
HAL Id: hal-04343674
https://hal.science/hal-04343674v1

Submitted on 14 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

MPIGDB: A Flexible Debugging Infrastructure for MPI
Programs

Robert Underwood, Bogdan Nicolae

To cite this version:
Robert Underwood, Bogdan Nicolae. MPIGDB: A Flexible Debugging Infrastructure for MPI Pro-
grams. FlexScience’23: The 13th Workshop on AI and Scientific Computing at Scale using Flex-
ible Computing Infrastructures (with HPDC’23), Jun 2023, Orlando, United States. pp.11-18,
�10.1145/3589013.3596675�. �hal-04343674�

https://hal.science/hal-04343674v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

MPIGDB: A Flexible Debugging Infrastructure for MPI Programs
Robert Underwood

runderwood@anl.gov

Argonne National Laboratory

Lemont, Illinois, USA

Bogdan Nicolae

bnicolae@anl.gov

Argonne National Laboratory

Lemont, Illinois, USA

ABSTRACT
The advent of flexible science workflows that span traditional HPC,

the cloud, and beyond requires more than ever efficient, scalable,

portable, featureful debugging tools. This work presents the design

and implementation of MPIGDB a flexible debugging infrastructure

for MPI programs. MPIGDB is designed to be highly capable at scale,

available across platforms, easily interactive, and an extensible way

to debug distributed MPI programs. This work demonstrates the

scalability of this our approach to 128 processes on debugging

memory access violations in a heat diffusion code as an example

use case while providing features competitive with proprietary

debugging tools such as GPU kernel debugging, mixed language

support, and scripting abilities. Together these tools allow users to

debug quickly challenges wherever their science is run.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging; • Computing methodologies → Massively parallel and
high-performance simulations.

KEYWORDS
Debugging, MPI

ACM Reference Format:
Robert Underwood and Bogdan Nicolae. 2023. MPIGDB: A Flexible Debug-

ging Infrastructure for MPI Programs. In Proceedings of the 13thWorkshop on
AI and Scientific Computing at Scale using Flexible Computing Infrastructures
(FlexScience ’23), June 20, 2023, Orlando, FL, USA. ACM, New York, NY, USA,

8 pages. https://doi.org/10.1145/3589013.3596675

1 INTRODUCTION
Scientific computing workflows are beginning to utilize increas-

ingly diverse computing environments. Flexible computing infras-

tructures leverage increasingly heterogeneous system architectures

with diverse hardware both within (e.g. CPU+GPU) and between

nodes (e.g. different types of CPUs between nodes), heterogeneous

software stacks (e.g. high-level languages such as Python or Julia

with low-level languages C++ or Cuda), running across distributed

computing environments, on a mixture of transitional HPC, cloud,

and edge devices. All of this heterogeneity of system architectures

presents the possibility for complex software bugs to be surfaced

through the interactions of these components that require flexible

Publication rights licensed to ACM. ACM acknowledges that this contribution was

authored or co-authored by an employee, contractor or affiliate of a national govern-

ment. As such, the Government retains a nonexclusive, royalty-free right to publish or

reproduce this article, or to allow others to do so, for Government purposes only.

FlexScience ’23, June 20, 2023, Orlando, FL, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0166-5/23/06. . . $15.00

https://doi.org/10.1145/3589013.3596675

visibility into the entire stack across distributed nodes to isolate

and debug these bugs quickly.

Scientists need a capable, available, extensible, and interactive
tool that can be used to debug distributed workflows on heteroge-

neous HPC systems. A key requirement is a method to interrogate

their systems in order to track down complex software bugs across

multiple layers of the stack and multiple nodes. To this end, they

need access to read and potentially modify the distributed state

of their workflow at once. State-of-art tools either do not provide

sufficient introspection ability across the layers of the software

stack and the heterogeneous hardware, or are not available on all

platforms due to licensing or software limitations. Furtheremore,

they are non-extensible (making it difficult to quickly automate new

tasks as users encounter them), lack sufficient interactivity (making

it more time consuming to explore complex system interactions), or

lack the ability to correlate complex issues across distributed nodes.

Thus, designing a debugging environment for flexible computing is

challenging.

Without a view into the state on distributed compute nodes,

users will fail to quickly determine the root cause of a problem

influenced by the behavior of a process on another node. For the

purpose of this work, we focus on easy-to-quantify bugs to enable

direct comparisons with state-of-art approaches. However, it is

important to note that our proposal can be used to identify several

complex and pathological bugs in distributed systems quickly and

efficiently. For example, we have used this tool to: (1) detect a missed

MPI collective call caused by a thrown C++ exception caught before

termination which causes the application to hang; (2) fix a hang

triggered by a process waiting to be notified to flush data; (3) fix

a use after free error in mixed python and C++ code; (4) identify

the root cause of a hang in a distributed system as an improperly

configured network connection in a server-client program. All

these behaviors are difficult to debug without the ability to inspect

a distributed state, and our tool was successful in facilitating this

capability.

This work introduces MPIGDB, an open source1, capable, available,
interactive, and extensible tool for debugging distributed MPI appli-
cations across this diverse computing ecosystem at scale to address

these challenges posed by flexible science applications. Our tool

exposes powerful capabilities in GDB to tackle diverse hardware

by providing a consistent method to print variables throughout the

stack and get backtraces on both serial and multi-threaded CPU

codes as well as GPU kernels on diverse systems. It leverages ca-

pabilities to see stack traces of high-level languages like Julia and

Python together with low-level library context from C, C++, or

Cuda codes to trace issues across multiple levels of the stack. It

is easily extensible with both scripts and command extensions to

productively and automatically address common tasks and to more

1
https://github.com/robertu94/mpigdb

https://orcid.org/0000-0002-1464-729X
https://orcid.org/0000-0002-0661-7509
https://doi.org/10.1145/3589013.3596675
https://doi.org/10.1145/3589013.3596675
https://github.com/robertu94/mpigdb

FlexScience ’23, June 20, 2023, Orlando, FL, USA Robert Underwood & Bogdan Nicolae

easily span the high-level to low-level language divide. It is avail-
able without the high cost or relying on nonstandard functionality.

It also provides key interactive capabilities allowing the scientists
to explore different aspects of their software dynamically as they

root cause bugs in their codes. Lastly, it tackles the key challenge

of debugging distributed MPI programs by introducing a portable

startup mechanism combined with extensions to more easily debug

MPI programs through a single interface with up to 128 processes.

Our key contributions are the implementation of MPIGDB, bring-
ing highly capable, available, interactive, and extensible debugging

to distributed MPI programs in a way that scales to 128 processes –

existing tools have many of these attributes, but MPIGDB uniquely
offers them all for distributed programs. We accomplish this by pro-

viding a novel portable mechanism to attach a debugger instance

to a collection of MPI ranks and a series of debugger extensions

to make facilitate work with large collections of processes and a

command line utility that ties these seamlessly together. Lastly, we

demonstrate the scalability and interactivity of our approach with

a case study on a memory access violation in a MPI program.

2 BACKGROUND
In this section, we describe commonly used and state-of-the-art

tools for debugging MPI programs and we define the criteria of

capability, availability, extensibility, and interactivity of distributed

processes and evaluate the various approaches by them. After that,

we highlight the capabilities included in the GDB that allow it to

be converted into a distributed debugger with the power to span

heterogeneous hardware and software stacks and finally describe

the current state of the art for attaching debuggers to MPI processes.

2.1 Debugging for MPI Programs
We highlight the most common approaches to debugging MPI pro-

grams at scale and consider how they address issues of capability,

availability, extensibility, and interactivity when debugging MPI

distributed programs. Users take a variety of approaches to debug-

ging MPI programs including serial debuggers, parallel debuggers,

specialized memory access tools, and tracing tools.

We rank and summarize the various approaches based on ca-

pability, availability, extensibility, and interactivity for distributed

programs in Table 1 as none, low, mid, or high.
Tools that have high capability allow detailed and arbitrary in-

spection and possibly modification of system state across CPUs and

GPUs and across high and low-level language boundaries. Tools

withmid capability have some of these abilities, and low capability

tools cannot access the arbitrary state of programs on their own.

Tools that have high availability are easy and free to install as an

unprivileged user on a system whereas low availability tools lack

one of these. Tools are extensible if the tool is open source and

users can provide capabilities to automate tasks; tools are mid ex-

tensible if it lacks one of these or if the user interface degrades

regularly when this functionality is used; and low if it is technically

possible to extend but impractical requiring extensive program-

ming in a low-level language like C. Tools are high interactive if
they allow the user to refocus their debugging efforts (e.g. change

their queries and modifications made to running processes) mid-

execution, mid if there are some to refocus most but not all efforts,

low if the debugging efforts largely cannot be refocused without

high overhead, and none if it is not possible until the program termi-

nates. Lastly, tools are ranked high for distributed programming if

they are specially designed to work in distributed use cases, low if

they work in distributed use cases but lack the ability to correlate

arbitrary states between processes without another tool, and none

if they cannot be used to debug a distributed program. We rank

coredumps as “?” because the ability to use them in distributed

contexts depends on the tool used to analyze them.

Serial Debugging Tools There are a few approaches that at-

tempt to use classical single processes debuggers like GDB to debug

MPI programs. The simplest approach is only a single MPI rank

with GDB. This is a major drawback as many issues often occur at

scale. There are a few prior approaches used widely in the commu-

nity to attempt to extend this to distributed programs. One can use

programs like screen, tmux, or xterm to spawn multiple consoles

each with its own GDB instance. But this can be unwieldy needing

to switch between dozens of windows to debug at scale and control

each of them individually, and does not provide an easy mechanism

to debug interactions between processes.

Related to serial debuggers are core-dumps [1] which store the

entire process state into a file to be later inspected by debuggers this

limits the user to post-mortem debugging. However, coredumps

may be disabled by the system administrator using the ulimit
facility on Linux systems making it unavailable to users. Some

debuggers allow attaching to multiple core files.

Parallel Debuggers There are a handful of tools that are spe-
cially designed to debug MPI programs. TotalView [7] and DDT
[6] are proprietary debugging tools designed specifically for MPI.

These tools are highly capable of allowing debugging mixed CPU

and GPU codes, correlated stack traces between Python and C/C++,

and memory access violation detection, and provide highly interac-

tive graphical interfaces, but have limited availability due to high

cost and are not easily extensible because they are closed source. A

free alternative is The Eclipse Parallel Tools Project (EPTP) [32] (last
released in 2018) which is now unmaintained and does not work

with modern MPI installations that have removed MPIR support [4].

Another academic effort was PGDB [15] last released 2014 builds a

new interface on top of GDB and introduced I/O optimizations to

improve the scalability of the debugger by changing how shared

libraries were loaded by the debugger, but today will not build on

modern platforms, and as reported by the author to have “several

known major bugs and [be] somewhat out of date” [15].

Specialized Memory Access Violation DetectorsWhile not

specifically designed for distributed programs, a common approach

is to use a memory access violation on each rank of an MPI pro-

gram. These will not identify the breadth of issues that a serial

or parallel debugger will surface, but automate the detection of

a common class of errors. However, because they lack full access

to the distributed state of the program, they cannot find errors

caused by complex interactions between nodes. Some tools in this

category include Valgrind-Memcheck [25] and related tools like Dr.
Memory[12] which provides memory access debugging and/or race

detection just in time compilation to a virtual machine which can

identify invalid access patterns at a substantial slow down. Valgrind-

Memcheck offers some capabilities to distributed programs by vali-

dating correct usage of MPI routines, and interactive capabilities

MPIGDB: A Flexible Debugging Infrastructure for MPI Programs FlexScience ’23, June 20, 2023, Orlando, FL, USA

by allowing the virtual machine to be inspected as a GDB remote

at a substantial performance penalty. A related set of tools include

compiler-based Sanitizer[28, 29] which provides memory access

debugging and/or race detection supported by compiler-assisted

tracking included in compilers like GCC and Clang. These tools

have substantially less overhead than virtual machine-based tools

but require recompilation.

Tracing and Profiling Tools Beyond tools that allow inter-

rogating and modifying program state, there are tools that allow

recording a detailed record of program execution. These tools often

have low or extremely low overhead but provide limited ability to

analyze system state. Examples include printf debugging which re-

lies on non-standard [8], but widely implemented and occasionally

unreliable I/O forwarding of stdout in the MPI implementation

and requires recompilation and execution to study different parts of

the system. Additionally, Kernel Tracing Tools have been considered

for debugging MPI programs using kernel-level tracing facilities

such as ftrace[24], ebpf/bpftrace[3, 9], or dtrace[20]. These
facilities require administrative privileges limiting their availability

where scientists lack administrative access, and typically operate at

a lower in the stack allowing the debugging of for example record-

ing both kernel and user stack traces when particular large queuing

times occur with low overhead but need to be merged across nodes

to provide a cohesive picture of system performance.

The STAT [11] is one such tool that aggregates traces across

multiple nodes to provide merged stack traces from core-dumps or

running processes which has limited capability to explore system

state, especially on heterogeneous devices such as GPUs or display

more complex system state. There are also profiling tools that are

aware of distributed programs such as vampir [27] and tau [30]

which can automatically gather performance timing information

and aggregate them across nodes, but these tools lack the capability

to interactively interrogate and modify system state.

2.2 Features in GDB for Parallel Debugging
While many are familiar with GDB’s features as a debugger for serial
programs, recent versions of GDB introduce a number of features

that allow it to be converted and extended into a capable parallel

debugger for diverse hardware and software systems. First, some

key terminology. GDB refers to program execution spaces
2
being

debugged as inferiors. Each inferior has a target connection.

target connections can be native (direct children of the gdb pro-
cess or a process that gdb attaches to if gdb has has appropriate

permissions on the target process), a corefile, or remote (a child

process of or attached to by a gdbserver process possibly on a

remote node). Remote processes are interacted with by GDB over a

tcp or an IP, Unix, or Serial socket connection.

While debugging multiple operating system threads within a

process simultaneously has been supported since GDB 4, GDB 10.1
introduced the ability to debug inferior processes simultaneously

– allowing distributed processes and those with different binaries.

This ability is most useful with non-stop mode which allows GDB

interacting with one operating system thread while allowing other

threads to continue running as normal. Non-stop mode allows the

2
most commonly an operating system thread, but has other meanings in embedded

contexts

method c
a
p
a
b
i
l
i
t
y

a
v
a
i
l
a
b
i
l
i
t
y

e
x
t
e
n
s
i
b
l
e

i
n
t
e
r
a
c
t
i
v
e

d
i
s
t
r
i
b
u
t
e
d

screen/tmux/xterm low high low low low

serial GDB high high high high none

CoreDumps high low low none ?

TotalView/DDT high low mid high high

EPTP mid low mid high high

PGDB mid low mid high high

Valgrind mid high low low low

AddressSanitzer mid high low none low

Printf mid high high none low

Stat low high low none high

Kernel Tracing high low high none low

Vampir/Tau low high low none high

MPIGDB high high high high high

Table 1: Summary of Comparison of available methods for
debugging MPI processes. A rating of none indicates no capa-
bility, low indicates some capability but it may be hard to use
or otherwise limited, mid indicates additional capabilities
but behind the state of the art, and high indicates state-of-
the-art capabilities

user to debug only specified aspects of their system at a time and

allows the rest of the program to continue as normal producing

much less overhead.

Additionally, GDB can be extended with additional commands

using Python. These commands can execute any of the existing

features of GDB to manipulate, and extract information from to

provide higher-level commands or perform common tasks. For

example, the Python developers provide a set of facilities to get the

current Python backtrace, or to print Python variables [2]. Similar

functionality was developed by Google for v8 which powers NodeJS

[5] and for Julia.

Lastly, GPU runtime vendors such as Nvidia, Intel, or AMD do

not build debuggers from scratch – they build their own debugging

tools as extensions using the Python extension capabilities on top of

a largely unmodified GDB and release their versions as open source

allowing them to be incorporated into 3rd party tools because of

the GDB’s GPL license. This means that we can incorporate these

features into MPIGDB to provide these capabilities to debug GPU

programs. We use these features as a foundation upon which to

build MPIGDB as a capable debugger for distributed programs.

2.3 MPI Debugging Process Attachment
Debuggers like TotalView, DDT, and MPIGDB need a mechanism to

find and attach to processes of MPI programs. This is enabled by

two efforts within the MPI community: MPIR [22] and PMIx [13].

The older standard MPIR provides a consistent function which can

be a consistent break-point that debuggers can use to wait for pro-

gram startup after process location information has been exchanged

and a mechanism to enumerate the processes and their locations

from a global variable. This mechanism while not part of the formal

FlexScience ’23, June 20, 2023, Orlando, FL, USA Robert Underwood & Bogdan Nicolae

MPI standard, until recently was implemented in major MPI im-

plementations [22]. As of version 5.0, OpenMPI removed support

for MPIR in favor of the new standard PMIx[13] PMIx provides a

more comprehensive and scalable approach to process startup and

enumeration. However, not all sites have MPI implementations that

are enabled or are new enough to support PMIx requiring users to

either use different approaches at different sites or forgo PMIx.

In addition to MPIR and PMIx, the 4th edition of the MPI stan-

dard includes section 11.5 “Portable Process Startup” which requires

implementations to provide an executable called mpiexec which

handles at least a certain number of well-known arguments. A

lesser known aspect of this standard is what the standard calls

“Form A” which allows starting a collection of potentially differ-

ent executables each with different arguments using the syntax

like mpiexec -n 3 ProcA : -n 2 ProcB which starts 3 copies

of process ProcA and 2 of ProcB. This syntax corresponds to the

MPI_COMM_SPAWN_MULITPLE call introduced with MPI2. While call-

ing MPI_COMM_SPAWN_MULTIPLE routine at runtime for dynamic

process management is administratively disabled in running jobs

on many clusters[16], MPICH and OpenMPI-based implementa-

tions (including Cray’s) bless its usage in mpiexec and is widely

implemented from our testing providing an alternative to interfac-

ing with MPIR or PMIx directly to start the debugger processes. We

use the portable mechanism of “Form A” to start up processes, we

re-write the users’ command to mpiexec to insert MPIGDB_HELPER
which launches the MPI process under the GDB server.

3 DESIGN AND IMPLEMENTATION OF
MPIGDB

MPIGDB is designed to be a highly capable at scale, widely available,
easily extensible, easily interactive debugger for distributed MPI pro-
grams. In this section, we highlight how these key design principles

affect the design of MPIGDB, and then provide implementation

details of key aspects of our work in the following subsections.

Highly Capable at Scale MPIGDB is designed to enable all of

the capabilities (e.g. GPU kernel debugging, cross-language stack

traces) offered by the GDB debugger and enable them to be used

easily at scales up to 128 processes in a distributed context. We

accomplish this by building on the solid foundation of the recent

features added to GDB described in Section 2.2, and allowing the

user to supply a vendor-provided GDB with the ability to debug

GPU kernels. We also use only the standard GDB user interface

unlike [6, 7, 15] so users can adopt new features added to GDB as

they are introduced to GDB or vendors extensions without waiting

for them to be added to MPIGDB. We evaluate scalability in Section 5.

Widely Available MPIGDB is open source and designed to be

easy to install and use across the scientific computing continuum.

Because MPIGDB is implemented as two statically linked self-

contained applications written in Rust, installation is as simple

as copying these two programs to each node. Implementing MPIGDB
in Rust made it easy to create a self-contained executable and pro-

vided simpler modern interfaces to process management. 92% of

supercomputers on the November 2022 top500 list run architectures

for which Rust is a tier 1 architecture, the remaining run a tier 2

architecture
3
suggesting it will work on most systems. Beyond HPC

3
indicating less compiler testing, but known to compile

systems, MPIGDB runs well on laptops, cloud systems, and virtual

machines (including the Windows Subsystem for Linux) running

Linux, and can connect to embedded devices using the GDB serial

port remote capability supported by various micro-controllers to

support uses cases where these devices stream this information to

HPC clusters. Additionally supporting Windows and MacOS with

a similar architecture should be possible
4
, but was out of scope for

this effort as it would require writing extensions commands for

LLDB and windbg.exe, but requires additional expertise that the
authors do not have. Additionally, the tool only relies on capabilities

in widely available versions of GDB and functions of MPI implemen-

tations specified in the standard and implemented in all common

implementations of MPI. MPIGDB will use the underlying GDB and

MPI implementations available on the system. If the system lacks a

sufficiently new installation, installing the required dependencies as

an unprivileged user with Spack [17] is simple and straightforward.

We have successfully installed and used MPIGDB on leadership

class machines at ALCF and OLCF, university systems, clouds, and

laptops demonstrating its availability.

Easily Extensible MPIGDB is designed to be easy to extend with

new commands and automate with scripts. We leverage the un-

derlying extension architecture in GDB to provide extensions and

scripting capabilities. We also introduce a series of specialized com-

mands to make it easier to write GDB scripts that interact with

distributed programs. This functionality is especially important

for debugging larger groups of processes where interacting with

individual processes would be both tedious and time-consuming to

have a human in the loop at all times. Instead, scientists need to be

able to quickly automate large aspects of their debugging process

and drop to interactive debugging to explore where it provides the

most value to understand complex distributed states. Therefore, we

provide mechanisms to apply conditional breakpoints (apply an

action on a particular line of code is reached), catch-points (apply

an action when things like signals, system calls, or C++ exceptions

occur), trace-points (lower overhead versions of breakpoints but

can only collect more limited pre-determined information) and

watch-points (apply actions when a particular region of memory or

variable is modified) to subsets of processes to give scientists and

attach scripts to these breakpoints to provide fine-grained control

of which aspects a scientist will debug interactively and which they

will automate.We describe these extension commands in Section 3.2

and evaluate their use in Section 5.

Easily Interactive the user is designed to be able to control and
inspect the collection of distributed processes from a single inter-

face. We leverage recent features in GDB to interactively provide

aliases for (e.g. clients=1-10, servers=11-16) and apply commands

frequently used GDB commands to these subsets of processes with

convenient shortcuts. We also provide mechanisms to easily move

between ranks of a program and inspect state interactively from

groups of processes when a break-point, catch-point, or watch-

point is reached, and then quickly continue until the next point is

reached. We discuss this syntax further in Section 3.2. Interactivity

4
to support LLDB, we need non-stop mode to be implemented. At the time of publi-

cation, this feature has been worked on, but is not yet available https://www.moritz.

systems/blog/implementing-non-stop-protocol-compatibility-in-lldb/

https://www.moritz.systems/blog/implementing-non-stop-protocol-compatibility-in-lldb/
https://www.moritz.systems/blog/implementing-non-stop-protocol-compatibility-in-lldb/

MPIGDB: A Flexible Debugging Infrastructure for MPI Programs FlexScience ’23, June 20, 2023, Orlando, FL, USA

Figure 1: Startup Sequence Diagram. MPIGDB interacts with
MPIEXEC to start multiple instances of MPIGDB_HELPER
which in turn start gdbserver and eventually app instances.
MPIGDB then spawns GDB which then connects to these
gdbservers

is difficult to demonstrate on paper, but a video demo can be found

with the software
5
which showcases the interactivity.

DistributedMPI programs A defining aspect of our tool is that

it is designed to be used with distributed MPI programs. We make it

easy to launch the debugger over a collection of processes, specify

topology and other launcher-specific arguments to the underlying

mpiexec command, and provide commands to examine and control

large groups of processes at once. We describe more about the

distributed process startup and debugger attachment in Section 3.1.

3.1 Software Architecture, Process Startup, and
Attachment

MPIGDB consists of two programs: MPIGDB – the front-end that han-

dles configuring the debugger, and MPIGDB_HELPER a shim that

runs on the worker nodes to handle process registration and launch

the debugger instances. In this section, we describe how these com-

ponents work together with GDB, mpiexec, gdbserver instances,

and the user’s app instances to debug distributed MPI programs.

We present an overview of the design and key interactions in

Figure 1. First, the user invokes MPIGDB with a combination of

the MPI flags that they want to pass on to MPIEXEC, flags to GDB
itself such as additional startup scripts, and flags for the applica-

tion(s) that they want to start. This can be as simple as MPIGDB -np
8 – ./ProcA to launch 8 instances of ProcA. Additionally, with
mpiexec, the user can use a “Form A” like syntax to spawn different

program instances on different ranks. For example, the user could

5
http://github.com/robertu94/mpigdb

specify MPIGDB -np 8 – ./ProcA : -np 4 python ProcB.py to
launch 8 instances of ProcA and 4 instances of the python program

ProcB.py using mpi4py in the same MPI_COMM_WORLD.
MPIGDB then evaluates these parameters and re-writes them in a

way to insert the invocation of MPIGDB_HELPER. It performs this re-

writing by converting the invocation to a long “Form A” expression

with different arguments for each rank invoking MPIGDB_HELPER.
While there is a limit to the maximum length of a command line, we

did not hit it even when running with 128 processes. An alternative

in this case is to use so-called startup files which instead store these

arguments in a file, but this would require programming MPIGDB to
emit the distinct syntax used by each MPI implementation.

These arguments describe what TCP port the gdbserver instance

should listen on and other key metadata required to launch the

program and register the process with the GDB instance. The

MPIGDB_HELPER is responsible for starting the gdbserver processes

which then, in turn, starts each rank of the user’s application,

and informs the main MPIGDB process of how to connect to the

gdbserver instance MPIGDB_HELPER spawns using a TCP socket

listening in the MPIGDB executable.
After each MPIGDB_HELPER has reported how to connect to its

gdbserver instance, the main MPIGDB process writes a startup file

containing a generated GDB script that defines as extension com-

mands and the instructions to connect to each of the gdbserver

instances, and commands to configure GDB to be more suitable for

MPI debugging by enabling features like non-stop mode and dis-

abling pagination. These commands are implemented using GDB’s

Python API for Python command extensions. The user can add

additional startup scripts to be run by GDB using the command

–MPIGDB_dbg_arg -x –MPIGDB_dbg_arg /path/to/script.gdb.
For GPU debugging, we allow changing the gdbserver and gdb

commands started by MPIGDB and MPIGDB_HELPER out for their

CUDA, ROCm, or OneAPI equivalents, and this works as expected.

We can also override MPIGDB_HELPER to support running for exam-

ple with valrind’s vgdbmode which requires a different syntax for

specifying which port to listen on, and this too works as expected.

3.2 Commands for Parallel Debugging
We provide a set of specialized commands for debugging a set of

processes above the standard gdb commands using GDB Python

command extensions. mpic is equivalent to GDB’s continue com-

mand, but for all processes in the background. This command is

foundational and often included in every MPIGDB script to start ex-

ecuting all processes after startup has completed and break-points

are set. mpict is continue this thread, and switch to the next one

that is stopped if there is one. This command allows the user to

quickly cycle through processes as they each reach a breakpoint.

mpip print on all or a subset of threads using -t $tid. This provides
a basic mechanism to see values on a group of processes as format-

ted by GDB’s pretty printers. More advanced printers that look for

summarized changes from groups of processes are easy to write

using Python commands using gdb.value() function. mpib break

on all or a subset of threads using -t $tid. This command too

is fundamental in allowing the user to focus on key parts of their

program for interactive debugging by stopping at key interesting

points. mpiex execute a command on on all or a subset of threads

http://github.com/robertu94/mpigdb

FlexScience ’23, June 20, 2023, Orlando, FL, USA Robert Underwood & Bogdan Nicolae

using -t $tid. This command provides a connivancemethod to run

commands on a set of processes. It improves over thread apply
all in that it allows targeting subsets of processes efficiently with

ranges. and mpiw perform a command when all processes have ex-

ited. This command becomes the equivalent of the quit command

in a serial GDB script. Using quit does not work because GDB does

not provide any mechanism to wait for a background command

to run to completion. Additionally, GDB does not update the exit

status of inferiors while GDB or python scripts are running meaning

that GDB cannot busy loop to wait for events to occur. Instead,

GDB needs to register a callback with GDB’s event system with a

callback script in Python – mpiw provides a shortcut for this.
For commands that take a thread id indicated by $tid above,

they accept specifications like 1-4 to address threads 1 to 4, 1,4 to

address threads 1 and 4, or 1-4,7 to address threads 1 through 4 and
7. Additionally, connivance variables can be used to define aliases

for groups of processes to provide an easy mechanism to repeat

access groups of processes. This kind of filtering makes it easy to

focus for example on only client processes, only server processes,

or those addressing an important portion of a larger array.

4 COMPARED APPROACHES
The scope of capabilities of native debugging tools is too vast to

do an exhaustive comparison in a single paper. As such, this work

focuses its evaluation on debugging an out of bounds memory

accesses – a common source of bugs [19, 21, 31] in applications

which can yield unexpected behavior and crashes that are often not

seen until at scale and can be difficult to root-cause without access

to the full distributed state from the application. In this section, we

focus on a few key alternatives for debugging these kinds of errors:

native release is the application when compiled with

CFLAGS="-O2 -g". This is a common configuration that while it

provides little benefit for debugging it provides a good intuition

about the native execution speed and behavior of the application

forming a baseline for comparison. It is also comparable to the per-

formance impact of tracing-like approaches like printf debugging.

valgrind-memcheck and similar tools operate by just-in-time

(JIT) compiling native instructions to a specialized virtual machine

which is equipped with specialized tools to detect out-of-bounds

memory access patterns [25]. The virtual machine tracks the entire

address space and marks regions as invalid, undefined, or initial-

ized in its shadow map as the program executes to identify out-of-

bounds or invalid accesses. In our experiments, we will run Valgrind

on our baseline. Valgrind-memcheck while nearly 100× slower than

native serial release execution is accurate at identifying bugs. Later

valgrind was modified to have limited MPI awareness to detect

misusages of the MPI API [23]. valgrind-memcheck also provides

a mode vgdb that allows gdb to connect to the virtual machine to

inspect program state over a UNIX or TCP socket. More recently

Dr. Memory provides a faster alternative [12], but it lacks some

of the more advanced features such as the vgdb capabilities, and

would not build on our system. However, even MPI-aware valgrind

has only limited capabilities and will not allow the robust kinds of

interactions allowed by GDB without vgdb mode.

Address Santizer [28] – part of Google’s compiler sanitizer

project incorporated into LLVM and GCC compilers [10] – takes

the approach of using compiler instrumentation to insert calls to

update its shadow map. This approach requires substantially less

overhead than Valgrind – about 2× slower than native serial release

execution. When the program encounters a memory error, the pro-

gram prints a concise diagnostic and terminates creating a corefile

if configured [1]. Recently, Address Sanitizer has been accelerated

by specialized hardware for ARM processors [10] allowing a more

memory-efficient and higher-speed execution. While the vastly

improved performance makes Address Sanitizer preferable over

Valgrind-Memcheck, it can not catch all of the kinds of bugs that

Valgrind can and requires recompilation which is not possible in all

cases. However, like valgrind-memcheck, Address sanitizer doesn’t

allow the user to examine the global state of MPI applications.

MPIGDB-asanWe also include a configuration that combines

the non-hardware assisted Address Sanitizer with our tool
6
. Com-

bining our tool with MPIGDB provides the global awareness of gdb
with the efficient memory error detection capabilities of Address

Sanitizer. This represents a reasonable configuration to use to de-

bug memory access violations in production code. We also con-

sider a baseline whereMPIGDB is attached to this executable to

measure the overhead of running under our tool. This allows us to

understand the overhead of running MPIGDBwithout any additional
impacts from Address Sanitizer.

We were not able to obtain access to or build another parallel

debugger that would work on our platform stressing the issues of

availability for these tools. We also do not consider serial debugging

techniques described above as using them at scales of 8 or more

processes without even considering even larger scales would be

greatly impractical. The one more scale-able serial approach core

dumps approach is disabled by the system administrators on our

platform, and if it were not would take nearly 3 GB for a simple

21MB process over 128 processes. Programs using more realistic

memory amounts

5 EVALUATION
In this section, we conduct our evaluation and compare the pro-

posed solutions at various scales. Our evaluation is deliberately

simple to facilitate comparisons, we have successfully used this tool

to debug 4 more complex issues mentioned in the introduction.

We evaluate our proposed solution with a simple heat diffusion

program over a square domain using a 5-point stencil written in C++

and representative of large scientific simulations such as in fluid

dynamics, mechanical stress, or thermodynamics. The program

uses MPI’s C interface to distribute the stencil calculations across

the various ranks and exchanges information between the ranks

at each time step. The number of time steps is scaled to achieve a

runtime of a few seconds for the native application, and the size of

the domain is scaled to occupy about 1% of system memory in total

per node.While this program is far shorter and uses far less memory

than realistic codes to enable quick experimentation, real-world

programs that use more memory and take longer will even further

stress the performance of these debugging tools whose runtime

scales on the amount of memory per process. For example,16GB per

process would take nearly 2TB of persistent storage just to store

the core files for 128 processes.

6
the hardware-assisted version was not available on our platform

MPIGDB: A Flexible Debugging Infrastructure for MPI Programs FlexScience ’23, June 20, 2023, Orlando, FL, USA

We introduce a memory access bug that reads data from out of

bounds on the last time-step that occurs on all ranks caused by

off-by one error in an array indexing operation. Introducing the

bug at the end of execution requires the code to nearly execute to

completion stressing the ability of the debugging tool not to effect

the runtime of the code when bugs are not identified. While this

particular bug is artificial, these kinds of errors are pervasive in

distributed MPI programs [14, 18, 23].

We compare the approaches based on the wall clock time from

when mpiexec is called to the time it takes for the system to identify

the memory access violation, report it, and terminate the program.

Because the bug happens at the end of the program execution

it represents a particularly frustrating class of bugs that take a

substantial amount of time to reproduce and may only occur at

a scale where reproduction is costly in terms of core hours of an

allocation or financially prohibitive on public clouds, since the cost

is directly proportional to the runtime and the amount of resources.

Without MPIGDB, users would likely need to run the code once

with a specialized memory access violation tool to get a line num-

ber where the invalid access occurred, and if there were multiple

accesses on that line the user would then need to run the pro-

gram again after re-compiling to add additional printf or other

debugging statements to track down first which index triggered

this invalid access and which rank performed that access. After

that, the user would need to potentially run the program several

more times to determine the cause for the particular invalid ac-

cess each with additional accumulated cost for each subsequent

run. With MPIGDB, users need only run their code once with both

Address Sanitizer and MPIGDB, and place a break-point at the Ad-
dress Sanitizer runtime function __asan::ReportGenericError
documented in the Address Sanitizer documentation[10] to inspect

and determine which index that was out of bounds and on which

ranks, and then could quickly refocus their debugging efforts to

what variables affect the values of those indexes and which of their

mental models were violated in a single interactive execution.

We run the experiments on the Polaris platform at Argonne’s

Leadership Computing Facility (ALCF). Polaris nodes have AMD

Zen 3 Milan CPUs with 32 cores, 512 GB of DDR4 RAM, 4 Nvidia

A100 GPUs, and are currently connected with a Slingshot 10 inter-

connect. Polaris does not provide access to a proprietary parallel

debugger like TotalView or DDT. Polaris represents a complex HPC

system with scale, heterogeneous hardware with CPUs and GPUs,

often runs mixed Python codes and C++ codes when running AI

applications based on TensorFlow or PyTorch, and is about to adopt

a novel interconnect as it migrates from Slingshot 10 to Slingshot

11 – contexts that without advanced tools scientists would have

challenges debugging their codes, and would be underserved by

current tools.

We run each of the 5 configurations described in the compared

approaches using 32, 64, and 128 processes. Experiments use 4

nodes, with up to 32 processes per node. These scales represent

several processes that are infeasible to debug using separate indi-

vidual GDB instances running in separate Xterm windows while

running on sufficient nodes to require the debug scaling rather than

the debug queue on Polaris. Processes are distributed to nodes in a

round-robin fashion to have an even number of processes per node.

Figure 2: MPIGDB Runtime Overhead. MPIGDB has a low
overhead at 32 and 64 processes. It has marginally larger
overhead than valgrid-memcheck at 128 processes due to
communication overheads, but provides more capabilities to
inspect a distributed state.

Although MPIGDB allows for interactive debugging, for a fair com-

parison with the non-interactive tools and consistency in timing,

We use a gdb script to provide the commands to start the program

and exit when the processes are complete. This script contains just

two commands mpic and mpiw quit – both of which are extensions
to GDB added by MPIGDB, which instruct the program to start and

then terminate when all processes exit.

Each of the approaches with memory access violation detection

capabilities valgrind, asan, and MPIGDB-asan identify this bug

and produce a backtrace to its location. MPIGDB-asan goes further

to allow us to deeply inspect the state of the program across all ranks

of the MPI program, and potentially modify this state. With this we

can quickly identify the index that is out of bounds and that it was

caused by the off-by-one error by inspecting the state interactively.

The other approaches required re-running the program again with

additional printf commands to isolate the off-by-one error.

Figure 2 shows the results of this experiment. Address Sanitizer

performs well and around 2× the consistently around the release

performance on 32 processes. However, unlike release, Address

Sanitizer doesn’t scale as well as the number of nodes increases.

Profiling using Linux perf reveals this caused by contention on the

collection and printing by mpiexec of verbose messages to stdout
for each worker process which gets more verbose as the number of

nodes increases as each rank encounters the memory bug.

Valgrind shows a scaling behavior not observed by the other

approaches becoming more efficient as the scale increases. We

attribute this to the fact that this problem exhibits strong scaling –

that is each node solves less and less of the problem as the number

of ranks increases, and thus each rank has fewer memory accesses,

and thus less overhead from Valgrind per process. We would not

expect this behavior from problems that exhibit weak scaling.

MPIGDB with and without address sanitizer performs very well

up to 64 processes with performance comparable to native and the

address sanitizer configuration. With up to 64 processes, is about

2-4 times slower than native – sufficiently low overhead to allow it

to be useful wherever the runtime of Address Sanitizer is acceptable.

MPIGDB begins to have substantially more overhead at close to 128

FlexScience ’23, June 20, 2023, Orlando, FL, USA Robert Underwood & Bogdan Nicolae

processes but is still comparable to Valgrind on 64 threads indicating

it may still be useful at this scale. Profiling the MPIGDB with Linux

perf at 128 processes indicates that the orchestration between

the various gdbserver threads and gdb is the bottleneck. Even if

MPIGDB isn’t doing anything, simply monitoring the scheduling

of processes by the operating system is sufficiently verbose to

overwhelm the main process of processing these messages. We

discuss possible fixes as future work in the conclusions to reduce

the communication bottleneck.

6 CONCLUSIONS
MPIGDB provides a capable, available, interactive, and extensible
approach for debugging distributed MPI applications with up to

128 processes. It provides similar debugging capabilities at scale as
expensive proprietary tools such as debugging GPU kernels with

CPU code, mixed language debugging, and more. It is designed to

be highly available without high costs or relying on non-standard

functionality in MPI or GDB. It is designed to be highly extensible to
enable additional commands and scripts to be added for productive

debugging of distributed applications. It is lastly designed to be

easily interactive allowing users to quickly zone in on bugs in their

codes that are distributed across multiple nodes using MPI.

Without tools like MPIGDB users need to run programs multiple

times to track down complex issues because they lack visibility into

the distributed state of applications running with MPI. Our tool

provides a vast improvement in the ability of scientists to debug

their applications in flexible science environments.

For future work, we see there is great promise in combining

check-pointing libraries with parallel debugging capabilities like

those in MPIGDB. A check-pointing library such as VeloC [26] could

be combined with MPIGDB to more efficiently dump the state of large

applications and then restore and debug only a relative portion

rather than simply running the program until a crash occurs while

using less storage than a simple core-dump based approach giving

scientists an even more flexible approach to debugging applications

by restarting from a checkpoint closer to a late occurring bug in

their application.

Additionally, more work is needed at large process scales or to

implement dynamic debugger attachments to already running MPI

applications. There are several possible paths forward to achieve

scalable performance at higher process counts: (1) consolidate the

MPI ranks to talk to a smaller number of gdbserver instances. Do-

ing this would likely require integrating with PMIx into MPIGDB to

enumerate their locations and coordinate process startup. (2) utilize

a more scalable socket polling mechanism in GDB such as epoll
or io-uring for the event loop implementation instead of the cur-

rent UNIX poll based implementation. (3) utilize collectives and

broadcast techniques between the gdbservers to reduce the number

of messages that gdb needs to process. (4) disable more verbose

aspects of the gdb remote protocol that are less relevant in the HPC

context where decisions can be made in the edge at the GDB server

instead of by the gdb instance.

ACKNOWLEDGEMENTS
This material is based upon work supported by the U.S. Department

of Energy (DOE), Office of Science, Office of Advanced Scientific

Computing Research, under Contract DE-AC02-06CH11357. This

research was supported by the Exascale Computing Project (17-

SC-20-SC), a collaborative effort of the U.S. Department of Energy

Office of Science and the National Nuclear Security Administration

REFERENCES
[1] core(5) - Linux manual page.

[2] DebuggingWithGdb - Python Wiki.

[3] eBPF - Introduction, Tutorials & Community Resources.

[4] FAQ: Debugging applications in parallel.

[5] GDB JIT Compilation Interface integration · V8.

[6] Linaro Forge.

[7] TotalView.

[8] MPI: A Message-Passing Interface Standard Version 3.1, June 2015.

[9] bpftrace, Apr. 2023. original-date: 2018-08-31T04:34:44Z.

[10] sanitizers, Apr. 2023. original-date: 2014-09-03T23:49:51Z.

[11] Arnold, D. C., Ahn, D. H., de Supinski, B. R., Lee, G. L., Miller, B. P., and

Schulz, M. Stack Trace Analysis for Large Scale Debugging. In 2007 IEEE
International Parallel and Distributed Processing Symposium (Mar. 2007), pp. 1–10.

ISSN: 1530-2075.

[12] Bruening, D., and Zhao, Q. Practical memory checking with Dr. Memory. In

International Symposium on Code Generation and Optimization (CGO 2011) (Apr.
2011), pp. 213–223.

[13] Castain, R. H., Solt, D., Hursey, J., and Bouteiller, A. PMIx: process manage-

ment for exascale environments. In Proceedings of the 24th European MPI Users’
Group Meeting (Chicago Illinois, Sept. 2017), ACM, pp. 1–10.

[14] Cotroneo, D., Pietrantuono, R., Russo, S., and Trivedi, K. How do bugs

surface? A comprehensive study on the characteristics of software bugs manifes-

tation. Journal of Systems and Software 113 (Mar. 2016), 27–43.

[15] Dryden, N. PGDB: A Debugger for MPI Applications. In Proceedings of the 2014
Annual Conference on Extreme Science and Engineering Discovery Environment
(Atlanta GA USA, July 2014), ACM, pp. 1–7.

[16] Enterprise, H. P. XC Series Programming Environment User Guide 1705 S-2529.

[17] Gamblin, T., LeGendre, M., Collette, M. R., Lee, G. L., Moody, A., de Supinski,

B. R., and Futral, S. The Spack package manager: bringing order to HPC

software chaos. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (Austin Texas, Nov. 2015), ACM,

pp. 1–12.

[18] Gaynor, A. Introduction to Memory Unsafety for VPs of Engineering, Aug. 2019.

[19] Gopalakrishnan, G., Hovland, P. D., Iancu, C., Krishnamoorthy, S., La-

guna, I., Lethin, R. A., Sen, K., Siegel, S. F., and Solar-Lezama, A. Report

of the HPC Correctness Summit, Jan 25–26, 2017, Washington, DC, May 2017.

arXiv:1705.07478 [cs].

[20] Gregg, B., and Mauro, J. DTrace: Dynamic Tracing in Oracle Solaris, Mac
OS X, and FreeBSD. Prentice Hall Professional, Mar. 2011. Google-Books-ID:

jseJ56fUjJgC.

[21] Gunawi, H. S., Do, T., Sono, A. L. A., Hao, M., Leesatapornwongsa, T., Lukman,

J. F., and Suminto, R. O. A Study of Issues in Scalable Distributed Systems.

[22] John DelSignore. The MPIR Process Acquisition Interface. Tech. rep., Mar.

2018.

[23] Keller, R., Fan, S., and Resch, M. Memory Debugging of MPI-Parallel Applica-

tions in Open MPI.

[24] Molnar, I. ftrace: function tracer, Feb. 2008.

[25] Nethercote, N., and Seward, J. Valgrind: A Framework for Heavyweight

Dynamic Binary Instrumentation. ACM SIGPLAN Notices 42, 6 (June 2007).
[26] Nicolae, B., Moody, A., Gonsiorowski, E., Mohror, K., and Cappello, F. VeloC:

Towards High Performance Adaptive Asynchronous Checkpointing at Large

Scale. In 2019 IEEE International Parallel and Distributed Processing Symposium
(IPDPS) (May 2019), pp. 911–920. ISSN: 1530-2075.

[27] Resch, M., Keller, R., Himmler, V., Krammer, B., and Schulz, A., Eds. Tools
for High Performance Computing. Springer Berlin Heidelberg, Berlin, Heidelberg,

2008.

[28] Serebryany, K., Bruening, D., Potapenko, A., and Vyukov, D. AddressSanitizer:

A Fast Address Sanity Checker. ACM.

[29] Serebryany, K., and Iskhodzhanov, T. ThreadSanitizer: data race detection in

practice. In Proceedings of the Workshop on Binary Instrumentation and Applica-
tions (New York New York USA, Dec. 2009), ACM, pp. 62–71.

[30] Shende, S. S., and Malony, A. D. The Tau Parallel Performance System. The
International Journal of High Performance Computing Applications 20, 2 (May

2006), 287–311.

[31] The Chromium Projects. Memory safety, 2019.

[32] tibbitts@us.ibm.com, B. T. Eclipse Parallel Tools Platform (PTP) | The Eclipse

Foundation.

	Abstract
	1 Introduction
	2 Background
	2.1 Debugging for MPI Programs
	2.2 Features in GDB for Parallel Debugging
	2.3 MPI Debugging Process Attachment

	3 Design and Implementation of MPIGDB
	3.1 Software Architecture, Process Startup, and Attachment
	3.2 Commands for Parallel Debugging

	4 Compared Approaches
	5 Evaluation
	6 Conclusions
	References

