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Abstract—HPC systems encompass more components with
each new generation. As a result, the process of interacting with
stable storage systems like parallel file systems (PFS) becomes
increasingly difficult. Larger systems often result in more fre-
quent failures, increasing the need and frequency to incorporate
fault-tolerant mechanisms. One example is checkpoint-restart
(C/R), where applications or systems save their data to non-
volatile storage devices, such as a PFS. On failure, the system
or application is restored to a saved state and computation
continues. Today, asynchronous C/R is gaining traction for its
ability to checkpoint data to permanent storage concurrently
with the application. However, asynchronous C/R brings about
many new challenges. For starters, asynchronous C/R introduces
complex resource contention between the application and the
C/R implementation. Additionally, some implementations adopt
file-per-process writing strategies, which overwhelm PFS’ at
high core counts. In this work, we explore how multi-threaded
POSIX I/0O impacts aggregated throughput. To this extent we
characterize the influence of different I/O parameters, such as
the number of writer threads and how they access storage devices,
has on aggregated 1/0. We use the information gathered in this
study to identify best practices when performing aggregated 1/0
as a first step in designing an efficient I/O aggregation scheme
for asynchronous C/R.

Index Terms—Checkpoint-Restart, C/R, Multi-Threaded 1/0O,
I/O Optimization, Fault Tolerance, I/O Aggregation, Asyn-
chronous Checkpoint-Restart

I. INTRODUCTION

Modern scientific applications are composed of high-
performance computing (HPC) workflows that leverage the
convergence between traditional bulk-synchronous simula-
tions, big data analytics, and artificial intelligence (AI). With
ever-increasing computational and data processing capabilities,
the push towards Exascale has resulted in HPC systems made
of thousands of compute nodes, each equipped with many-core
CPUs and GPUs, complemented by a heterogeneous storage
stack that includes deep local memory hierarchies (e.g., high
bandwidth memory, volatile host memory, persistent memory,
NVMe-enabled flash storage) and external data repositories
(e.g., parallel file systems).

Under such circumstances, it is not possible to leverage the
full I/O bandwidth of the HPC system, neither at the level
of a single compute node, nor globally across many compute
nodes by simply serializing I/O operations. Similar to how
parallel and distributed programming paradigms like MPI or
OpenMP |[1]] have allowed HPC applications to abstract and
optimize bulk-synchronous communication patterns by taking
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advantage of high-end networking infrastructures, optimizing
parallel and distributed I/O patterns requires dedicated abstrac-
tions that combine expert knowledge of the node architecture,
network topology, and heterogeneous storage [2].

One fundamental I/O pattern in HPC is checkpointing: it
involves a large number of processes, distributed in groups
over a large number of compute nodes, that need to simultane-
ously capture important data structures at key moments during
runtime and save persistent checkpoints of these data structures
to an external data repository. Checkpointing is used in a wide
range of scenarios: fault tolerance based on checkpoint-restart,
batch job preemption (e.g., to make room for higher priority
on-demand jobs without losing progress), job migration, re-
visiting intermediate states (e.g. adjoint computations or Al
training of large models), exploring alternative computational
paths (e.g., sensitivity analytics of Al models), etc.

In this context, checkpointing is traditionally performed
synchronously by direct I/O interaction with the data repos-
itory. In this case, the application is blocked during the I/O
and experiences a delay equal to the I/O overhead. On the
flip side though, all resources are available for checkpointing
and therefore can be dedicated to minimize the I/O overhead.
However, with increasing heterogeneity of the compute nodes,
I/O can be overlapped with computations by performing them
asynchronously to reduce the impact on end-to-end runtime.
In this case, a common strategy is to capture the checkpoints
on fast local storage, then flush them in the background to
the data repository. This is challenging because it involves
competition for resources at all levels: CPU cores, memory
bandwidth, network bandwidth, etc. [3]].

Asynchronous checkpointing has matured over time. For
example, Exascale-ready checkpointing libraries exist for use
in production [4]. However, while they focus on minimizing
the end-to-end impact on application runtime, they often do so
at the cost of utilizing data layouts that are not easy to manage
at user level. For example, VELOC [4] writes one file per
process to the parallel file system. While this is not a problem
if checkpoints are needed transparently (e.g. in fault tolerance
techniques based on checkpoint-restart), users often need to
change the data layout to make it easier to manipulate and
reuse checkpoints later. In this context, a common technique
is I/O aggregation that results a smaller number of files (e.g.
N-1 or N-M, with M << N).

Unfortunately, while I/O aggregation has been extensively



studied in the context of synchronous checkpointing (e.g.,
MPI-IO, HDF5), how to apply it for asynchronous checkpoint-
ing remains largely unexplored. In this paper, we perform an
initial study of what I/O parameters impact the performance
of asynchronous I/O aggregation. Specifically, given a set of
checkpoints captured as a set of local files on each compute
node and that need to be flushed to a parallel file system
concurrently, we vary (1) the number of writer threads, (2)
contiguity and alignment of data, and (3) number of files used
for aggregation. Our goal is to evaluate, identify and explain
configurations that maximize the overall I/O throughput. We
summarize our contributions as follows:

o We develop OpenMP benchmarks designed to act as a
simple and convenient proxy that enables a fast evaluation
of a large number of combinations of I/O parameters.

« We run extensive experiments using our benchmark on a
high-end HPC system to obtain a comprehensive set of
results that we study from multiple perspectives.

o From this study, we extract a set of best-practices that
we believe can by leveraged to design new asynchronous
I/0 aggregation techniques and algorithms.

II. RELATED WORK
A. Multi-threading in I/O

Exploiting multi-threading capabilities to improve perfor-
mance of I/O is a well researched problem. In this context,
ROMIO, a popular MPI-IO implementation, has relied on
multi-threading to optimize a two-phase I/O protocol since
2014 [5]. ROMIO uses multiple threads to parallelize data
exchange between I/0 leaders (processes interacting with the
PFS) and non-leaders (other processes), as well as actual file
I/0O instructions (e.g. read/write). They found that further over-
lapping the multi-threaded communication and write stages
improved throughput by up to 60% in some cases.

As ROMIO has become well established in the HPC com-
munity, other works have explored extending multi-threaded
capabilities. Kang et al. [2] introduced a two-layer aggre-
gation method (TAM) that uses multi-threading to aggregate
all intra-node I/O requests before redistributing I/O requests
across all compute nodes. This directly reduces the amount of
messages exchanged between compute nodes to complete 1/O
redistribution, and in some applications directly improves the
collective I/O operations. However, if I/O requests are already
sufficiently contiguous, TAM provides no improvement and
introduces redundant overhead. Feki et al. [1] use multi-
threading capabilities within MPI-IO to parallelize aggregating
I/O requests (denoted I/0 build phase). Overlapping the build
phase with thread-initiated read/write operations (denoted file
access phase) results in a 69% faster I/O.

B. Multi-threading in Checkpointing

Libraries such as SCR [6] and FTI [7] have adopted multi-
level checkpointing for a long time. The focus on asyn-
chronous I/O using multi-threading has been further refined
by VELOC [4]]. It maintains an active thread pool on each

compute node, managed by an active backend. When ap-
plication processes are ready, they first write their data as
independent files to node-local storage, then the application
resumes computation. At the same time, the active backend
uses an optimized flushing strategy to persist the checkpoints
for a variety of data repositories, including parallel file systems
(PFS). However, as the number of processes increases, the lack
of I/0O aggregation support becomes burdensome [8§]].

A previous study [8] built on the asynchronous flushing
strategy of VELOC to perform file aggregation via the original
implementation’s POSIX threads, and with MPI-IO. However,
their results show that using POSIX threads to aggregate 1/O
by simply writing the checkpoint content at different offsets
in the same file under concurrency suffers from false sharing,
which increases contention and reduces I/O throughput. MPI-
IO may improve the I/O throughput compared to the POSIX-
based method, however, it is limited by the collective oper-
ations it uses for synchronization, which have poor support
to address stragglers that are more likely to occur in asyn-
chronous I/O due to resource contention.

III. METHODOLOGY

We design and develop an OpenMP micro-benchmark to
characterize the expected performance of aggregated file I/O
under different configurations. To imitate a simple distributed
application ready to checkpoint, our micro-benchmark gener-
ates data for V compute nodes, each of which simulates K
processes per compute node writing separate files of 1 GiB
(+20%, to simulate a slight load imbalance) that need to be
checkpointed. We refer to this subset of the data as local data
throughout the rest of this manuscript. We fix K = 8, which
is a typical number of processes running on an HPC compute
node (because HPC systems typically employ 4-8 GPUs and
one process per GPU).

Unlike the naive POSIX I/O aggregation strategy described
in Section [, we assume a more advanced strategy that collects
the local data from groups of follower compute nodes on the
local storage of leader nodes, each of which is then responsible
to flush both its own local and the received data as checkpoint
files to the PFS. Note that a leader does not need to wait to
collect all received data before flushing to the PFS. Instead,
it can overlap I/O with the receive operations. We spawn M
OpenMP writer threads that collaborate to parallelize these two
concurrent stages as much as possible by balancing their load.
To avoid over-utilization of the memory used for buffering
received checkpoint files, data (whether from a local file or
received) is transferred in 64 MiB chunks.

We focus our study on evaluating the impact of: (1) the
number of writer threads, (2) the contiguity of the data, and
(3) the number of files used by the leader for I/O aggregation.

A. Multi-threading Design

The local files of the leader are evenly distributed among
the M OpenMP writer threads. Compared with evenly dis-
tributing a set number of bytes per thread, such a scheme
avoids synchronization overheads associated with assigning



I/O operations at fine granularity. On the other hand, we do not
have to consider such overheads with regards to the received
data (from a write thread perspective), and thus it is divided
up into an even number of bytes per thread.

B. Contiguous, Interleaved and Aligned I/O

Contiguity and alignment of I/O operations play a signifi-
cant role in improving the aggregated I/O throughput of the
PFS for various reasons: OS caching, alignment to memory
pages, emphasis on performance optimizations (e.g., metadata)
for a small number of writers per file and for large 1/O
operations that historically represented the majority in I/O
patterns, etc. Since we have chosen to flush to the PES in
chunks of 64 MiB, our writes are always aligned. Thus,
in this work we focus on the impact of contiguity on the
performance and scalability of multi-threaded I/O. Since each
write thread will write a local file fully to the PFS, the question
of contiguity applies in our context for the received data.
To handle the received data, we implement two alternative
strategies for the writer threads:

Contiguous. We pre-assign a contiguous region in one of
the checkpoint files written to the PFS by the leader. In this
case, each writer thread needs to wait until it receives data
that falls within this region. While this may introduce some
delays, it guarantees contiguity and also benefits from the
overlapping of receives with I/0O, which means the delays have
the potential to be masked. Specifically, each writer thread
writes a contiguous region starting at the following offset:

T€CV¢otal

of fset = tiq * (L

count
Interleaved. We handle the received data on a first come,
first served basis. In this case, the writer threads do not wait for
specific data to be received, but at the expense of interleaving
I/O operations with different offsets at fine granularity, which
may lower I/O performance. Thus, each writer thread writes
a 64 MiB chunk of the received data at an offset defined by:

Offset =S*tiq+ (npasses * tcount)) )

where S = 64 is the maximum size of the buffer in MiB,
t;q is the thread ID, npqsses is the number of times the writer
thread has written a chunk of data to the PFS, and ¢,y 1S
the total number of writer threads.

C. OST Load Balancing

We assume the PES is deployed on P I/O servers (or OSTs
in the Lustre [9] terminology, which is a popular PFS on HPC
systems). To avoid over-subscribing the OSTs due to excessive
I/O concurrency (at scale, N >> P), but at the same time
allow better load balancing across the leaders to avoid OST
stragglers, we assume each leader will interact with a small,
controllable number of OSTs by deactivating striping. Thus we
implement our micro-benchmark with a configurable number
of non-striped aggregated checkpoint files per leader.

For this work, we assume we are not over-subscribing the
OSTs by choosing a total number of aggregated checkpoint

files M = P ¢, where ¢ is a small number checkpoint files
assigned to each leader. However, we are also interested in
determining if the leader’s I/O bandwidth is limited by the
minimum between the bandwidth of its own network interface
and the aggregated bandwidth of using up to ¢ OSTs.

IV. EXPERIMENTAL EVALUATION
A. Setup

1) Hardware and Software: Our experiments were per-
formed on Argonne’s Theta, an HPC system comprised of
Intel KNL 7230 compute nodes. Each node contains 64 cores
and 4 hardware threads per core. In these experiments, we use
a Lustre-based PFS with a peak aggregated bandwidth of 250
GB/s. The filesystem uses a total of 160 OSTs managed by 40
OSS’. Our benchmark is are written using OpenMP 4.5 and
compiled with GCC 7.5.0.

2) Methodology: For the purposes of these experiments, we
utilize a single compute node acting as a leader and simulate
K = 8 MPI processes per follower compute node (meaning
each “simulated” follower generates random data directly on
the leader rather than sending data over the network). Both
the local files of the leader and the simulated received data
amount to ~ 1 GiB per MPI rank (to account for the slight
imbalance discussed previously). We vary the number of
followers reporting to the leader 1 — 64, which changes the
proportion of received checkpoint data vs. local checkpoint
data on the leader. Note that the writer threads will only
interact with memory buffers that are already prepared, which
eliminates potential delays in receiving data. This allows us
to isolate the impact of contiguity from the perspective of
I/O performance and scalability alone (rather than as a more
complex trade-off that we plan to study in future work).

Furthermore, we vary the number of M OpenMP writer
threads from 1—16, and the number of files per leader from 1—
8. The files per leader are varied in multiple of 4 (since Lustre
groups 4 OSTs into an OSS). Toggling the ratio between the
number of writer threads and the number of non-leader nodes
shows how the amount of work impacts throughput. The ratio
between the number of threads to number of files per leader
characterizes the impact of contention for the OST the file
is housed on. Finally, toggling the ratio between the number
of non-leaders to the number of files per leader clarifies the
greatest contributor to degradation observed in both of the
previous scenarios. We run each configuration 3 times and
average the results presented in the graphs.

Since the local files are always written contiguously, we
focus our study on the simulated received data, which is
subject to the contiguous vs. the interleaved strategy. The
metric we focus on is the aggregated 1/O write throughput
(measured by dividing the total received size by the time-to-
completion of all writer threads).

B. Aggregating to One File Per Leader

Figure (1] illustrates the aggregated I/O write throughput
when M OpenMP writer threads aggregate to a single file.



This corresponds to a scenario where multiple I/O writer
threads interact with a single OST (since striping is disabled).
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Fig. 1: Contiguous vs. interleaved aggregated throughput
when number of files used for flushing = 1. Higher is better.

As can be observed, one I/O writer thread only reaches a
throughput of a few hundred MiB/s. In this case, the leader
engages a single CPU core, which is not enough to sustain a
high I/O throughput in its interactions with the OST. On the
other hand, as we increase the number of I/O writer threads,
we can see a dramatic increase in aggregated I/O throughput,
which reaches beyond 1 GiB/s for 8 I/O writer threads. This
is actually the optimal number of I/O writer threads. Beyond
that, when using 16 I/O writer threads, the aggregated 1/O
throughput begins do see a significant drop, which means the
benefit of the leader engaging more CPU cores to avoid a
client-side CPU bottleneck is offset by excessive contention
to the OST, which needs to handle more concurrent writers
and therefore becomes a server-side bottleneck.

Regarding the scalability of increasing received data from
follower processes (8 GiB/node), we observe an interesting
effect. The aggregate I/O throughput is the highest for a small
number of followers, then drops slightly and stabilizes as the
number of followers increases. This can be explained by the
fact that the client-side OS cache on the leader absorbs write
I/O overheads slightly better for a small number of followers,
but, as expected, it begins to see diminishing returns.

Finally, when we compare the contiguous vs. the interleaved
strategy, we observe that the interleaved writing just barely
outperforms contiguous writing in all cases except for the
case of one writer (because in this case there is no difference
between the two strategies). As we continue to scale the
amount of data, the interleaving starts to converge to the
contiguous throughput. This is surprising because we initially
expected that issuing contiguous writes to the PFS would
obtain higher aggregated I/O throughput based on results from
works like TAM [2]], and especially considering that a PES is
tuned for large I/O operations. However, it seems that writing
in chunks of moderate sizes like 64 MiB is enough to mitigate
such considerations. While we could experiments with smaller
chunk sizes to see what sizes cause visible differences, this
would not have practical implications since HPC compute

nodes can easily spare 64 MiB buffer space for a small number
of I/O writer threads (which is 8 for our testbed).

C. Aggregating to More Files Per Leader
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Fig. 2: Contiguous vs. interleaved aggregated throughput
when number of files used for flushing = 4. Higher is better

Figure [2] shows the aggregated I/O throughout for the case
in which the leader aggregates the checkpoining data to 4
files. We choose to examine this scenario to further explore
the relationship between the amount of data per node to
the number of files on the PFS. Furthermore, this gives us
the baseline performance of a single OSS (since each OSS
manages four OSTs, this allows us to saturate an OSS).

We observe in these experiments that 8 I/O writer threads,
which was the optimal configuration for one aggregated file,
continues to be the optimal configuration in this case too,
reaching up to ~ 2.5 GiB/s aggregated I/O throughput. The
difference between the other number of I/O threads is much
more dramatic: 16 I/O writer threads reach just a little over 1.5
GiB/s, while 1 and 4 I/O writer threads reach a significantly
lower I/O throughout. Furthermore, we observe the same scala-
bility trend as for one aggregated file: more followers slightly
reduces the aggregated I/O throughput, which is especially
noticeable for the optimal configuration of 8 I/O threads.

The contiguous vs. interleaved strategies show an inter-
esting reversal in this case compared with the case of a
single aggregated file shown in Figure [I] Specifically, the
contiguous strategy now obtains a marginally better aggregated
I/O throughput. In this case, a possible explanation is that
interleaved writes that involve concurrent interactions with
more OSTs amplify the client-side cache consolidation over-
heads on the leader, which slightly reduces the aggregated I/O
throughput. However, this effect needs to be studied in greater
detail to confirm this explanation.

Lastly, we discuss the results when each leader aggregates
the checkpointing data to 8 files on the PFS. The results,
depicted in figure |3| shows virtually identical results compared
with the case of 4 aggregated files per leader that was
discussed in figure [2] This is an important finding, because
it shows that once client-side CPU bottlenecks are resolved
by using the optimal number of I/O threads, increasing the
number of aggregated files only helps alleviating the server-
side OST bottlenecks up to a point, after which the network
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bandwidth shared by the I/O writer threads in the interactions
with the PFS becomes a client-side bottleneck again.

At scale this has important implications: since we have a
small number of OSTs compared with number of compute
nodes (N >> P), it is important to limit the over-subscription
of OSTs to avoid the risk of some OSTs becoming stragglers.

V. CONCLUSION AND FUTURE WORK

Over the last decade, numerous efforts have shown the
potential for multi-threaded I/O to boost I/O write throughput
in large HPC systems. In this work we study various param-
eters and strategies that can be applied to checkpointing /O
patterns: number of writer threads, interleaving of I/O under
concurrency, and the number of output files. Such findings are
important in the context of designing new I/O aggregation
strategies for asynchronous flushing using background 1/O
writer threads, which is a gap in current state of art.

We specifically focus on leader-follower aggregation strate-
gies that collect checkpointing data on a subset of compute
nodes in order to limit the degree of contention on the I/O
servers of data repositories such as parallel file systems, which
typically come in much smaller numbers than the compute
nodes. In this case, we find that contiguous or interleaved
writing to the PFS results in roughly the same aggregated
I/O throughput. Specifically, if all I/O threads are writing to
a single file, it is slightly better to adopt an interleaving write
strategy. Otherwise, if /O leaders aggregate into a subset
of files, it is better to assign contiguous regions of data to
minimize the number of OSTs each thread accesses. However,
given the difference between the two is minimal for modern
parallel file systems, our opinion is that future works should
focus on ensuring discrete, individual access to resources like
0OSS’, OSTs, and storage devices, rather than guaranteeing
contiguity for each thread (which is harder to coordinate
efficiently and may have other impacts like not being able
to absorb delays in receiving checkpointing data efficiently).

Finally, we look at tuning the number of aggregated files
such that we can maximize utilization of the PFS without
overwhelming it. Our experiments show that we achieve a
maximum aggregated throughput of ~ 2.5 GiB/s when writing

to 4 or more files. Based on these results, we conclude
that performance of multi-threaded I/O aggregation is most
significantly bound by how threads interact with OSTs. Thus,
future multi-threaded aggregation methods should focus on
minimizing the number of OSTs threads access. In general,
this is expected since other users on large distributed systems
are also accessing the limited set of OSTs. Thus, the more
OSTs an application or library utilizes, the greater likelihood
it has of being negatively impacted by other jobs. However, it
is somewhat non-intuitive, as file-per-process strategies (which
by nature access an increasing number of OSTs), typically pro-
vide the highest throughput. Therefore, future multi-threaded
I/O aggregation strategies should also focus on minimizing
not only the number of OSTs they access, but the underlying
storage devices on those OSTs as well.

In the future we plan to run these experiments across other
compute platforms in order to validate our experimental proce-
dure across various systems. Furthermore, we use the knowl-
edge gained here to design an optimized POSIX-based 1/O
aggregation strategy for asynchronous checkpointing. Later,
we will characterize how our aggregation strategy impacts both
C/R libraries and concurrently running scientific applications.
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