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Mass transfer development over large rectangular wall region governed by secondary flows
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Mass transfer probes: measurement of wall shear stress

Advantages:

" can be used in a wide variety of flow;

no interference with the flow;

possibility of measuring time-varying flows;

in the case of electro-chemical probes: calibration is not necessary.
Two basic spatial orientations between probe main edge and fluid flow:
= perpendicular transfer surface, see Fig. 1b);

slanted transfer surface, see Fig. 1c).

Governing equation of mass transport:

Assumptions:
1.

A S

steady or pseudo-steady state = —
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ac
=0;

ot
the flow is homogeneous over the surface of the probe;
62
convection is large enough that diffusion in the x direction can be neglected - D — oz 0;
L e e . 9%c
concentration is changed negligibly in direction y — D 2 ~ 0;

diffusion boundary layer thickness, 0p, is smaller than the thickness of hydrodynamical boundary layer, 6, —
U, =S, Z;

u, =39, z, see Fig. 1a);

dc e e e 92 ¢ 92 c 92 c 6. a) for perpendicular transfer surface: u, > u,, u, - u,, u, = 0;
7 +uxa+uy 6y+uz 3, Dﬁ"‘DW‘FDﬁ (1) b) for slanted transfer surface: uy, u, » u, - u, = 0.
* boundary conditions:
X = —00 z>0 C=cy a) Uy = SyZ b) C)
x €(0,L,) z=0 c=c — — i
. dc " (2) 5 ¢ = Co m— g Figure 1: a) Description of mass
x<0Ux>L, z=0 5 = zl H T ) ' — 2 transfer in the close of the probe;
Vo 7500 C=cCy e bttt Lltl o =L —L1  b)perpendicular transfer surface;
. L ' u(x u(x, c) slanted transfer surface.
Perpendicular transfer surface * () (%:7)
* Simplification cz)f eg. (1) according to the assumptions (1 - 6): * Evaluation of mass transfer coefficient (Lévéque solution) on the base of egs. (3) and (4):
dc d“c b N3 N
. _ 3 D<S.,\3 D<S,\3
° Analytlcal solution of eq. (3): (4/3) X X
c—c ) S 11 * Normalized Sherwood number:
A"\ _ 7 it
_ e " dn; . x| = k,L
Cor — Cun r(4/3)f0 " =797 [90] 3 (4) Sh £ _ (L, \Y?
X Sh™ = = =k, = 0.8075 (6)
1/3 1/3 DZS
Peg I2S
X“X
Slanted transfer surface D
* Simplification of eq.(1) according to the assumptions (1 - 6): Numerical solution of concentrations profile and normalized Sherwood number
5. Zﬁ s, Zﬁ _ D i (7) * Definition of hydrodynamical parameter f and non-dimensional characteristics of the system:
Ox dy  9z2 Sy Sy
= = S,=+1—=PIlISl; S, = S 13
* No analytical solution of eq. (7), but it is possible to find out: p = S2 + S2 ||S||2 BlIsIl \/_” ” (13)
" analytical solution of [, and Sh*; . y - Z Dl L,
" numerical solution of concentration profiles and Sh*. ¢ = a Xt Lx YT = L_ "5, Op = m R = g (14)
dv — width of i strip * Modification of eq. (7):
oct . JBR oct B 1 L, 0%ct .
ox* m gyt Z+m [ (0z%)? (15)
* Numerical solution of eq. (7), see Fig. 4. The shape of the concentration profiles is
/ dependent on the parameters  and ratio R.
/ Figure 2: Scheme for * Sh* is evaluated from derivative of concentration in the z direction on the probe surface
4’ derivation of using a relatlon see Fig. 5:
. analytical [, and Sh*
u ytical Lq j j _a? dic+dy* (16)
Analytical solution of equivalent length and normalized Sherwood number
e Mass transfer coefficient for ithstrio is defined as: * Final values of Sh™ is dependent on the choice of length [ . For example, the length [ can
1 P ' be replaced by the width of the electrode L, or by the equivalent length:
L 0.8075 D?||S||\3 6 " | =L,and for Vp:
zZ [(v) (8) dct  JBR act 1 d4ct |
—— + - = — = Sh*(R, f), see Fig. 3 (17)
* The mass transfer coefficient for the whole probe is evaluation on the base of summation 0X V1—F oy z7\J1—-p (0z7)
(integral) of all stripes over the entire surfacelof the probe. : . " [ =l andforf < B.:
= = + 2 .+
] (D2|ISI)3 [ 2 D?|1S|I\3 oct  JBR 0 1 — RVB | 0% *
kZ LxLy kZl(v) dv 0.8075 LxLy f l(U) dv 0.8075 leq (9) 0X+ m ay+ Z_I_\/m 5\/— (6Z+)2
1% 1%
* Evaluation of equivalent length [, " [=l,qandforf > :Bc' ;
( 1 \/ER ac J1-B\ a3t )
I3 — + 3,72 = Sh™ = 0.8075 (19)
= for f < B, SR\/F (0z7)
1 R 1
L.L (1_ﬁ)6(1+5 I/E,B) o8
1 - o 10 . U.
o = —Xy 1 where fc =777z (10) 04
fv [(v)3dv Li 0
for § > 0.8
11 1-3 p =P 0.6
f6R3| 1+ s 0-3
\ SR\/F o.0
* The normalize Sherwood rllumber Sh™ is defineol1 as: . . ~8'2
Sh* = 2 _f ( : )§ — 0.8075 (DZHS”)g( : )§ — 0 8075( l )§ (11) 04
5 1/3 Z 2 — Y 2 — U. T | .
Peg DIl leq D=lisll leg 0.0 1.0 20 0.0 1.0 2.0 0.0 1.0 20 3.0 %0 04 080 04 080 04 038
* The resulting value of the Sh* is dependent on the choice of length [ in the eq. (11), WXt x v y U v
. . 0O 0204 0.6 0.8 1 0.5 1 15225
see Fig. 3: c* [ . o 0c/or [ o
0.8075(1—p)e| 1+ forl=L,;5 < p, tz*for y* =L1,/2: 1% row - § = 0; 2" direction on the probe surface (logarithmic
5y1—=p row - B = 0.4; 3t row - 8 = 0.8; 15t column colorbar): 18t row - f = 0; 2"% row - § = 0.4;
Sh* = < 1 1 (12) _R = 0.1; 2" column - R = 0.4; 3t column 3t row - f = 0.8; 1%t column - R =0.1; 2nd

0.8075 55 R3 forl =Ly; B> B,

1+

)
SR/

L 0.8075 forl = l.q; VP
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Figure 3: Normalized Sherwood number evaluated for
length [ = L, in dependence on the parameters [ and
ratio R. Black curve describes the value of critical (..

0.3

R=08 column - R = 0.4; 3t" column R = 0.8.

Conclusion:
I
We have derived an equation describing the equivalent length and
normalized Sherwood number as a function of the fluid flow angle
(characterized by parameter B) and the aspect ratio of the rectangular
mass transfer probe (R = LX/Ly). The given equations could serve for better
interpretation of the measurement of wall shear stress (ED or hot-film
method) especially for fluid flow associated with secondary flows.

Acknowledgment:

I
This research was supported by the grant UJEP-SGS-2018-53-002-2.



callto:2018-53-002-2

