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Abstract—Scientific computing communities increasingly run
their experiments using complex data- and compute-intensive
workflows that utilize distributed and heterogeneous architec-
tures targeting numerical simulations and machine learning,
often executed on the Department of Energy Leadership Com-
puting Facilities (LCFs). We argue that a principled, systematic
approach to implementing FAIR principles at scale, including
fine-grained metadata extraction and organization, can help with
the numerous challenges to performance reproducibility posed by
such workflows. We extract workflow patterns, propose a set of
tools to manage the entire life cycle of performance metadata, and
aggregate them in an HPC-ready framework for reproducibility
(RECUP). We describe the challenges in making these tools
interoperable, preliminary work, and lessons learned from this
experiment.

Index Terms—High performance computing, HPC, perfor-
mance reproducibility, workflow execution patterns, workflow
execution provenance, metadata capture, research software en-
gineering, FAIR4RS, FAIR4HPC, RO-Crate.

I. INTRODUCTION
Scientific computing communities increasingly run their

experiments using complex data- and compute-intensive work-
flows that sit at the intersection of high performance comput-
ing (HPC), big data analytics, and artificial intelligence (AI).
Such converged workflows often comprise a variety of pat-
terns: ensembles of simulations with tasks executed in parallel,
workflows that combine simulations with analytics and/or ma-
chine learning models responsible to act as surrogates and/or
steer the simulation, data-driven workflows orchestrating tasks
and their dependencies [1]. The workflows can be launched
from simple scripts, from workflow management systems
(WMS) representing execution in directed acyclic graphs, and
from composable workflow building blocks. They often need
to run at scale on large data centers and supercomputing
infrastructures, such as US DOE Leadership Computing Fa-
cilities (LCFs) that include different types of accelerators,
different types of storage hierarchies and data management
capabilities, as well as different modes of operation (e.g., batch
jobs combined with on-demand jobs).

The extreme heterogeneity from all perspectives (different
types of tasks, patterns, infrastructure, job scheduling) poses
numerous challenges to reproducibility [2], [3]. We cannot
simply rely on packaging the application code into a con-
tainer to achieve reproducibility [4], [5]. In addition we need
to complement a similar execution environment with other
aspects such as: the original input data, the workflow scripts

and/or the definition of the workflow graph, and additional
constraints if applicable (e.g., acceptable results as needed
in the reproducibility of machine learning tasks [6], [7]).
In this paper, we focus on performance reproducibility, i.e.,
the minimal run-to-run variation across multiple runs of the
same application using a consistent configuration as described
above. Performance reproducibility differs from performance
portability as the latter pertains to achieving similar perfor-
mance and scaling across systems, while the former indicates
no variation across runs of the same application on an identical
system. Specifically, we focus on the gaps in performance
data and metadata collection that facilitates performance re-
producibility.

The Findable, Accessible, Interoperable, Re-usable (FAIR)
principles for data and software can be useful enablers for
the reproducibility of performance and that of scientific re-
sults based on re-use. FAIR principles are under-used by the
HPC and data-intensive communities who have been slow to
adopt them [8], although some emerging efforts discussed in
Section II are under way. Many pieces needed for reproducing
either performance or results are missing (not findable); code
is compiled with older versions of libraries that are no longer
available on managed systems or the systems themselves
have been de-commissioned (not accessible). Software mod-
ules require additional features to extract required results
for performance reproducibility (not interoperable), and may
not sufficiently characterize provenance (not re-usable). This
is due in part to the complexity of workflow life cycles,
the numerous workflow management systems available, the
lack of integration of FAIR within existing technologies, the
specificity of managed systems that include rapidly evolving
architectures and software stacks, and execution models that
require resource managers and batch schedulers.

The FAIR principles and subsequent research do not provide
enough conceptual details on how to apply them to these HPC-
and data-intensive environments and scientific practices. Nu-
merous challenges emerge for scientists attempting to publish
FAIR datasets and software created on such systems for the
purpose of re-use and reproducibility, e.g. what data to publish
and where due to sizes, how to reconstruct provenance graphs
if they are not directly available, what minimal amount of
metadata is needed to guarantee a certain level of reproducibil-
ity, etc. [9].
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This work-in-progress paper describes our attempts, suc-
cesses, and continuous challenges in enabling FAIR semantics,
in particular with respect to the metadata that will influence
performance reproducibility. Our position is that performance
metadata cannot simply be collected and organized in a
standardized format. Instead, it is necessary to manage its
entire life-cycle in a scalable, low-overhead fashion. Our first
contribution is to envision this life-cycle as a pipeline that be-
gins with the application acting as a producer of performance
metadata that needs to be collected with minimal overhead
in a scalable fashion (in order to minimize the influence on
the application runtime). The pipeline ends with an analytics
code that acts (either offline or in real-time) as a consumer of
the performance metadata to identify any potential divergences
between multiple runs and their root cause. In between, there
are multiple intermediate stages concerned with metadata cu-
ration, aggregation, indexing and query optimization, modular
representation. While there are existing techniques and HPC
tools to implement each of these stages, they were not designed
to be FAIR and interoperable. Thus, our second contribution
focuses on how bring together such techniques and HPC tools
in order to implement the life-cycle as a pipeline. Specifically:

• We propose a set of tools and an associated architecture
that is responsible to manage the entire life-cycle of the
metadata needed to enable performance reproducibility as
a pipeline. In particular, we insist on the importance of:
(1) collection and curation; (2) aggregation and stream-
ing; (3) indexing and query optimization (Section III-A).

• We discuss the challenges and preliminary work in mak-
ing these tools interoperable. In particular, we highlight
the importance of using lightweight representations of the
performance metadata such that we enable comprehensive
collection without sacrificing performance and scalability
due to excessive overhead of metadata conversion and/or
revisiting, or an explosion of storage space/memory uti-
lization. Furthermore, we highlight the importance of
preserving the performance metatdata in a standardized
format (RO-Crate) in order to enable FAIR-ness (Sec-
tion III-B – Section III-G).

• We summarize a series of general observations, lessons
learned, and future opportunities in enabling interoper-
ability of components and tools for performance repro-
ducibility (Section IV).

II. RELATED WORK

FAIR has been rapidly embraced by research data manage-
ment communities that provide numerous successful exam-
ples of how to apply FAIR to ensure the reproducibility of
published papers and emphasize data [10]. In [11] a property
graph approach is explored for understanding the relationships
between users, jobs, and datasets. SoMeta [12] is a scalable
and decentralized metadata management approach for object-
centric storage in HPC systems that provides an advantage
over self-describing formats (such as HDF5, ADIOS, or
PnetCDF) to include a scalable flat namespace and a tagging
approach for extensible, user-defined metadata. The BRAID-
DB Provenance Engine [13], designed for ML applications,
records what goes into model training, including external data,
simulations, and structures of learning and analysis activity.
[14] and [15] argue for the automation of FAIR workflows in
terms of composition of executable software steps, provenance

extraction, and a common workflow language. Recording facts
about runtime execution that can be inspected and updated en-
ables provenance information focused on tracing dependencies
and verifying validity.

Understanding performance reproducibility is an important
precursor to developing adaptive system software that involves
management of different heterogeneous hardware components
and diverse resources, such as power, network, and I/O. Ex-
isting research has examined performance variation resulting
from network interference [16], I/O congestion [17], and
power-constrained scenarios that bring out chip-level manu-
facturing differences [18]. Predicting user estimates of the
execution time of jobs to ensure they are not killed prematurely
due to underestimation also has been studied [19]. However,
all of these cited studies focus on metadata from only one
system layer, e.g., either network or I/O or hardware. When
there are cross-layer performance considerations, then finding
underlying causes of performance perturbation is non trivial
[20].

III. RECUP: A COMPREHENSIVE PERFORMANCE
REPRODUCIBILITY FRAMEWORK

A. Overview
As mentioned in Section I, modern scientific application

workflow are complex and comprise a mix of HPC simu-
lations, big data analytics and AI tasks. This can lead to a
variety of patterns and task dependencies. In this regard, we
observe several common aspects: (1) the workflows are made
of multi-producer, multi-consumer tasks whose dependencies
form complex directed acyclic graphs (DAGs); (2) each task
may itself be complex and comprise a large number of coupled
processes (e.g., a distributed simulation deployed on a large
number of MPI ranks); (3) there may be significant fluctuations
of performance metrics both in time and across task processes,
which requires detailed metadata captured at fine granularity
to understand root cause.

As a consequence, the first step in enabling performance
reproducibility is the ability to capture a diverse set of per-
formance metrics at fine granularity at scale. To this end, we
identified four important types of metadata: (1) specifications
of the DAG that describe the workflow behavior (which can
be either statically defined before the workflow execution or
dynamically constructed during runtime) and that can be used
to identify the relationships between the tasks; (2) information
about the runtime of each task (e.g., start timestamp, finish
timestamp, duration of intermediate stages such as iterations,
resource utilization over time, etc.); (3) types and durations,
throughputs and latencies of I/O operations (necessary for
the tasks to communicate inputs/outputs with each other); (4)
anomalies that require more detailed metadata (as opposed to
the normal mode of operation that can be characterized using
much smaller metadata summaries).

To collect the four types of metadata introduced above, we
propose to leverage several tools:

• RADICAL Cybertools (RCT) [21], which enables users
to deploy workflows on HPC platforms and is respon-
sible to manage the scheduling and execution of the
workflow tasks on top of traditional HPC batch jobs.
Of particular interest is the RADICAL-EnsembleToolkit
(EnTK) component, which is responsible to provision the
HPC resources by submitting HPC jobs, scheduling of
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Fig. 1. Architecture of RECUP: the basic building blocks and their role in the management of the life-cycle of metadata in order to facilitate efficient
performance reproducibility analytics.

computing tasks, and to monitor and log performance
metadata for the tasks. The latter capability presents an
opportunity to extend existing work to satisfy (1) and (2),
which is the reason why we chose RCT.

• Darshan [22] is a scalable HPC I/O characterization tool
used by many supercomputing infrastructures and large
data centers that feature parallel file systems. It transpar-
ently monitors POSIX operations related to file I/O (open,
read, write, close) and filesystem metadata operations
(enumerate files, move/remove files/directories, etc.). In
addition to retaining records of individual operations, it
also generates statistics (number of operations for each
type, duration/latency, etc.). Since a large number of
tasks in a workflow use files to communicate intermediate
results, Darshan is the ideal tool to satisfy (3).

• Chimbuko [23] is a tool for capturing, reducing, and
visualizing in situ performance outliers and anomalies for
extreme-scale workflows, with their call stack. Chimbuko
provides detailed performance measurements at a trace
level and can be easily extended to satisfy (4). Given
that workflows comprise a large number of tasks, each
of which can comprise a large number of processes
that needs to be monitored at fine granularity, Chim-
buko avoids an explosion of metadata by zooming on
anomalies and retaining summaries for the normal mode
of operation, all stored in its provenance database.

Capturing the relevant performance metadata at fine gran-
ularity from various sources is not enough to facilitate re-
producibility analytics, because the metadata needs to be
repeatedly revisited and analyzed from multiple perspectives.
If the metadata were preserved in a raw form, this would lead
to significant performance and scalability bottlenecks, or even
would become unfeasible due to resource constraints (e.g. not
enough memory).

As a consequence, the second step is to reorganize the
metadata to alleviate performance, scalability and resource
utilization bottlenecks. Specifically, there are two important
aspects to consider: (1) curation, aggregation and streaming;
(2) indexing and query optimization. With respect to (1), some

of the performance metadata may be incorrect or irrelevant,
in which case it can be discarded, or statistical properties and
features are enough to describe it, in which case it can be ag-
gregated. Notably, in a majority of scenarios, it is not necessary
to wait for the collection of all metadata in order to perform
these operations, which is why we propose to perform the
operations on-the-fly using data streams. With respect to (2),
since we repeatedly revisit the data from different perspectives,
indexing and query optimization is needed in order to further
alleviate the performance and scalability bottlenecks.

To this end, we leverage two additional tools:
• Mochi [24], a framework is designed for the rapid

development of services for use in HPC platforms that
includes composable building blocks and services such as
RPC, unified key-value store access, group management,
etc. Notably, data streaming services similar to Kafka are
in developement, which would enable us to address (1).

• DataStates [25], a data management framework specif-
ically designed to capture the evolution of intermedi-
ate data into a searchable lineage. Notably, it features
efficient techniques for versioning and revision control
with efficient navigation and search queries, which can
be adapted to address (2).

Our overall vision is to extend and combine these tools such
that we can manage the entire life-cycle of the performance
metadata: starting with the collection from different sources
to curation, aggregation, indexing, query optimization and
finally the consumption by the reproducibility analytics. The
architecture of our proposal is depicted in Figure 1.

The main challenge in realizing this vision lies in the fact
that the pre-existing tools we propose to leverage were not
initially designed to work together; Chimbuko and Darshan
produce heterogeneous performance data and metadata at large
scales, while EnTK only produces performance data for its
own behavior (based on tracing start/stop events for EnTK
components as well for handled computing tasks). Both Mochi
and DataStates need to be adapted to support streams of
timestamped events representing the performance metadata in
order to be able to talk to each other. Thus, we need to design
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connectors that facilitate interoperability between the tools and
allow us to seamlessly compose them at runtime. For the rest
of this section, we discuss the challenges and our preliminary
work in facilitating interoperability.
B. Chimbuko + RCT

Several additional features to the RCT stack were needed to
enable managing of external tools running as supplementary
services, e.g., tools to continuously extract performance data
and metadata, such as the Chimbuko performance analysis
tool. The RCT stack (both RADICAL-Pilot and EnTK) was
extended with a concept of a service task. A service task is
described as a regular computing task, and is able to start and
terminate service processes, and runs throughout the workflow
makespan.

However, running Chimbuko to extract performance data
and its provenance with EnTK workflows is a non-trivial
challenge. Initially, Chimbuko operates as an independent
process, and it is necessary to launch and set it up correctly
before any main component of the workflow can start. The
original solution using EnTK involved creating an additional
pipeline solely dedicated to handle Chimbuko processes, while
other tasks were placed in separate pipelines that were pending
for the completion of the Chimbuko’s setup. This approach
introduced significant complexity to the script and could
potentially result in deadlocks due to the logic of launch-
ing different pipelines in EnTK. This issue was addressed
with the introduced concept of a service task that allows
launching the Chimbuko process automatically, before any
other task. Having service tasks allows users to define when
this process completed its setup correctly and is ready to
analyze other tasks. It also facilitates the automatic termination
of the Chimbuko process using a user-defined termination
script, eliminating the need for additional checks to ensure the
completion of other tasks. Improving communication protocols
between services and EnTK is a currently ongoing task.

EnTK provides the execution environment with isolation
capability. It allows a separation of the environment for
computing tasks from the environment with the RCT stack,
where the EnTK application is launched. Thus, using the
Tuning Analysis Utilities (TAU) [26] in our applications (as
Chimbuko does) requires to have it installed in a separate
virtual environment to avoid potential version conflicts with
packages used for the RCT stack. It is possible to have
everything installed within a single environment, but having a
separate execution environment gives more flexibility.
C. Darshan + RCT

Collecting workflow I/O performance data and metadata
requires enabling Darshan within a particular EnTK workflow.
While enabling I/O characterization, Darshan extends a set
of libraries that should be used by computing tasks, i.e., it
requires LD_PRELOAD environment variable to point to the
libdarshan.so. We have tested this possibility to use
Darshan while running a probe EnTK workflow on DOE HPC
platforms - Polaris (ALCF) and Summit (OLCF). In our test
experiments, we used both pre-installed (using module system
lmod) and manually installed Darshan, and corresponding
settings to load Darshan modules were provided within every
task description.

Darshan has been used in conjunction with the LDMS [27]
monitoring service in the past, providing an example of how

to connect Darshan with monitoring infrastructure for runtime
data access. We built on this example in accumulate the I/O
performance metadata.

To test this integration, we focus on an inverse problem that
is part of ExaLearn, an ECP (Exascale Computing Project)
effort providing scalable AI/ML tools that enhance exascale-
ready HPC applications through four pillars: surrogate models,
inverse solvers, control policies, and design strategies [28].
Specifically, this problem tries to predict the structural param-
eters of crystalline solids directly from their Bragg profiles
obtained by neutron scattering patterns. There are two main
components in this application: simulation and training. Sim-
ulation only uses CPU resources and generates input data for
the training, while training mainly uses GPU resources. This is
a common paradigm for heterogeneous workflows at Exascale.

Specifically, we developed simplified mini-apps that target
three execution patterns present in the inverse problem: (1)
serial baseline that runs the entire simulation first to generate
all training data, then runs the training; (2) serial sequence of
simulation-training subtasks, which is equivalent to the serial
baseline but reduces the resource utilization; (3) overlapped
sequence of simulation-training (i.e., nth training task runs
concurrently with (n + 1)th simulation task. These work-
flow mini-app patterns are designed to enable performance
reproducibility of the original workflow without their domain-
specific application dependencies. We tested the workflow
mini-apps for each execution pattern on different LCF plat-
forms, including Summit, Theta, and Polaris and validated the
Darshan and RCT integration.
D. Mochi

The Mochi framework is designed for the rapid development
of services for use in HPC platforms [24], and was used to
develop the aforementioned Chimbuko service. In addition
to its role in Chimbuko, Mochi is being used to implement
data aggregation for the RECUP project, allowing for runtime
analysis of workflow progress and comparison with prior
executions. The current design calls for plug-ins to gather
workflow behavior and performance data from RCT, I/O
performance data from Darshan, and task performance data
from Chimbuko. These data will be emitted from plug-ins and
captured by a Mochi service using a publish-subscribe model
similar to Kafka [29]. This event stream forms a temporal
view of the progress of the workflow that can be directly
interrogated for runtime analysis. The data will also be pushed
into DataStates for persistent storage and further post-hoc
analysis.
E. DataStates: Metadata organization and query optimization

Although our Mochi service will enable the scalable acqui-
sition and unification of heterogeneous performance metadata,
the access model it exposes (publish-subscribe) emphasizes a
chronological flow of events in a set of streams. This access
model is insufficient to study the performance reproducibility
of different runs of the same HPC workflow, because of the
complexity of the operations involved: we need to extract
and/or calculate statistical properties of interesting events,
identify what components of the workflow exhibit differences
in performance at what point during the runtime based on
the events, establish correlations between different types of
events to identify the root cause of potential differences, etc.
Implemented in a naive fashion, such operations would involve
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multiple full passes over the performance metadata even when
only a subset is needed, which is often a performance and
scalability bottleneck. Thus, there is a need to reorganize and
index the performance metadata in order to enable optimized
queries specifically designed for performance reproducibility
analytics.

To this end, we envision leveraging DataStates [25], a data
management framework specifically designed to capture the
evolution of intermediate data into a searchable lineage. Much
like revision control systems, the lineage can be forked in
different directions, which presents an opportunity to store
the performance metadata of different workflow runs obtained
from Mochi only once if it remains unchanged during runtime.
Of particular interest are the foundational building blocks of
DataStates, such as scalable multi-versioning ordered key-
value stores used to persist the lineage in a compact fashion
and to enable efficient key lookup queries and key iteration
in sorted order [30]. Such building blocks are a promising
starting point in the design and development of novel tech-
niques to index and enable optimized queries for performance
reproducibility analytics.

As a starting point, we analyzed the case of anomaly
detection using Chimbuko, as applied to molecular dynamics
simulations based on NWChem [31]. In this case, the perfor-
mance metadata is collected into structured streams of events
based on UnQLite, a binary format that supports nesting just
like JSON, but more space efficient since it does not aim to
be human-readable. The performance reproducibility analytics
(detailed in Section III-G) needs to perform several time-
consuming steps: (1) convert the performance metadata from
the UnQLite format into the JSON format, which is understood
by the high-level Python libraries used by the analytics; (2)
reorganize the JSON content as Python Panda DataFrames;
(3) repeatedly run analytics queries on top of the DataFrames.
With respect to (1) and (2), we found that the conversion path
from UnQLite to JSON to Panda DataFrames is not only a
performance and scalability bottleneck, but it also leads to
an explosion of memory utilization, making it unfeasible for
large runs. With respect to (3), we identified several types
of queries that are frequent and incur significant overheads:
range scan, ordered entry search, join, and aggregation. Panda
DataFrames lack efficient indexing and are not optimized for
these types of queries, introducing further performance and
scalability bottlenecks.

Based on these findings, we will explore techniques based
on DataStates that emphasize high-throughput ingestion of the
performance metadata from the event streams directly in bi-
nary format, for which we will design and implement, without
additional conversions, scalable indexing and query support for
the identified query types using high-level abstractions made
available for Python. Thus, our proposed solution will act
as an interoperability bridge between performance metadata
collection and analytics, which improves performance and
scalability, while reducing memory utilization.

F. Metadata capture and wrangling
To best support interoperability in our approach and general-

izability with future systems we follow the RO-Crate metadata
schema [32], and provide translational adjustments. RO-Crate
is a lightweight set of guidelines to package digital Research
Objects, e.g. datasets and software, with their metadata, us-

ing Zip containers and JSON-LD descriptors. Community-
driven RO-Crate profiles, such as Workflow specifications and
Workflow Provenance descriptions are agreed-upon schemas
designed by relevant communities for specific purposes, thus
fulfilling FAIR R1.3 principle. Our adjustments to a Workflow
RO-Crate profile enable it to support data-focused workflows,
optimized for ease of orchestration, and task-oriented ones,
optimized for efficiency, thus bridging an important conceptual
gap in the FAIR-ification of hybrid workflows. Our effort also
supports interoperability with existing efforts that leverage
RO-Crate, such as WorkflowHub[33], a workflow registry
facilitating the discoverability and reusability of workflows.

The RO-Crate Workflow profile focuses on describing work-
flow steps, including software tools and the flow of input and
output files between steps. A Workflow RO-Crate requires a
mainEntity representing the source code of the workflow
and must describe all of its components using the hasPart
attribute. Components include output and reference files, de-
scribed using entries with the @type: File attribute. The
Provenance Run profile extends this specification by adding
detailed step-by-step descriptions of the mainEntity with
howToStep annotations to associate entities to an order of
execution. The Provenance Run profile describes the inputs
and outputs of each step in greater detail, using input and
output attributes of each howToStep.

We found an inherent discrepancy between the expected
format of an RO-Crate Workflow and one defined in RCT.
In RCT, every component provides its level of abstraction
and workflow description using EnTK following the Pipeline-
Stage-Task model. Task is an abstraction of a computational
task that contains information regarding an executable, its
software environment, and its data dependencies. Stage is a
set of tasks without mutual dependencies that can be executed
concurrently. Pipeline is a list of stages where any following
stage can be executed only after the execution of the previous
one completes. This model conflicts with many workflow
description languages that take a data flow-focus, such as the
Common Workflow Language (CWL) [34] where a workflow
is defined as a series of interdependent processes with flexible
run order requirements and data flows, and used with RO-
Crate.

To align the two paradigms, we decided upon the fol-
lowing equivalencies: first, an RCT Pipeline will use the
RO-Crate Workflow definition. Second, RCT Stages, since
they must be processed in linear order, will be considered
sub-Workflows of the parent Pipeline Workflow by being
listed under the Pipeline’s hasPart attribute. Third, Tasks,
which may be completed in any order, will be defined as
howToSteps without specified order.

Another important discrepancy between RCT and the CWL
paradigms is their awareness of input and output files. The
Provenance Run RO-Crate requires an exact definition of input
and output files. This aligns with CWL, where a user defining
a workflow must declare their input and output files such that
the pipeline system can automatically determine a dependency
graph of processes. RCT’s EnTK system, however, is inten-
tionally input-agnostic to dynamically run on HPC systems
by allowing for implied or temporary dependencies. There-
fore, to generate Provenance Run profiles EnTK must gain
some awareness of input files: we are adding an annotation
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method defining input and output files to EnTK’s workflow
definition accessible to users. We plan to use the Darshan
system in this context to support automation and scalability
of the annotations. Thus, EnTK will be able to generate a
provenance graph describing the flow of files between Stages.
This provenance graph will be used in generating an RO-Crate
Provenance Run profile. It can also be compared with the file
creation and deletion that RCT witnesses during runtime for
reproducibility studies.

We have thus defined a format that will contain all metadata
and workflow descriptions required to re-run an HPC work-
flow alongside metrics to validate performance reproducibility.
However, one issue remains to be solved. Current RO-Crate
examples imply that all relevant metadata is collected upon
workflow completion, which requires a final omniscient com-
ponent that polls all previous applications for their metadata.
Such a component is inconvenient in high performance and
parallelized systems; the creation of a workflow’s profile could
become desynchronized from the workflow’s completion, re-
sulting in workflows failing to be annotated. Metadata may
also become inaccessible upon workflow completion, as earlier
tools may remove temporary run information upon workflow
completion for performance reasons. Furthermore, as addi-
tional software tools are added to the pipeline or depreciated
ones are removed, this omniscient component must be adjusted
to reflect these changes.

We are investigating a more granular metadata collection
system than shown in figure 1. Rather than collecting a
complete RO-Crate profile of metadata upon workflow col-
lection, we will design the concept of partial profiles for each
component. Each system will be responsible for a miniature
profile describing the metadata generated during its process.
For example, EnTK controls the pipeline execution and there-
fore EnTK will be responsible for generating a partial RO-
Crate profile describing the pipeline, its stages and tasks, and
the hardware these tasks were run on. On the other hand,
application-specific metadata will be extracted separately, as
illustrated in Section III-G for the Chimbuko use case. Such
a separation of metadata collection responsibilities provides
better modularity and robustness to changes in the overall
architecture compared with monolithic approaches, while fa-
cilitating better cross-tool interoperability.

G. Use Case: Performance reproducibility
Our preliminary work [35] shows that in a production HPC

facility, using the default configuration option to run an appli-
cation can cause up to 4x variation across the repeated runs
of the same application. This observation signifies the need
for performance reproducibility studies since such drastically
different execution time of the same application means that
jobs may get cancelled without finishing. Such repeated runs
can prolong the turnaround time of science.

As a customer of the data generated by applications, the
performance reproducibility framework requires configuration
parameters annotated with their names (metadata) and the
execution times for each instance of the run. Specifically,
for the data collected by the Chimbuko framework, the en-
tire collection of the anomalous instances are stored in an
UnQLite-based provenance database. For offline analysis, we
use a Python script to query the database and generate a JSON
dump of the entire dataset, where each entry corresponds to

an event. Each event contains information about the applica-
tion, process, and thread id, node name where the anomaly
appeared, timestamp, anomaly severity, a score reflecting how
probable it is that a function execution is anomalous, hardware
performance counters, callstack pertaining to the anomalous
function, and execution time. From a user’s perspective, the
analysis pipeline expects the data to be annotated, the problem
to be described, and the data to be accessible during anal-
ysis. In our preliminary work with the Panda’s DataFrame
abstraction for analyzing the characteristics of the performance
anomaly instances, we encountered additional overhead due
to multi-step conversion from database to JSON to Panda’s
DataFrame. This barrier can be lowered by the RECUP frame-
work as it can provide efficient indexing and query support
(as mentioned in Section III-E) that avoids the performance,
scalability, and memory utilization bottlenecks we encountered
due to repeated conversion and revisiting of the performance
metadata.

IV. CONCLUSIONS AND FUTURE WORK
In this paper, we proposed RECUP, a comprehensive per-

formance reproducibility framework that integrates a diversity
of tools in order to manage the entire life-cycle of metadata
needed to enable the study of performance reproducibility.
In particular, we highlighted the importance of performance
metadata collection, curation, aggregation, streaming, indexing
and query optimization, which is necessary in order to enable
efficient analytics that involves multiple repeated passes over
the performance metadata from multiple different perspectives.
Furthermore, we discussed the challenges and preliminary
work we undertook to make these tools interoperable. In doing
so, we conclude with several important observations: (1) given
the complexity of the life-cycle of the performance metadata,
a large number of specialized tools is needed, each of which
addresses specific steps and needs to interact with at least
one other tool; (2) the interoperability between pairs of tools
is non-trivial due to a mismatch between intermediate repre-
sentations and their semantics; (3) naive solutions to convert
intermediate representations are inefficient and lead to large
overheads; and (4) designing tools with efficient metadata
solutions and FAIR interoperability in mind from inception is
necessary for performance reproducibility, especially as ever
larger datasets pouring out of DOE experimental facilities will
need to be processed on LCFs. Based on these observations,
in future work we plan to finalize the implementation of
the proposed architecture and the interoperability between the
tools, which enables us to obtain an end-to-end solution that
we will evaluate and compare with baseline approaches using
comprehensive experiments.
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