐶 re-compute_from_checkpoint + 𝐶 new_worker_init ) (1) 
The expense associated with recovery training from a checkpointed state, including the reconfiguration of the worker group, can be evaluated using the subsequent equation. In Eq. ( 1), the cost incurred while saving a checkpoint is contingent upon the technique employed and the frequency of saving. Similarly, the cost of loading is contingent on the location of the checkpoint file, and the recomputing cost of lost training progress since the saved state. Moreover, the expense of reconstructing the communication context is tied to the communication protocol and libraries used. If new workers join the training process following re-configuration, the cost associated with loading the training environment and reestablishing the training state across all workers needs to be taken into account. The cost of recomputation has an inverse relationship with the total cost of saving checkpoints. In other words, a shorter interval between checkpoints results in a reduced cost for recomputation, but an increase in the total cost of saving these checkpoints.

ULFM

The User-Level Failure Mitigation (ULFM) specification is an extension of the MPI standard that enables the continued operation of MPI programs across failures. Implementations of ULFM are available in both major open source implementations of the MPI standard (MPITCH [START_REF] Bouteiller | MPICH-V project: A multiprotocol automatic faulttolerant MPI[END_REF] and Open MPI [START_REF] Losada | Fault tolerance of MPI applications in exascale systems: The ULFM solution[END_REF] from which most vendor-specific MPI libraries are derived.

Unlike legacy MPI which would abort the whole program on the first failure, ULFM programs can set up the MPI library so that it reports relevant errors when a process fails, call new MPI procedures to interrupt the ongoing flow of complex communication schemes, and call new procedures to create sane communicators, expunged from failed processes, to restore the full capability of performing high performance, collective communication. In ULFM errors are typically reported in a per-operation basis, and the meaning of an error indicates that the operation did not achieve the desired semantic at the local rank. This relaxed semantic is key for both high performance fault-free communication, but also to enable a flexible recovery strategy that just keeps going with existing non-failed processes; a feature we will take advantage of when designing the recovery algorithm within Horovod.

More broadly, there is a rich literature documenting the successes of the HPC community in deploying fault tolerance using ULFM. It has been employed to support resilience features in programming languages [START_REF] Grove | Failure recovery in resilient X10[END_REF][START_REF] Sara S Hamouda | Resilient X10 over MPI user level failure mitigation[END_REF], resilient databases [START_REF] Stengler | Fault tolerant Collective communication Algorithms For distributed database systems[END_REF], checkpoint-restart frameworks [START_REF] Bouteiller | Implicit Actions and Non-blocking Failure Recovery with MPI[END_REF], resilience frameworks [START_REF] Whitlock | Integrating process, control-flow, and data resiliency layers using a hybrid Fenix/Kokkos approach[END_REF], as well as purely algorithmic approaches [START_REF] Altenbernd | Towards Local-Failure Local-Recovery in PDE Frameworks: The Case of Linear Solvers[END_REF][START_REF] Edson | An Algorithm-Based Fault Tolerance Strategy for the Bitonic Sort Parallel Algorithm[END_REF]. Some preliminary work has considered the adequacy of the ULFM constructs to support machine learning types of workloads [START_REF] Vinay Amatya | What does fault tolerant deep learning need from mpi?[END_REF]. This work will leverage on these established best practices for fault-tolerance patterns, but will also extend to new original patterns that enable the mixed use of different communication libraries in a resilient, yet highly efficient manner. Additional works using ULFM that are closely related to our effort are described further in Section 5.

DESIGN 3.1 Resilient collective communication

In conventional MPI, when a single process fails, it results in the termination of all remaining processes as MPI lacks fault-tolerant capabilities for handling unexpected events like process failures. Consequently, once an unexpected event occurs in a process, all participating processes need to conclude the current operation and restart the entire execution. However, ULFM MPI provides recovery capabilities that enable the development of resilient communication operations employed in distributed deep learning. These procedures involve handling unexpected events by obtaining acknowledgments of reported process failure errors and identifying the group of processes that have been acknowledged as containing the failure. This can be accomplished using the MPIX_Comm_failure_ack and MPIX_Comm_failure_get_acked routines. While the consensus regarding the failures is achieved through collective operation, MPIX_Comm_agree, which ensures agreement across all participating processes. After reaching an agreement, the application user can make decisions based on the corresponding error. By utilizing the MPI_Comm_set_errhandler function provided by MPI, the user has the ability to specify how error codes should be handled.

This can be done by either returning the error codes to the application or invoking a user-defined error handler procedure. Through this approach, we are able to handle events related to changes in worker size by the error handler function. In our design, we offer users a runtime command line flag that allows them to choose whether to drop a single process or the entire node in the event of changing worker size. This helps prevent node-level issues from causing additional failures. In the event of an unexpected occurrence, all processes associated with the same communicator will invoke MPIX_Comm_revoke to locally interrupt ongoing operations. Depending on the user-provided runtime flag, we either drop the failed process or eliminate the entire node, meanwhile, restoring the communicator with the routine MPIX_Comm_shrink. Given that, a large portion of communication operations during a distributed parallel training are collective operations, particularly allreduce and allgather, which are extensively used within a training epoch, we have developed a versatile error handler function to effectively manage unforeseen events that may occur during these collective operations. With this design approach, resilient collective operations serve as the primary method to handle any changes in worker size during training. To assess the effectiveness of our design, we have integrated the resilient collective operation into Horovod, enabling a comparison with the state-of-the-art elastic training mechanisms used in distributed systems.

Elastic training based on resilient collectives

During the training of a distributed deep neural network (DNN), workers frequently exchange data, primarily using the collective communication operation to combine worker contributions and synchronize gradients. Allreduce is one of the most commonly employed collective operations in DNN, which requires all workers to participate in reducing gradients regarding the same tensor. If a worker drops out during training, one of the gradient aggregation operations will fail, and the connection between workers must be rebuilt, forcing the training to stop to address the problem. With the help of ULFM MPI, however, failure information can be quickly and easily propagated to other workers, and the communicator can be reconstructed with the surviving workers.

Since all surviving workers contain all information about the failed Allreduce operation and retain the data from that operation, they can continue the training process by repeating the failed Allreduce operation. As a consequence, it eliminates the need to repeat the current mini-batch training to the contribution. This approach differs significantly from traditional checkpoint-based failure recovery, which involves backward re-computation to ensure accuracy. As shown in Figure 2, cutting-edge elastic training technologies traditionally require a minimum checkpoint interval of one mini-batch to save the training state. Within each mini-batch training, there could be multiple steps of computing and reducing gradients, with each aggregation denoted as ARD (Allreduce). In the event of a worker disconnecting, the conventional checkpointbased approach necessitates rolling back to the last checkpoint. This checkpoint corresponds to the contributions before the current mini-batch. However, the resilient Allreduce method enables the surviving workers to redo the current Allreduce operation and compile the gradients based on the remaining contributions. In the approach we propose, the smallest granularity for recovery is each individual collective operation. This results in significantly lower costs compared to retraining the entire mini-batch.

The elasticity in training functionality was primarily designed for cloud systems, with Gloo and NCCL being the predominant communication libraries employed on these platforms. Nevertheless, as illustrated in Fig. 3, both Gloo and NCCL lack the ability to tolerate failures and reconfigure workers during runtime. To address this issue, Horovod introduced the Elastic Horovod feature that manages the reconfiguration of workers based on exception codes caught from lower levels. In contrast, ULFM MPI can directly capture and manage exception signals, independent of both Horovod and the training engine. It can restore the training process by rapidly reconstructing communicators and repeating any failed operations. 

3.3.3

Scenario III: Automated Upscaling. In real-world scenarios, it is typical for distributed resources to be in inconsistent states at any point in time. Under such circumstances, while some computing resources might be ready to initiate training, others could be busy with other tasks. Instead of waiting for all resources to become available at once, a more effective strategy is to start training with the available workers and synchronize with the remaining resources as they become ready. This promotes a more adaptable training process that optimizes resource utilization.

EVALUATION 4.1 Experiment setup

The proposed design was assessed on Summit, a top-tier supercomputer located at the Oak Ridge National Laboratory. Every computing node of Summit consists of 2 IBM POWER9 CPUs and 6 NVIDIA V100 GPUs, each loaded with 16 GB of HBM memory. providing a node injection bandwidth of 23 GB/s. Three pre-trained Keras image recognition models, as cited in [START_REF]Keras Applications[END_REF], were chosen considering their parameter size distribution, and were trained using ImageNet datasets [START_REF]Kaggle Fruits 360 datasets[END_REF]. The rationale behind choosing these applications was their trainable parameter size, directly influencing the count of Allreduce operations on both CPUs and GPUs. The scale of the training model significantly affects the expenses related to the creation and loading of checkpoints. We set up and deployed Horovod with optimal environmental variables such as tensor fusion and response caching sizes. For the sake of comparability in our experiments, we've limited our focus to memory checkpoints in the subsequent evaluation. This means that we do not delve into the costs associated with saving and loading checkpoints on parallel file system within this context. This section will solely focus on the costs associated with reconstructing the communication context, re-establishing rendezvous, and the re-computation costs necessary to resume training. For scientific study, we selected Elastic Horovod as a representative technology that uses checkpoints for comparison purposes. However, it currently only provides support for failure recovery through GLOO and NCCL communication libraries. To avoid any potential overhead of GPU operations from different libraries, we made modifications in Horovod code to integrate ULFM MPI support for fault tolerance and communication among hosts, and we delegated all GPU computation and communication tasks to NCCL.

In our study, we evaluated three recovery scenarios using an equivalent number of GPUs. As Elastic Horovod only provides support for node-level failures, we conducted comparisons at both the process and node levels, providing the flexibility to choose from different levels. Consequently, we tested and validated two recovery levels in the scaling-in, replacement, and scaling-out cases. To emulate elastic computing resources during training on HPC systems, we explore three scenarios that require reconfiguration of workers in varying sizes. We have segmented the costs associated with restoration in Elastic Horovod in Fig. 4, illustrating the first scenarios mentioned in the previous section across 24 GPUs. To exemplify this, we conducted experiments using ResNet 50 training across 4 nodes, considering situations of dropping the failed process and dropping the entire node. In these experiments, we profiled the costs of each step, including catching exceptions, shutting down ongoing operations, re-initializing the elastic mode, reinitializing Gloo, and resuming both local and global rendezvous. In scenarios where dropping a node is required, the most time-consuming aspect is the reconstruction of the Gloo context and rendezvous. On the other hand, when new workers need to be added, there are additional costs associated with loading and initializing the necessary software libraries for new workers. Once new workers, with initialized training states, are prepared to participate in the training, the entire process is fully resumed. For the backward recovery method, the starting point is from the last checkpoint state, which, in our experiments, is the epoch at which failure occurred (i)th epoch. On the other hand, in the forward recovery method, the new workers receive the contribution from the failed (i)th epoch from the survivors, thus they commence from the (i+1)th epoch. However, it is important to note that this cost is only incurred once for every worker, until they exit the training execution.

Table 2: Recovery capabilities of different communication libraries

In the following experiments, we scrutinize our methodology's performance in relation to Elastic Horovod across different models and scenarios. To draw a direct comparison between the two techniques, we conduct a detailed evaluation and analysis of their respective capabilities and performance. In this analysis, we categorize the costs into three principal segments: reconstructing the communicator and resuming rendezvous, reinitializing the training state for the new workers, and the cost associated with re-computation. As our approach focuses on forward recovery, any new workers are introduced after the current epoch is completed by the existing processes. Therefore, we have analyzed the execution duration of the remaining epoch that includes worker changes. It is important to note that this duration represents continued training and does not incur additional costs. During this period, the surviving processes make valid contributions to the training process. Based on Figure 8 to Figure 10, it allows us to conduct a clear analysis of the costs associated with each of the abovementioned steps, and evaluation of the overall effectiveness of our approach compared to Elastic Horovod. 

RELATED WORK

To accommodate the dynamic addition or removal of servers and workers, Litz [START_REF] Qiao | Litz: Elastic framework for {High-Performance} distributed machine learning[END_REF] is designed with capabilities of updating forwarding and executor migration. Cruise [START_REF] Woo-Yeon Lee | Automating system configuration of distributed machine learning[END_REF], on the other hand, uses a performance model to dynamically tweak the settings of parameter servers and workers to achieve optimal performance. These technologies, as representative of the field, rely on the parameter server, which has limited scalability on high-performance computing systems on a large scale. Similar with Elastic Horovod, recent proposed studies ElasticDL [START_REF] Zhou | ElasticDL: A Kubernetes-native Deep Learning Framework with Faulttolerance and Elastic Scheduling[END_REF] and Pytorch-Elastic [START_REF]Pytorch elastic[END_REF] use the checkpoint to replicate the training state. Our method is constructed using the highly scalable and portable communication library, MPI, which offers a scalable, decentralized, and lightweight solution for elastic resource management during training. It eliminates the need for shutdown-restart and checkpoint procedures by reducing the recovery tasks to just a single collective communication. Elan [START_REF] Xie | Elan: Towards generic and efficient elastic training for deep learning[END_REF] also leverages collective communication to incorporate elasticity in deep learning, much like our approach. However, their focus primarily lies on the concurrent and efficient replication of state. When scaling DL, techniques to overcome the convergence issues include learning rate adjustment [START_REF] Krizhevsky | One weird trick for parallelizing convolutional neural networks[END_REF] and warmup scheme [START_REF] Goyal | Accurate, large minibatch sgd: Training imagenet in 1 hour[END_REF] are introduced to overcome the convergence problem at scale. Dynamic workload scheduling based on parallelism was proposed by [START_REF] Wu | Elastic deep learning in multi-tenant GPU clusters[END_REF] has been proposed to ensure that all data samples are used for training within a single epoch, even in case of failure.

CONCLUSION

Our approach contrasts with existing malleable deep learning systems with its rapid reaction to fault events and malleability requests: we employ a novel run-through recovery strategy that lets the training continue the failed epoch in degraded mode, before a thorough restructuring of the computation lets replacement or new resources join, and high performance networking, as available on HPC systems, be restored to its ideal capacity. Overall, our solution offers an efficient and flexible means of managing training processes, enabling researchers to leverage the full potential of high-performance computing environments for large-scale deep learning tasks.
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 1 Figure 1: Backward recovery based on the checkpointed training state
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 23 Figure 2: Backward recovery and proposed forward recovery based on ULFM MPI
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 4 Figure 4: Detailed cost breakdowns in Scenario I when training ResNet 50 across 24 GPUs, with 18 GPUs left after resuming from failure.
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 5 Figure 5: Costs (seconds) of recovering/reconfiguring workers when training the VGG-16 model in three scenarios: Scenario I: Dropping the failed process/node ("Down"); Scenario II: Remaining the original worker size by replacing the failed process/node with new process/node ("Same"); Scenario III: Automated doubling the worker size during the training ("Up"); scaling from 12 GPUs to utmost 192 GPUs
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 6 Figure 6: Costs (seconds) of recovering/reconfiguring workers when training the ResNet-50 model in three scenarios

Figure 7 :

 7 Figure 7: Costs (seconds) of recovering/reconfiguring workers when training the NasNet model in three scenarios

Table 1 :

 1 Keras benchmark applications

	Model	Trainable Depth Total Parameters Size (MB)
	VGG-16	32	16	143.7M	549
	ResNet50V2	272	307	25.6M	98
	NasNetMobile	1126	389	5.3M	23
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