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ABSTRACT
A robust solution that incorporates fault tolerance and elastic scal-

ing capabilities for distributed deep learning. Taking advantage

of MPI resilient capabilities, aka. User-Level Failure Mitigation

(ULFM), this novel approach promotes efficient and lightweight

failure management and encourages smooth scaling in volatile

computational settings. The proposed ULFM MPI-centered mech-

anism outperforms the only officially supported elastic learning

framework, Elastic Horovod (using Gloo and NCCL), by a signifi-

cant factor. These results reinforce the capability of MPI extension

to deal with resiliency and promote ULFM as an effective tech-

nique for fault management, minimizing downtime, and thereby

enhancing the overall performance of distributed applications, in

particular elastic training in high-performance computing (HPC)

environments and machine learning applications.
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1 INTRODUCTION
As the workload and complexity of deep training continue to grow,

there is a rising trend of scaling training processes across parallel

resources. The use of accelerators, with their outstanding efficiency

at performing variable-precision floating point operations, has un-

leashed the efficiency of deep learning training, and is a major part

in the overall success that machine learning systems have enjoyed

in recent years. When increasing the training scale on distributed

systems, fault tolerance becomes a critical aspect to ensure a robust

training progress. The larger the system, the more prone to failures,

whether due to hardware malfunctions, network issues, or software
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errors. These failures can disrupt the training process, leading to

data loss, wasted computation, and increased training time. In addi-

tion, deployments in the cloudmay exhibit higher failure rates, even

at modest scale, and may provide additional incentives for scaling

up or down (e.g., expanding or shrinking) the training operation

based on external factors, such as spot node pricing. To address

these challenges, fault tolerance mechanisms are employed to en-

sure that deep learning training can withstand failures and continue

running seamlessly. Fault tolerance techniques encompass various

strategies, including checkpointing [20][33][39], replication [14],

and error detection [15]. Checkpointing involves periodically sav-

ing the state of the training process, enabling it to resume from

a recent checkpoint in the event of a failure. Replication involves

creating multiple copies of the model or data, allowing the training

to continue using an alternative copy in case of failure[32][7]. Error

detection and recovery mechanisms focus on identifying and miti-

gating errors during the training process, ensuring that the model’s

integrity is preserved and training progresses uninterrupted[38].

In addition to fault tolerance, the elastic scaling of deep learning

resources has become increasingly important. Deep learning mod-

els often require substantial computational resources, including

processors, memory, and storage, to train effectively. Elastic scaling

involves dynamically adjusting the available resources based on

the workload and demand [28]. This flexibility enables efficient

utilization of resources, ensuring that the deep learning system can

scale up or down as needed, optimizing performance and cost effi-

ciency. Elastic Horovod [3] has emerged as an advanced and widely

embraced solution in enterprise clouds for effectively handling dy-

namic host changes during distributed data parallel training. This

powerful framework leverages communication libraries such as

Gloo [1] for CPU operations and NCCL [2] for GPU operations.

With support for popular training engines like TensorFlow and

PyTorch as backends, Elastic Horovod has established itself as a

cutting-edge choice for managing training processes in a flexible

and scalable manner within enterprise cloud environments. As the

demand for large scale training on supercomputer-scale machines

continues to rise, there is a need for alternative elastic training

solutions that can effectively employ the type of high performance

network capabilities and minimize overhead costs. In response to

this demand, we present an innovative approach that harnesses the

capabilities of User Level Fault Mitigation (ULFM) in OpenMPI [24].

This paper is organized as follows. Section 2 provides some back-

ground about machine learning, elasticity in machine learning algo-

rithms, and the ULFM communication library; Section 3 describes

https://doi.org/10.1145/3624062.3626080
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our design for fault tolerant machine learning; Section 4 presents an

experimental evaluation of our approach while Section 5 presents

prior and related works, before Section 6 concludes.

2 BACKGROUND
2.1 Fault tolerance in distributed training
In the context of deep learning, fault tolerance refers to the capabil-

ity of continuing the training without significant disruption from

unexpected events, errors or failures. Unexpected events include

hardware issues, such as memory crashes, network disconnection,

or software failures. The introduction of fault tolerance mechanism

ensures the program can be recovered from such unexpected events

without a substantial loss of the work already finished, as a con-

sequence, prevents the need to re-execute the program from the

scratch.

Typical fault tolerance technologies include checkpointing and

shutdown-restart recovery[25][31][26]. In the checkpoint mech-

anism, the state of the training, including model parameters and

state of optimizers, is regularly saved to stable storage. With this

information, even if a fault occurs, the system can roll back to the

latest saved checkpoint and resume the training from that state,

aiming to reduce the overhead of repeating execution.

Recently, techniques like algorithm-based fault tolerance[30][38],

which involves incorporating redundancy in the algorithms them-

selves to detect and correct errors[19]. As deep learning models

and the infrastructures used to train them continue to scale, devel-

oping effective and efficient fault tolerance mechanisms becomes

an increasingly important challenge. It’s also important to balance

the overhead of fault tolerance mechanisms with their benefits,

as these mechanisms can add additional computational or storage

costs. Current research is focused on devising fault tolerance tech-

niques that are not only effective at handling faults but also efficient

and scalable to keep up with the evolving scale of deep learning.

Figure 1: Backward recovery based on the checkpointed train-
ing state

2.2 Elastic training
Elastic training refers to the ability of a distributed deep learning

training process to dynamically adjust to the changes in the avail-

ability of computational resources[13][36][35]. Essentially, it allows

the system to add or remove nodes during the training process based

on the resource availability and demand [27]. Elastic training has

the potential to optimize resource utilization, minimize training

time, and, in cloud-based pay-as-you-go scenarios, reduce the cost

associated with computational resources. Key benefits aside, imple-

menting elastic training in deep learning introduces new challenges.

One of the main challenges is maintaining model consistency when

nodes are added or removed. For instance, when new nodes are

incorporated, the training process must ensure that the model’s

state is efficiently synchronized across all nodes, including the new

ones. Similarly, when nodes are removed, whether due to failure

or resource reallocation, the system needs to devise strategies to

recover the lost computation or redistribute the workload amongst

the remaining nodes. Furthermore, the training process must be

resilient enough to handle any interruptions due to changes in the

computing environment and resume from where it left off without

any significant loss in training progress. Achieving such robustness

often requires sophisticated checkpointing strategies and efficient

communication protocols.

𝐶
fault_recovery

= 𝐶
checkpoint_saving

× 𝑓 𝑟𝑒𝑞saving

+𝐶𝑜𝑢𝑛𝑡
fault

× (𝐶
checkpoint_loading

+𝐶
re-configuration

+𝐶
re-compute_from_checkpoint

+𝐶
new_worker_init

) (1)

The expense associated with recovery training from a check-

pointed state, including the reconfiguration of the worker group,

can be evaluated using the subsequent equation. In Eq. (1), the

cost incurred while saving a checkpoint is contingent upon the

technique employed and the frequency of saving. Similarly, the

cost of loading is contingent on the location of the checkpoint file,

and the recomputing cost of lost training progress since the saved

state. Moreover, the expense of reconstructing the communication

context is tied to the communication protocol and libraries used. If

new workers join the training process following re-configuration,

the cost associated with loading the training environment and re-

establishing the training state across all workers needs to be taken

into account. The cost of recomputation has an inverse relation-

ship with the total cost of saving checkpoints. In other words, a

shorter interval between checkpoints results in a reduced cost for

recomputation, but an increase in the total cost of saving these

checkpoints.

2.3 ULFM
The User-Level Failure Mitigation (ULFM) specification is an exten-

sion of the MPI standard that enables the continued operation of

MPI programs across failures. Implementations of ULFM are avail-

able in bothmajor open source implementations of theMPI standard

(MPITCH [11] and Open MPI [24] from which most vendor-specific

MPI libraries are derived.

Unlike legacy MPI which would abort the whole program on the

first failure, ULFM programs can set up the MPI library so that it re-

ports relevant errors when a process fails, call new MPI procedures

to interrupt the ongoing flow of complex communication schemes,

and call new procedures to create sane communicators, expunged

from failed processes, to restore the full capability of performing

high performance, collective communication. In ULFM errors are

typically reported in a per-operation basis, and the meaning of an
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error indicates that the operation did not achieve the desired se-

mantic at the local rank. This relaxed semantic is key for both high

performance fault-free communication, but also to enable a flexible

recovery strategy that just keeps going with existing non-failed

processes; a feature we will take advantage of when designing the

recovery algorithm within Horovod.

More broadly, there is a rich literature documenting the successes

of the HPC community in deploying fault tolerance using ULFM.

It has been employed to support resilience features in program-

ming languages [17, 18], resilient databases [21], checkpoint-restart

frameworks [10], resilience frameworks [34], as well as purely algo-

rithmic approaches [8, 12]. Some preliminary work has considered

the adequacy of the ULFM constructs to support machine learning

types of workloads [9]. This work will leverage on these established

best practices for fault-tolerance patterns, but will also extend to

new original patterns that enable the mixed use of different com-

munication libraries in a resilient, yet highly efficient manner. Ad-

ditional works using ULFM that are closely related to our effort are

described further in Section 5.

3 DESIGN
3.1 Resilient collective communication
In conventional MPI, when a single process fails, it results in the

termination of all remaining processes as MPI lacks fault-tolerant

capabilities for handling unexpected events like process failures.

Consequently, once an unexpected event occurs in a process, all

participating processes need to conclude the current operation and

restart the entire execution. However, ULFMMPI provides recovery

capabilities that enable the development of resilient communication

operations employed in distributed deep learning. These procedures

involve handling unexpected events by obtaining acknowledgments

of reported process failure errors and identifying the group of

processes that have been acknowledged as containing the fail-

ure. This can be accomplished using the MPIX_Comm_failure_ack
and MPIX_Comm_failure_get_acked routines. While the consen-

sus regarding the failures is achieved through collective operation,

MPIX_Comm_agree, which ensures agreement across all participat-

ing processes. After reaching an agreement, the application user

can make decisions based on the corresponding error. By utiliz-

ing the MPI_Comm_set_errhandler function provided by MPI, the

user has the ability to specify how error codes should be handled.

This can be done by either returning the error codes to the appli-

cation or invoking a user-defined error handler procedure. Through

this approach, we are able to handle events related to changes in

worker size by the error handler function. In our design, we of-

fer users a runtime command line flag that allows them to choose

whether to drop a single process or the entire node in the event of

changing worker size. This helps prevent node-level issues from

causing additional failures. In the event of an unexpected occur-

rence, all processes associated with the same communicator will

invoke MPIX_Comm_revoke to locally interrupt ongoing operations.

Depending on the user-provided runtime flag, we either drop the

failed process or eliminate the entire node, meanwhile, restoring

the communicator with the routine MPIX_Comm_shrink. Given that,
a large portion of communication operations during a distributed

parallel training are collective operations, particularly allreduce

and allgather, which are extensively used within a training epoch,

we have developed a versatile error handler function to effectively

manage unforeseen events that may occur during these collective

operations. With this design approach, resilient collective opera-

tions serve as the primary method to handle any changes in worker

size during training. To assess the effectiveness of our design, we

have integrated the resilient collective operation into Horovod,

enabling a comparison with the state-of-the-art elastic training

mechanisms used in distributed systems.

3.2 Elastic training based on resilient collectives
During the training of a distributed deep neural network (DNN),

workers frequently exchange data, primarily using the collective

communication operation to combine worker contributions and

synchronize gradients. Allreduce is one of the most commonly

employed collective operations in DNN, which requires all workers

to participate in reducing gradients regarding the same tensor. If a

worker drops out during training, one of the gradient aggregation

operations will fail, and the connection between workers must be

rebuilt, forcing the training to stop to address the problem. With

the help of ULFM MPI, however, failure information can be quickly

and easily propagated to other workers, and the communicator can

be reconstructed with the surviving workers.

Since all surviving workers contain all information about the

failed Allreduce operation and retain the data from that opera-

tion, they can continue the training process by repeating the failed

Allreduce operation. As a consequence, it eliminates the need to

repeat the current mini-batch training to the contribution. This

approach differs significantly from traditional checkpoint-based

failure recovery, which involves backward re-computation to en-

sure accuracy. As shown in Figure 2, cutting-edge elastic training

technologies traditionally require a minimum checkpoint interval

of one mini-batch to save the training state. Within each mini-batch

training, there could be multiple steps of computing and reducing

gradients, with each aggregation denoted as ARD (Allreduce). In

the event of a worker disconnecting, the conventional checkpoint-

based approach necessitates rolling back to the last checkpoint.

This checkpoint corresponds to the contributions before the cur-

rent mini-batch. However, the resilient Allreduce method enables

the surviving workers to redo the current Allreduce operation and

compile the gradients based on the remaining contributions. In the

approach we propose, the smallest granularity for recovery is each

individual collective operation. This results in significantly lower

costs compared to retraining the entire mini-batch.

The elasticity in training functionality was primarily designed

for cloud systems, with Gloo and NCCL being the predominant

communication libraries employed on these platforms. Neverthe-

less, as illustrated in Fig.3, both Gloo and NCCL lack the ability

to tolerate failures and reconfigure workers during runtime. To

address this issue, Horovod introduced the Elastic Horovod feature

that manages the reconfiguration of workers based on exception

codes caught from lower levels. In contrast, ULFM MPI can di-

rectly capture and manage exception signals, independent of both

Horovod and the training engine. It can restore the training process

by rapidly reconstructing communicators and repeating any failed

operations.
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Figure 2: Backward recovery and proposed forward recovery
based on ULFM MPI

Figure 3: High-level abstract of the fault recovery and recon-
figuration capability in ULFM MPI

3.3 Dynamic scaling depending on available
resources

3.3.1 Scenario I: DownscalingRecovery. In this particular case,
when a failure occurs, every worker is alerted about the shift in the

current number of workers. The communication context is then

rebuilt, excluding the malfunctioning workers. Elastic Horovod

approaches this by blacklisting the entire node to avoid potential

hardware issues at the node level, which prompts all remaining

workers on that node to discontinue the training process. Neverthe-

less, the remaining nodes create a fresh communication context and

resume training without having to restart the whole process. In our

implementation, we provide runtime options to either eliminate

only the dysfunctional workers or exclude the whole node, thereby

offering flexibility in managing fault tolerance.

3.3.2 Scenario II: Replacement Recovery. In this situation, our

objective is to keep the original number of workers even if a failure

arises. This ensures training parameters associated with the worker

size remain stable. As a result, we allocate the exact number of faulty

workers or nodes to join the ongoing training process. Similar to

Elastic Horovod, this method operates at the node level, guarantee-

ing the same adjustment unit. Moreover, ULFM MPI provides the

flexibility to substitute individual processes or entire nodes with

multiple processes, granting fine-tuned control over fault tolerance

mechanisms. Both Scenario I and Scenario II can be considered

as strategies related to failure recovery.

3.3.3 Scenario III: Automated Upscaling. In real-world scenar-

ios, it is typical for distributed resources to be in inconsistent states

at any point in time. Under such circumstances, while some com-

puting resources might be ready to initiate training, others could

be busy with other tasks. Instead of waiting for all resources to be-

come available at once, a more effective strategy is to start training

with the available workers and synchronize with the remaining

resources as they become ready. This promotes a more adaptable

training process that optimizes resource utilization.

4 EVALUATION
4.1 Experiment setup
The proposed design was assessed on Summit, a top-tier super-

computer located at the Oak Ridge National Laboratory. Every

computing node of Summit consists of 2 IBM POWER9 CPUs and

6 NVIDIA V100 GPUs, each loaded with 16 GB of HBM memory.

providing a node injection bandwidth of 23 GB/s. Three pre-trained

Keras image recognition models, as cited in [6], were chosen con-

sidering their parameter size distribution, and were trained using

ImageNet datasets [5]. The rationale behind choosing these appli-

cations was their trainable parameter size, directly influencing the

count of Allreduce operations on both CPUs and GPUs. The scale

of the training model significantly affects the expenses related to

the creation and loading of checkpoints. We set up and deployed

Horovod with optimal environmental variables such as tensor fu-

sion and response caching sizes. For the sake of comparability in

our experiments, we’ve limited our focus to memory checkpoints in

the subsequent evaluation. This means that we do not delve into the

costs associated with saving and loading checkpoints on parallel

file system within this context. This section will solely focus on the

costs associated with reconstructing the communication context,

re-establishing rendezvous, and the re-computation costs necessary

to resume training.

Table 1: Keras benchmark applications

Model Trainable Depth Total Parameters Size (MB)

VGG-16 32 16 143.7M 549

ResNet50V2 272 307 25.6M 98

NasNetMobile 1126 389 5.3M 23

For scientific study, we selected Elastic Horovod as a represen-

tative technology that uses checkpoints for comparison purposes.

However, it currently only provides support for failure recovery

through GLOO and NCCL communication libraries. To avoid any

potential overhead of GPU operations from different libraries, we

made modifications in Horovod code to integrate ULFM MPI sup-

port for fault tolerance and communication among hosts, and we

delegated all GPU computation and communication tasks to NCCL.

In our study, we evaluated three recovery scenarios using an

equivalent number of GPUs. As Elastic Horovod only provides

support for node-level failures, we conducted comparisons at both

the process and node levels, providing the flexibility to choose

from different levels. Consequently, we tested and validated two

recovery levels in the scaling-in, replacement, and scaling-out cases.

To emulate elastic computing resources during training on HPC
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systems, we explore three scenarios that require reconfiguration of

workers in varying sizes.

Table 2: Recovery capabilities of different communication
libraries

Dynamic training scenarios Elastic Horovod ULFM MPI

Recovery by process × √

Recovery by node

√ √

Autoscaling by process × √

Autoscaling by node

√ √

Figure 4: Detailed cost breakdowns in Scenario I when train-
ing ResNet 50 across 24 GPUs, with 18 GPUs left after resum-
ing from failure.

We have segmented the costs associated with restoration in Elas-

tic Horovod in Fig.4, illustrating the first scenarios mentioned in the

previous section across 24 GPUs. To exemplify this, we conducted

experiments using ResNet 50 training across 4 nodes, considering

situations of dropping the failed process and dropping the entire

node. In these experiments, we profiled the costs of each step, in-

cluding catching exceptions, shutting down ongoing operations,

re-initializing the elastic mode, reinitializing Gloo, and resuming

both local and global rendezvous. In scenarios where dropping a

node is required, the most time-consuming aspect is the reconstruc-

tion of the Gloo context and rendezvous. On the other hand, when

new workers need to be added, there are additional costs associated

with loading and initializing the necessary software libraries for

new workers. Once new workers, with initialized training states,

are prepared to participate in the training, the entire process is fully

resumed. For the backward recovery method, the starting point is

from the last checkpoint state, which, in our experiments, is the

epoch at which failure occurred (i)th epoch. On the other hand, in

the forward recovery method, the new workers receive the con-

tribution from the failed (i)th epoch from the survivors, thus they

commence from the (i+1)th epoch. However, it is important to note

that this cost is only incurred once for every worker, until they exit

the training execution.

In the following experiments, we scrutinize our methodology’s

performance in relation to Elastic Horovod across different mod-

els and scenarios. To draw a direct comparison between the two

techniques, we conduct a detailed evaluation and analysis of their

respective capabilities and performance. In this analysis, we catego-

rize the costs into three principal segments: reconstructing the com-

municator and resuming rendezvous, reinitializing the training state

for the new workers, and the cost associated with re-computation.

Figure 5: Costs (seconds) of recovering/reconfiguringworkers
when training the VGG-16model in three scenarios: Scenario
I: Dropping the failed process/node ("Down"); Scenario II: Re-
maining the original worker size by replacing the failed pro-
cess/node with new process/node ("Same"); Scenario III: Au-
tomated doubling the worker size during the training ("Up");
scaling from 12 GPUs to utmost 192 GPUs

As our approach focuses on forward recovery, any new workers

are introduced after the current epoch is completed by the existing

processes. Therefore, we have analyzed the execution duration of

the remaining epoch that includes worker changes. It is important

to note that this duration represents continued training and does not

incur additional costs. During this period, the surviving processes

make valid contributions to the training process. Based on Figure

8 to Figure 10, it allows us to conduct a clear analysis of the costs

associated with each of the abovementioned steps, and evaluation

of the overall effectiveness of our approach compared to Elastic

Horovod.
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Figure 6: Costs (seconds) of recovering/reconfiguringworkers
when training the ResNet-50 model in three scenarios

Figure 7: Costs (seconds) of recovering/reconfiguringworkers
when training the NasNet model in three scenarios

The results derived from these experiments clearly demonstrate

that ULFM MPI consistently produces less overhead when recon-

structing the communication context compared to Elastic Horovod

via Gloo. This holds true irrespective of whether workers are added

or removed during training. Furthermore, ULFM MPI provides the

added benefit of flexibility in managing each individual process

with minimal cost. This advantage becomes increasingly significant

at larger scales.

5 RELATEDWORK
To accommodate the dynamic addition or removal of servers and

workers, Litz[29] is designed with capabilities of updating forward-

ing and executor migration. Cruise[23], on the other hand, uses a

performance model to dynamically tweak the settings of parameter

servers and workers to achieve optimal performance. These tech-

nologies, as representative of the field, rely on the parameter server,

which has limited scalability on high-performance computing sys-

tems on a large scale. Similar with Elastic Horovod, recent proposed

studies ElasticDL[40] and Pytorch-Elastic[4] use the checkpoint to

replicate the training state. Our method is constructed using the

highly scalable and portable communication library, MPI, which

offers a scalable, decentralized, and lightweight solution for elas-

tic resource management during training. It eliminates the need

for shutdown-restart and checkpoint procedures by reducing the

recovery tasks to just a single collective communication. Elan[37]

also leverages collective communication to incorporate elasticity

in deep learning, much like our approach. However, their focus

primarily lies on the concurrent and efficient replication of state.

When scaling DL, techniques to overcome the convergence issues

include learning rate adjustment[22] and warmup scheme[16] are

introduced to overcome the convergence problem at scale. Dynamic

workload scheduling based on parallelism was proposed by[35] has

been proposed to ensure that all data samples are used for training

within a single epoch, even in case of failure.

6 CONCLUSION
Our approach contrasts with existing malleable deep learning sys-

tems with its rapid reaction to fault events and malleability requests:

we employ a novel run-through recovery strategy that lets the train-

ing continue the failed epoch in degraded mode, before a thorough

restructuring of the computation lets replacement or new resources

join, and high performance networking, as available on HPC sys-

tems, be restored to its ideal capacity. Overall, our solution offers

an efficient and flexible means of managing training processes, en-

abling researchers to leverage the full potential of high-performance

computing environments for large-scale deep learning tasks.
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