
A CP-based Automatic Tool for Instantiating
Truncated Differential Characteristics ⋆

François Delobel1, Patrick Derbez2, Arthur Gontier2, Löıc Rouquette3,4, and
Christine Solnon5

1 Université Clermont-Auvergne, CNRS
Mines de Saint-Étienne, LIMOS

Clermont-Ferrand, France
francois.delobel@uca.fr

2 Univ Rennes, CNRS, IRISA, Rennes, France
{patrick.derbez,arthur.gontier}@irisa.fr

3 EPITA Research Laboratory (LRE), 14/16 rue Voltaire - 94270 Le
Kremlin-Bicêtre, France

loic.rouquette@epita.fr

publications@loicrouquette.fr
4 LORIA, Université de Lorraine, F-54000, Nancy, France

5 INSA Lyon, CITI, INRIA CHROMA, F-69621 Villeurbanne, France
christine.solnon@insa-lyon.fr

Abstract. An important criteria to assert the security of a crypto-
graphic primitive is its resistance against differential cryptanalysis. For
word-oriented primitives, a common technique to determine the number
of rounds required to ensure the immunity against differential distin-
guishers is to consider truncated differential characteristics and to count
the number of active S-boxes. Doing so allows one to provide an upper
bound on the probability of the best differential characteristic with a
reduced computational cost. However, in order to design very efficient
primitives, it might be needed to evaluate the probability more accu-
rately. This is usually done in a second step, during which one tries to
instantiate truncated differential characteristics with actual values and
computes its corresponding probability. This step is usually done either
with ad-hoc algorithms or with CP, SAT or MILP models that are solved
by generic solvers. In this paper, we present a generic tool for automat-
ically generating these models to handle all word-oriented ciphers. Fur-
thermore the running times to solve these models are very competitive
with all the previous dedicated approaches.

Keywords: Differential cryptanalysis, Constraint Programming, Auto-
matic tool

⋆ The work presented in this article was funded by the French National Research
Agency as part of the DeCrypt project (ANR-18-CE39-0007).

1 Introduction

The security of a symmetric primitive mostly relies on applying all known crypt-
analysis techniques to show that none of them is close to endanger it and to
ensure that there is enough security margin against all known attacks. Among
others, this evaluation process typically involves identifying the differential and
linear characteristic which allows one to distinguish the primitive from a random
permutation on as many rounds as possible. Indeed, several decades after their
introduction, both differential [3] and linear [22] cryptanalysis are still two very
powerful techniques receiving a lot of attention from the community.

Differential cryptanalysis aims at searching for differential distinguishers,
which are formed by both an input and output difference such that the transi-
tion occurs with a probability higher than expected for a random permutation.
The main issue with this cryptanalysis technique lies in the inherent difficulty of
finding such differentials due to the extremely large search space. To overcome
this difficulty it was proposed to look for differential characteristics, meaning
that, instead of defining only the input and output differences, all differences in
internal states are specified as well. However, searching for the best differential
characteristics is not easier than searching for differential and thus, especially
for word-oriented primitives, it was proposed to search for truncated differential
characteristics. In a truncated differential characteristic, the exact difference on
each word is omitted and replaced by a Boolean variable indicating whether
there is a non-zero difference on the word or not. Associated with the best prob-
ability of a transition through the non-linear function involved in the primitive,
truncated differential analysis provides an upper bound on the probability of
any differential characteristic.

However, the bounds computed from truncated differential cryptanalysis are
most often not tight, since it might be impossible to instantiate a truncated
differential characteristic such that all its internal transitions occur with the
highest possible probability. To evaluate more accurately the resistance of a
primitive against differential cryptanalysis, an interesting problem is to find the
best possible instantiation of a given truncated differential characteristic, i.e. ,
find the actual difference values maximizing the overall probability. Due to the
huge search space, and because difference distribution tables (DDT) of non-linear
cryptographic components are hard to model by means of linear or Boolean con-
straints, searching for the best instanciation of a given truncated differential
characteristic most often relies on Constraint Programming (CP) solvers. Con-
straint programming is a flexible declarative language that comes with a large
collection of constraints. A CP model is composed of variables, their correspond-
ing domains and a set of constraint on these variables. A constraint is a relation
between the variables and comes with an algorithm to check if the constraint is
satisfied and an algorithm to remove the values that do not respect the relation
from the domains of the variables. This algorithm is called a filtering algorithm.
The CP solving method uses both a Depth-First Search algorithm and all the
filtering algorithms of each variable to solve a problem. There are many different

2

types of constraints and new ones can be added to CP solvers if we can provide
a corresponding filtering algorithm.

Regarding the specific problem of differential cryptanalysis, we can cite the
collection of works from Gerault, Minier and their co-authors [23,11,9,30,10], in
which the ultimate goal is to provide the probability of the best differential char-
acteristic for each round-reduced version of all versions of the Rijndael cipher.
It is also worth mentioning the recent work of Delaune et al. [5], who proposed
a dedicated CP model to instantiate truncated differential characteristics on the
cipher SKINNY.

Our Contribution. The common point of the previous CP models is that they
are all dedicated to a specific cipher. Designing these dedicated CP models is
time-consuming and error prone. In this paper, we propose a generic approach
for automatically generating these models to handle all word-oriented ciphers,
providing running times close enough to the dedicated models on both Rijndael

and SKINNY while being fully generic. This CP model generator is a part of the
Tagada project, a tool which aims at providing a simple and easy-to-use API to
describe ciphers as well as the automatic generation of CP models to search for
differential characteristics. However, our CP model generator can also be used as
a standalone object, taking as input the description of the cipher and a truncated
differential characteristic and outputting its best possible instantiation.

Organisation of the paper. Section 2 describes the Tagada tool, it defines
the notion of Differential Cryptanalysis as well as the way in which Tagada
works. Section 3 describes the first contribution of this article, namely a CP
model generator for computing the best differential characteristic given a trun-
cated characteristic. Section 4 explains the integration of this model generator
within the Tagada library. Section 5 presents some optimizations and Section 6
presents the results obtained. Lastly, Section 7 recalls the tools introduced by
this article and proposes new areas of research allowing the extension of auto-
mated differential cryptanalysis.

2 Tagada

Tagada (Tool for Automatic Generation of Abstraction-based Differential At-
tack) is a tool proposed in [20] that can generate models for computing truncated
differential characteristics for any word-oriented cipher. It relies on a graph rep-
resentation of the cipher and uses several techniques to optimize the models.
In this background section, we first recall how differential is modelled and then
explain the graph representation of Tagada. Moreover, we describe some of the
optimizations Tagada proposed for the first step of this problem.

2.1 Differential cryptanalysis

Differential analysis is a method to analyze the effect of differences in plaintext
pairs on the differences of the resultant ciphertexts. The difference is usually

3

obtained with the bit-wise XOR; we will note it +. For a cipher function F and
two plaintexts x and y where y is created by injecting an input difference δin, i.e.
y = x+δin, the output difference δout is computed with δout = F (x)+F (y). There
is a differential distinguisher in F if the probability that δout = F (x)+F (x+δin)
is high i.e. the input difference δin has a good probability of ending up in the
output difference δout. Symmetric ciphers are iterated functions like F (x) =
f(f(. . . f(f(x)) . . .)). To see if the difference δin can end up in a difference δout,
we study the propagation of the difference through all the rounds and all the
ciphers operators. We usually note δxi the difference of an intermediate variable
of the cipher xi. The tracking of differences from δin to δout through the complete
cipher is called a differential trail or differential characteristic.

Symmetric ciphers are generally composed of two types of operators: linear
operators like XORs or permutations and non-linear operators like S-Boxes and
multiplications :

– Linear operators will always propagate differences with probability 1. Indeed
a permutation will simply reorganize the differences. Another common linear
operator is the XOR of three variables y = x2 + x3 were the differences will
be propagated with another XOR: δy = δx2 + δx3. Note that if δx2 = δx3

then the output difference is cancelled δy = 0.

– However, non-linear operators, called S-Boxes, will propagate a difference
with a probability that may be lower than one. For each S-Box, the propa-
gation probabilities of the pair of input-output differences can be computed
with their Difference Distribution Table (DDT). Since it is necessary to enu-
merate all the possible pairs of inputs to generate the DDTs they are cached
and it is not possible to compute them if the input size of the associated op-
erator is too big. Usually it is possible to compute DDTs for word oriented
ciphers as they are working with 4-bit (nibbles) and 8-bit (bytes) words.
Tagada is designed for word oriented ciphers, for which the propagation of
differences in non-linear operators can be computed with DDTs. Tagada
will have very poor performances on bit-oriented ciphers (e.g. [1]), or on
word-oriented ciphers that operate on words larger than bytes.

If a differential trail contains two or more S-Boxes, the probability of the trail
is the multiplication of the probabilities given by the DDTs because we assume
that the probabilities are independent [15]. Therefore, the probability of a trail
will be lower if we add more S-Boxes to it, and low-probability trails may not be
useful for standard differential attacks (differential trail with zero probability can
be used in impossible attacks for example). To make ciphers more resistant, we
could want to search for S-Boxes with perfectly balanced probabilities. However,
this seems really hard to achieve among all the other required properties of
S-Boxes [12].

As the search of differential trails is hard, it is usually split into two steps in
the most recent works [4,6,10].

4

First step: find truncated trails The first step is the search for truncated
differential trails [13]. A truncated differential trail is an abstraction of a differ-
ential trail in which we only retain whether a difference exists or not, i.e. each
difference variable δxi, associated to cipher’s intermediate word xi of size n, is
abstracted by a Boolean variable ∆xi where

∆xi =

{
0 if δxi = 0

1 if δxi ∈ [1; 2n − 1]

Because each Boolean variable ∆xi encodes the existence of the difference
without tracking its value, several aspects of the problem change.

– For the probability of propagation through the S-Boxes, we cannot know
which probability to pick in the DDT except when the Boolean variable
associated with the input difference is equal to 0, in which case we know for
sure that the Boolean variable associated with the output difference is also
equal to 0. When the Boolean variable associated with the input variable is
equal to 1, we only know that the S-Box is active i.e. involved in the trail.
Therefore, we will use the highest probability to have an upper bound on
the probability of the differential trail.

– The second change is that we cannot capture the difference cancellations of
the XOR operations. Therefore, there are usually a lot of false positive trails
i.e. trails that cannot be instantiated.

Truncated differential analysis can be enough to say that a cipher is secure in
the case where the best truncated trail (the one with the fewest active S-Boxes)
has a low enough probability. On the other hand, when a truncated trail has a
high probability, we must successfully instantiate it with real difference values
to have a differential trail.

Second step: instantiate the trails In the second step, we enumerate all
possible differential trails (starting from active S-boxes) to find the best one.
The two steps can be done separately (find all truncated trails, then try to
instantiate them all) or together like in Algorithm 3 that will be explained more
in Section 4.

In [5], the authors compare a dedicated implementation (based on dynamic
programming) with SAT, MILP, and CP models that are solved by generic
solvers on the two steps of the differential cryptanalysis of the cipher SKINNY.
In conclusion, they found that their hand-made algorithm is the fastest on the
first step, followed by SAT and MILP. For the second step, they conclude that
the CP solver is the most efficient solver by far. This work points out a key issue
of cryptanalysis problems. It has to be done on every cipher, and the develop-
ment time is not the same for a hand-made algorithm or a model for tools like
SAT, MILP and CP.

5

2.2 How Tagada works

In [20], a generic graph representation of ciphers was proposed. This graph is
encoded in a text format to be able to simplify the communication of the cipher
definition. Tagada uses this graph to generate CP,SAT of MILP models to
solve the first step of the differential analysis, and we will use the same graph to
generate the second step too.

DAG: unifying description of ciphers The input graph is a Directed Acyclic
graph where the nodes correspond to all the cipher parameters (inputs, outputs,
constants. . .) and operators (XOR, S-Box, permutations. . .). The edges of the
DAG link the operators to the parameters. Hence the DAG is a bipartite graph.
Figure 1 shows the DAG of a 2-round toy example Feistel cipher.

Legend:

P Parameters

O Operators

x0 S x1

x2⊕

x3 S

x4 ⊕

x5

Fig. 1. DAG of a simple 2-round toy example Feistel cipher.

The text format used to define the DAG is a JSON composed of a list of
three types of objects.

– The variables with their domain ranges.
– The functions (the operators) with input domains, output domains and speci-

ficities. For example, an S-Box will declare its lookup table, a LFSR will
declare its length, shift direction and feedback polynomial. . .

– The transitions are triplets composed of a list of variables, a function and
another list of variables. They describe the link between the operators and
their input and output variables.

6

The advantage of a text format like JSON is that it is easy to generate and
parse for any language. Moreover, the DAG has to be made only once for each
cipher, thus saving a lot of time compared to the development of a hand-made
algorithm or a solver-specific model. The difficulty of the DAG representation is
that the DAG must be able to represent all the operators in order to be able to
model any cipher. Tagada currently handles the following operators: equality,
bit-wise XOR, Galois field multiplication, LFSR, left shift register, right shift
register, permutation, concatenation, split and S-Box. Tagada also proposes
to describe new operators by means of tables describing all the possible in/out
tuples. However, this option is possible only when the table is not too large.

Truncated differential graph and optimizations To solve the first step of
the differential analysis, Tagada first builds a truncated version of the graph
of the input cipher. Then, this graph is optimized with a simplification of the
useless parts of the graph. Indeed, differential analysis does not use constants
nodes, and equality operators can be removed from the graph by merging the
equals nodes.

A second optimization is done to detect some inconsistent differential trails
by adding constraints, as illustrated in Example 1.

Example 1. Let δ1, δ2, δ3 be three differential variables, and ∆1, ∆2, ∆3 be their
corresponding truncated differential variables. Let ∆1 +∆2 = 0 and ∆1 +∆2 +
∆3 = 0 be two equations generated from the DAG.

If we look at the first equation, it is satisfied if ∆1 = 0 and ∆2 = 0. How-
ever, the difference can also be cancelled if they have the same value (δ1 = δ2).
Therefore, the equation is also satisfied if ∆1 = 1 and ∆2 = 1.

For the same reason, the second equation accepts the solution ∆1 = 1, ∆2 =
1, ∆3 = 1. In the truncated model, there is no problem. However, in the second
step model, the first equation implies that δ1 = δ2 and that they are equals to a
non-zero difference, so δ3 ̸= 0 would never be a valid assignment.

To detect this kind of inconsistencies, Tagada combines XOR equations to
generate new equations. Generating new equations is a key point for an efficient
model. These equations were hand-made in [11,10], whereas they are automat-
ically derived from the DAG in Tagada. In [28], an abstract-XOR constraint
has been designed to better propagate XOR constraint in CP solvers.

Once optimized, a mathematical model is automatically generated from the
truncated graph. This model is expressed using the MiniZinc language, which
is a high-level language for defining constraint satisfaction problems [24]. Many
different solvers are able to solve problems defined in MiniZinc such as, for exam-
ple, Choco, Chuffed or Picat. We may also use Picat to automatically generate
SAT or MILP models from a MiniZinc model, thus allowing one to use SAT or
MILP solvers. In many cases, the best solver is Picat-SAT.

7

2.3 First step results

In [20] the Tagada models were able to recover the state-of-the-art truncated
trails of the ciphers AES, Midori, SKINNY, and Craft in either single-key or
related-key scenarios.

However, truncated trails may not lead to valid differential trails. To be able
to make a strong statement on the differential characteristics of a cipher, we must
try to instantiate these trails with the second step. Therefore, another program
or model has to be made to solve the second step, and we propose to generate
it from the DAG representation of the cipher like Tagada generated the first
step models.

3 Model generation for the second step

In this section, we present our contribution to the Tagada project, focusing on
the modelling of the second step of the differential analysis, the instantiation
of truncated characteristics. Contrary to the first step, we rely only on a CP
solver, namely Choco [25]. There are two reasons for that. Firstly, in both [11]
and [5], the CP solver was said to perform very well for this particular problem.
Secondly, we wanted to develop dedicated filtering algorithms for operators like
the bit-wise XOR in a CP solver to improve the overall efficiency of the solving
process.

In the second step of the differential analysis, we use the solutions of the first
step and we try to instantiate them. More precisely, we make a complete model
of the cipher, and we constrain the S-Boxes variables according to the truncated
trail i.e. the active S-Boxes in the truncated trail have a full domain, and the
inactive S-Boxes be set to zero. To generate models for the second step, we need
constraints for each operator and the most important one is the S-Box.

3.1 Modelling DDT with table constraints

The probability of the propagation of a differences through an S-Box is described
in a Difference Distribution Table (DDT). For example, the DDT of an S-Box
of the F function of DES is given in Table 3.1. This S-Box has six input bits
and four output bits. Therefore, the DDT is a table with 26 × 24 entries. In
this table, we can see that the first difference (0) always propagates to 0 (64
times over the 64 possible input pairs of difference 0). In the second line, we
can see that the input difference 1 propagates to the output difference 3 six
times over 64 possible input pairs of difference 1. Therefore, the probability of
this propagation is 6× 2−6. In the truncated model, we would use only the best
probability of this table which is 16×2−6, but this probability holds only for one
transition (34 −→ 2). We use the best transition probability in order to use the
probability of the truncated differential trail as an upper bound approximation
of the probability of the differential trail - the best possible differential trail is
the differential trail that uses only optimal transitions.

8

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 6 0 2 4 4 0 10 12 4 10 6 2 4
2 0 0 0 8 0 4 4 4 0 6 8 6 12 6 4 2
3 14 4 2 2 10 6 4 2 6 4 4 0 2 2 2 0
4 0 0 0 6 0 10 10 6 0 4 6 4 2 8 6 2
5 4 8 6 2 2 4 4 2 0 4 4 0 12 2 4 6
6 0 4 2 4 8 2 6 2 8 4 4 2 4 2 0 12
7 2 4 10 4 0 4 8 4 2 4 8 2 2 2 4 4
8 0 0 0 12 0 8 8 4 0 6 2 8 8 2 2 4
9 10 2 4 0 2 4 6 0 2 2 8 0 10 0 2 12
A 0 8 6 2 2 8 6 0 6 4 6 0 4 0 2 10
B 2 4 0 10 2 2 4 0 2 6 2 6 6 4 2 12
C 0 0 0 8 0 6 6 0 0 6 6 4 6 6 14 2
D 6 6 4 8 4 8 2 6 0 6 4 6 0 2 0 2
E 0 4 8 8 6 6 4 0 6 6 4 0 0 4 0 8
F 2 0 2 4 4 6 4 2 4 8 2 2 2 6 8 8

10 0 0 0 0 0 0 2 14 0 6 6 12 4 6 8 6
11 6 8 2 4 6 4 8 6 4 0 6 6 0 4 0 0
12 0 8 4 2 6 6 4 6 6 4 2 6 6 0 4 0
13 2 4 4 6 2 0 4 6 2 0 6 8 4 6 4 6
14 0 8 8 0 10 0 4 2 8 2 2 4 4 8 4 0
15 0 4 6 4 2 2 4 10 6 2 0 10 0 4 6 4
16 0 8 10 8 0 2 2 6 10 2 0 2 0 6 2 6
17 4 4 6 0 10 6 0 2 4 4 4 6 6 6 2 0
18 0 6 6 0 8 4 2 2 2 4 6 8 6 6 2 2
19 2 6 2 4 0 8 4 6 10 4 0 4 2 8 4 0
1A 0 6 4 0 4 6 6 6 6 2 2 0 4 4 6 8
1B 4 4 2 4 10 6 6 4 6 2 2 4 2 2 4 2
1C 0 10 10 6 6 0 0 12 6 4 0 0 2 4 4 0
1D 4 2 4 0 8 0 0 2 10 0 2 6 6 6 14 0
1E 0 2 6 0 14 2 0 0 6 4 10 8 2 2 6 2
1F 2 4 10 6 2 2 2 8 6 8 0 0 0 4 6 4

0 1 2 3 4 5 6 7 8 9 A B C D E F

20 0 0 0 10 0 12 8 2 0 6 4 4 4 2 0 12
21 0 4 2 4 4 8 10 0 4 4 10 0 4 0 2 8
22 10 4 6 2 2 8 2 2 2 2 6 0 4 0 4 10
23 0 4 4 8 0 2 6 0 6 6 2 10 2 4 0 10
24 12 0 0 2 2 2 2 0 14 14 2 0 2 6 2 4
25 6 4 4 12 4 4 4 10 2 2 2 0 4 2 2 2
26 0 0 4 10 10 10 2 4 0 4 6 4 4 4 2 0
27 10 4 2 0 2 4 2 0 4 8 0 4 8 8 4 4
28 12 2 2 8 2 6 12 0 0 2 6 0 4 0 6 2
29 4 2 2 10 0 2 4 0 0 14 10 2 4 6 0 4
2A 4 2 4 6 0 2 8 2 2 14 2 6 2 6 2 2
2B 12 2 2 2 4 6 6 2 0 2 6 2 6 0 8 4
2C 4 2 2 4 0 2 10 4 2 2 4 8 8 4 2 6
2D 6 2 6 2 8 4 4 4 2 4 6 0 8 2 0 6
2E 6 6 2 2 0 2 4 6 4 0 6 2 12 2 6 4
2F 2 2 2 2 2 6 8 8 2 4 4 6 8 2 4 2

30 0 4 6 0 12 6 2 2 8 2 4 4 6 2 2 4
31 4 8 2 10 2 2 2 2 6 0 0 2 2 4 10 8
32 4 2 6 4 4 2 2 4 6 6 4 8 2 2 8 0
33 4 4 6 2 10 8 4 2 4 0 2 2 4 6 2 4
34 0 8 16 6 2 0 0 12 6 0 0 0 0 8 0 6
35 2 2 4 0 8 0 0 0 14 4 6 8 0 2 14 0
36 2 6 2 2 8 0 2 2 4 2 6 8 6 4 10 0
37 2 2 12 4 2 4 4 10 4 4 2 6 0 2 2 4
38 0 6 2 2 2 0 2 2 4 6 4 4 4 6 10 10
39 6 2 2 4 12 6 4 8 4 0 2 4 2 4 4 0
3A 6 4 6 4 6 8 0 6 2 2 6 2 2 6 4 0
3B 2 6 4 0 0 2 4 6 4 6 8 6 4 4 6 2
3C 0 10 4 0 12 0 4 2 6 0 4 12 4 4 2 0
3D 0 8 6 2 2 6 0 8 4 4 0 4 0 12 4 4
3E 4 8 2 2 2 4 4 14 4 2 0 2 0 8 4 4
3F 4 8 4 2 4 0 2 4 4 2 4 8 8 6 2 2

Table 1. DDT of one S-Box of DES

DDT to table constraint. The main advantage of the CP solver is that we can
directly model the DDT with a table constraint. A table constraint constrains a
list of n variables to be instantiated to an n-tuple chosen within a collection of
all valid n-tuples. Any constraint can be declared in extension i.e. declared as a
table constraint. However, this might not be the best way to model a constraint,
especially if there are a lot of tuples. For example, to constrain three Boolean
variables a, b, and c to have a sum equal to 2, we may define the table constraint
(a, b, c) ∈ {(1, 1, 0), (1, 0, 1), (0, 1, 1)} but the same sum with integer variables
(with domains like J−1000, 1000K) would require too many tuples. This is why
constraints are often best declared in intention i.e. with a dedicated filtering
algorithm. However, an efficient filtering algorithm may not always be available.

Table filtering. The table constraint not only requires a filtering algorithm but
also needs to be cautious of the data structure used to store and manipulate the
table. This is because the memory used by the table depends on the number
of tuples. In the literature [18,7,33,16,17,21], a lot of work has been done to
optimize this algorithm for various situations (positive tables, binary tables, big

9

or small tables. . .). The general idea is to pre-compute and try to maintain a
set of indexes of valid tuples. When a tuple is no longer valid, an efficient search
method will search for another valid tuple in the table. If there are no more valid
tuples, the constraint is violated. There are a lot of variations depending on the
situation.

The DDT is an extensive definition of all the possible transitions of a dif-
ference through an S-Box with its probability and it is usually not possible
to define these transitions in intention, by means of a small number of arith-
metic constraints. Therefore, the table constraint is the most suited way to
model it. In CP, this takes the form of a table T composed of a list of tuples
(δxin, δxout, p) ∈ T where δxin and δxout are the input and output variables
of the S-Box, respectively, p is a variable which corresponds to the probabil-
ity of observing the output difference δxout given the input difference δxin. To
avoid rounding errors, the probability is replaced by the negation of its base 2
logarithm (and probability multiplications are replaced with additions).

For MILP and SAT, this table would require a lot more intermediate variables
and constraints [32].

3.2 Modelling other operators

Unfortunately, the other operators are not available in CP solvers except for some
exceptions, like the modular addition. To model the other operators, we could
also use table constraints. However, tables are often too large to be efficient.
Therefore, we will develop new filtering algorithms. In particular for the bit-wise
XOR operator because it is used everywhere.

Bit-wise XOR. We first consider the bit-wise XOR in the case with three vari-
ables: a+ b = c. Note that if there is only one variable, the XOR is a constant.
If there are two variables, the XOR can be replaced with an equality operator.
For the three variable case, we used some previous work from [5]. The filtering
algorithm is not very smart. To filter the values of Dc, the domain of c, the algo-
rithm computes a set that contains all the possible XORs between the values of
the domains of a and b. This set is then used to remove the inconsistent values
from the domain of c. The algorithm is given in Algorithm 1.

This algorithm has two weaknesses. First, the computing of the set is time-
consuming but most of all, the set can reach the maximum size very fast. Indeed,
if a, b and c have the same domain sizes, for example, 8 bits, then this algorithm
will compute 28× 28 XORs but will fill a set of maximum 28 values. In practice,
this filtering algorithm takes a lot of time to build the set that does not filter
anything in most cases. Therefore, this filtering is only performed in some cases
decided by a chosen condition. In [5], this condition is that the sum of the
domains of a and b is lower than the maximal domain size of c. We will see later
that this condition is not the best one.

Bit-wise XOR of arbitrary arity. To model a XOR of higher arity with only
three variable XOR constraints, we need to introduce intermediate variables and

10

Algorithm 1: 3-variable XOR filtering algorithm

Input: IntVar a, IntVar b, IntVar c: the target domain to filter
1 set ← ∅;

// Loop through possible values

2 for all v1 ∈ Da do
3 for all v2 ∈ Db do
4 set← set ∪ {v1⊕ v2};
5 if set contains all possible values in variable domains then
6 return;

7 Dc ← Dc ∩ set;

declare additional XORs. For Tagada, we wanted to avoid the introduction of
new variables, so we extended the idea of this algorithm to a XOR of arbitrary
arity. The algorithm uses a recursive loop to compute the set of all the possible
XORs between n − 1 variable domain values to filter the target domain. The
algorithm is depicted in Algorithm 2. This algorithm is less efficient to constrain
a 3-variable XOR than the previous propagator but the more variables we have,
the more efficient this algorithm becomes compared to a decomposition with
3-variable XORs constraints and new intermediate variables (more than five
variables XORs decompositions gives slower models). However, as we will see at
the end of this section, the chosen condition to activate the filtering was also a
problem.

Operations in the Galois Field. In cryptography, we sometimes use addition
and multiplication in some fields. For CP modelling, operations like the Mix-
Columns of AES have often been modelled with table constraints [23]. For the
modular addition, the modulo constraint exists in CP solvers. To model the
modular addition a ⊞ b = c mod m, we need one intermediate variable x and
the two constraints a+ b = x and x mod m = c. Unfortunately, modelling the
multiplication is not possible with existing constraints. Like the XOR, we must
make a new filtering algorithm for multiplication and division in a finite field.
The filtering algorithm we made follows the same idea of Algorithm 1. We cre-
ate a set of all the possible values of c from the domains of a and b except that
in the line ”set ← set ∪ {v1 ⊕ v2}” the ⊕ is replaced by ProdGF(v1,v2) or
DivGF(v1,v2) where ProdGF and DivGF are algorithms to perform the modu-
lar product and division depending on the context. In real ciphers, the product
is usually between a variable and a constant, so the algorithm is more likely to
filter properly.

LFSR. Another operator we added is the LFSR. Similarly to the bit-wise XOR,
we replace the line 4 of Algorithm 1 with a function that can compute the next
step of the LFSR.

11

Algorithm 2: n-variable XOR filtering algorithm

Input: int target: index in vars table of the domain to filter
1 Function combiXor(target, current, xor):

// skip target

2 if current == target then
3 combiXor(target, current + 1, xor);
4 else

// add the value xor to the set of values

5 if current == vars.length - 1
6 or (current + 1 == target
7 and current + 1 == vars.length - 1) then
8 for all v ∈ Dcurrent do
9 set← set ∪ {xor ⊕ v};

10 else
// Loop through domain with recursion

11 for all v ∈ Dcurrent do
12 combiXor(target, current + 1, xor ⊕ v);

13 set ← ∅;
14 combiXor(target, 0, 0);
15 Dtarget ← Dtarget ∩ set;

Concat and Split. Bit concatenation and bit splitting are modelled by constraint
tables.

Filtering efficiency. As stated before, the filtering of bit-wise XOR constraints
needs a parameter to avoid useless computations. During our tests, we observed
that the trade-off between the time gained from filtering and the time taken by
the filtering algorithm is in favour of less filtering. To be efficient, we must find
at which domain size we would have a good chance to filter. For the XOR with
two variables, we can write it as follows. Let a, b be two variables, Da and Db,
their domain of max sizes n. Let c be a constant in the constraint a+ b = c. In
this case, we can filter the values in Db if this set of values is not contained in
Da. For two variables, this condition is very probable. However, if now c is also
a variable with a domain Dc of max size n, then the filtering is possible if the
XORs of all the possible values of Da and Db is a set that does not include Dc.
The number of values from the XORs is #Da ×#Db, and each value is in the
domain range of Dc. In the end, it is like if we pick at random #Da×#Db values
in the range of J0, nK and hope that we did not pick all the values of Dc. For
the XOR with more variables (

⊕
i xi), the number of values is

∏
i ̸=j #Dxi . As a

consequence, the probability of being able to filter some values of Dj is very low.
To test the filtering efficiency of our XOR constraints, we implemented a forward-
checking version of the filtering algorithms. The forward-checking (FC) method
only filters when all the variables are fixed except one. In some early tests, we saw
that the FC version was performing nearly as well as the full filtering algorithms.

12

This means that the filtering algorithms for the 3-variable and n-variable XOR
constraints are not helping the solving process that much. Therefore, we deduce
that the CP model’s strength is the DDT’s table constraint. Moreover, the new
dedicated filtering algorithms are still helpful because we would have to use table
constraints instead, so they at least reduce the memory used by the model. A
list of the operators we added to the model generator is depicted in Table 2.

Linear Operators
Operator Name First step support Second step Implementation

= Equal ✓ Native support
LFSR Linear Feedback Shift Register ✓ Custom filtering algorithm

AB → (A,B) Split ✓ Constraint table (native)
(A,B)→ AB Concat ✓ Constraint table (native)
≪ or ≫ Left (Right) Shift ✓ Custom filtering algorithm
≪ or ≫ Left (Right) Circular Shift ✓ Custom filtering algorithm

&K Bitwise AND with Constant ✓ Constraint table (native)
∥K Bitwise OR with Constant ✓ Constraint table (native)

⊕ N-ary Bitwise XOR ✓ Custom filtering algorithm or
decomposition (for n-ary equations)

⊗K Galois Field Multiplication ✓ Custom filtering algorithm
with Constant

⊙K Galois Field Matrix ✓ Decomposition and delegation
Multiplication with Constant Matrix to the ⊗K and ⊕ operators

T Linear Lookup Table ✓ Constraint table (native)

Non-linear Operators
Operator Name First step support Second step Implementation

DDT Differential Distribution Table ✓ Constraint table (native)

Table 2. List of supported operators in Tagada (both first and second steps). For
exemple, Rijndael uses the operators: ⊕, =, ⊙K and DDT , while Skinny uses the
operators ⊕, =, ⊙K , LFSR and DDT .

4 Connect the two steps

At the start the first step of Tagada was not designed to work with the second
step but only to find the best truncated differential trail. While it can be possible
to only use truncated differential trails optimizing, the whole process can be more
efficient than only optimizing the two steps separately. To do so we improve the
linking algorithm of [27] by splitting the first step search in three parts.

Step1-opt. The aim of Step1-opt is to find the optimal truncated differential
trail. We define its signature with Signature 1.

Step1-next. Instead of looking for an optimal solution Step1-next (Signature 2) is
designed to find one truncated differential trail with a given upper bound (UB).

13

Signature 1 Step1-Opt

Input:
G∆: the Differential Graph of the cipher
seen: the set of all the already found solutions
UB: the current upper bound

Output:
sol: the Truncated Differential Trail with the highest probability such as P (sol) ≤

UB and sol not in seen. If no such solution exists, returns null.

Signature 2 Step1-Next

Input:
G∆: the Differential Graph of the cipher
seen: the set of all the already found solutions
UB: the current upper bound

Output:
sol: a Truncated Differential Trail such as P (sol) ≤ UB and sol not in seen. If no

such solution exists, returns null.

While Step1-opt solves an optimization problem, Step1-next solves a satisfaction
problem.

Usually solving optimization problems is more complicated than solving a
satisfaction problem. Indeed for both optimization and satisfaction problems we
have to find a solution but for optimization problems we also need to find the
best one which is generally done by finding a sequence of solutions of increasing
quality and proving that there is no better solution than the last found one.

To improve the overall time of the two steps algorithm (Algorithm 3) we
try to use the Step1-next method as much as possible instead of the Step1-opt
method. Step1-opt is only called at the beginning of the function when we have
to compute the upper bound. The second call of Step1-opt is done when we have
iterated over all the solutions that reach the current upper bound.

Step1-next-possible-UB (Signature 3). As said previously, step1-opt is the func-
tion that consumes the most calculation time. When we have iterated over all
the solutions of a current upper bound we need to find the next upper bound.
The search of the next upper bound is performed by another call to Step1-opt.
However it is possible in some cases to bypass the function by using a new func-
tion Step1-next-possible-UB. The purpose of Step1-next-possible-UB is to find
very quickly a lower approximation of the next upper bound. If this approxima-
tion is equal or lower than the current lower bound then we can stop the search
without doing any more computation.

Example 2. Let us take the example of the 4-round Rijndael-128-128 instance.
The step1-opt finds a truncated differential trail with an upper bound proba-
bility of 2−72. For this trail the second step will find a valid differential trail of
probability 2−75 and set it as the current lower bound. As 2−75 < 2−72 we need
to find another truncated differential trail that matches 2−72. For this cipher

14

Algorithm 3: Twostep(G∆, Gδ)

Input:
G∆: step1 model
Gδ: step2 model

1 LB ← 0
2 UB ← 1
3 best ← null

4 sol1 ← Step1-opt(G∆, seen, UB)
5 seen ← {}
6 UB ← P (sol1)
7 while LB < UB do
8 seen ← seen ∪ {sol1}
9 sol2 ← Step2(Gδ, sol1,LB)

10 LB ← P(sol2)
11 if LB < UB then
12 sol1 ← Step1-next(G∆, seen, UB)
13 if sol1 is null then
14 UB ← Step1-next-possible-ub(G∆, seen, UB)
15 if LB ≥ UB then
16 break

17 sol1 ← Step1-opt(G∆, seen, UB)

18 UB ← P (sol1)

19 return best

15

we only have one truncated differential trail of this probability. As we have a
gap between the two probabilities we need to tighten the bounds which is done
by decreasing the upper bound. For Rijndael all the S-Boxes are the same and
their maximum probability is 2−6 (a trail of 2−72 is composed of 12 × 2−6 S-
Boxes). In our case, the only way to find a new trail is to activate another S-Box,
in that case the probability will be at least of 13 × 2−6 = 2−78 which is lower
than 2−75. This simple computation saves one call of Step1-opt.

Signature 3 Step1-Next-Possible-UB

Input:
G∆: the Differential Graph of the cipher
UB: the current upper bound

Output:
UB′: an approximation of the next reachable UB.

5 Second Step Optimizations

To gain some generic solving efficiency, we propose two optimizations.

5.1 Heuristics

Another way to improve the search speed is to use heuristics. Constraint Pro-
gramming solvers usually use two kind of heuristics, a value heuristic and a
variable heuristic. As their names suggest, the value heuristic is responsible of
selecting the next value to test for a variable and the variable heuristic is used to
select the next variable on which to branch. By default, generic solvers propose
known general purpose search heuristics for both value and variable heuristics,
but when we have extra information on a specific problem we can help the solver
by designing custom heuristics.

We propose a custom value heuristic adapted to our second step. In this step,
we want to maximize the probability of the differential trail. As the probabil-
ity only depends on non-linear operators we can focus our heuristics on those
operators. For each non-linear operator we have three available variables:

– δx which is the input differential variable
– δsx which is the output differential variable
– p which is the probability of the transition δx→ δsx

If the solver branches on a p variable, we only have to select the highest prob-
ability available. When the solver branches on a δx variable, if its δsx variable
is instantiated, i.e. it has only one possible value, then we can select the value
that maximize the transition to δsx, more formally:

16

next-value(δx) = argmax
v∈dom(δx)

P (v → value(δsx))

When the solver branches on a δsx we can performs the same computation
with its corresponding δx variable.

5.2 Competitive parallel solving

In the previous CP model for the second step on SKINNY [5], a parallel method
was used. Each model from the first step was launched on a separate thread, and
the best solution found was shared with all the other threads. This new bound
is added to the models that remain to be solved, and this information can be
used to cut a large part of their search space.

In Tagada, we added a similar parallel competition between the models
to solve the second step models from a list of truncated trails. In this setup,
Tagada was able to recover the same results with similar solving times than
the dedicated model of [5]. The generated models were only two to three times
slower than the ad-hoc models.

An interesting future work would be to study the feasibility of parallel com-
puting in the two-step method (Algorithm 3).

6 Results

We have implemented the model generator in Java and Kotlin to communicate
more easily with the Choco solver. This generator can parse the JSON file of
the Tagada DAGs and an associated file for the truncated trails. The genera-
tor then builds a CP model and calls the Choco solver to find the differential
characteristics. The second step model generator can be used with the first step
of Tagada in the two-step solving algorithm depicted in Algorithm 3, or it can
also be used alone if we can give a truncated trails list as input.

To compare the generated models, we reproduced the results of ad-hoc models
with Tagada on the two-step differential analysis. We set a time limit of one
day. The computation was done on a Debian GNU/Linux 11 (bullseye) x86 64
sever with two Intel Xeon Gold 6254 (3.10 to 4.00 GHz) processors and 64MB
of RAM. Each instance was launch on a single core. We were able to reproduce
the results shown in Table 6.

The code will be available at:

https://gitlab.com/tagada-framework/tagada

7 Conclusion

We have presented a model generator for the second step of the differential
analysis that relies on the DAG representation of the model generator of the
first step Tagada. We have shown that these generated models can recover the
results of state-of-the-art ad-hoc models in reasonable times.

17

https://gitlab.com/tagada-framework/tagada

Cipher Max Round Probability Reference

Midori-64 16 2−16 [8]
Midori-128 20 2−40 [8]

Warp 41 2−40 [31]

Twine-80 18 2−64 [29]
Twine-128 16 2−52 [29]

Skinny-64-TK1 11 2−64 [5]
Skinny-128-TK1 11 2−74 [5]

Rijndael-128-128 5 2−105 [10]
Rijndael-128-160 7 2−120 [27]
Rijndael-128-192 9 2−146 [10]
Rijndael-128-224 12 2−212 [27]
Rijndael-128-256 14 2−146 [10]
Rijndael-160-128 4 2−112 [27]
Rijndael-160-160 6 2−138 [27]
Rijndael-160-192 8 2−141 [27]
Rijndael-160-224 9 2−190 [27]
Rijndael-160-256 11 2−204 [27]
Rijndael-192-128 3 2−54 [27]
Rijndael-192-160 5 2−118 [27]
Rijndael-192-192 7 2−153 [27]
Rijndael-192-224 8 2−205 [27]
Rijndael-192-256 9 2−179 [27]
Rijndael-224-128 3 2−54 [27]
Rijndael-224-160 4 2−122 [27]
Rijndael-224-192 5 2−124 [27]
Rijndael-224-224 7 2−196 [27]
Rijndael-224-256 8 2−182 [27]
Rijndael-256-128 3 2−54 [27]
Rijndael-256-160 4 2−130 [27]
Rijndael-256-192 5 2−148 [27]
Rijndael-256-224 4 2−115 [27]
Rijndael-256-256 6 2−128 [27]

Table 3. Best differential trails recovered with Tagada (time limit of one day). De-
tailed results will be available in an extended version of the current paper on eprint.

7.1 Next optimization: DAG simplification

To make the model more efficient, we would like to add a graph simplification
algorithm. From the first step solution, we know which S-Boxes are active and
which are not. Therefore, we can simplify the model by removing the variables
in the inactive part of the graph and all the related constraints. For example,
let G be a graph composed of two S-Boxes S1 and S2, their output variables
out1 and out2 and one XOR operation out1 ⊕ out2 = out3 (see Figure 7.1). If
the truncated trail says that only the first S-Box is active, then instead of fixing
the domain of out2 to 0, we can remove the S2 and out2 nodes from the graph.
After this, we can further simplify the graph by removing the XOR node and
the out1 variable. In the end, we only need to keep S1 and out3.

The simplification is split into two parts. The first part propagates from
the active S-Boxes, all the nodes that can or will have a difference. In some
cases, we can be more precise. In particular, we know that the difference always
propagates through unary operators, so we can propagate this information in the

18

S1 S2

out1 ⊕ out2

out3

→

S1

out3

Fig. 2. Step2 graph shaving example

graph. This information can then be used in the CP model. When we know that a
variable necessarily has a difference, we can remove the value 0 from the variable
domain when we declare it. We start with a graph containing all nodes with an
”uncertain” marker. For each input and output variable of the S-Boxes, we use
the information of the truncated trail to fix them to ”active” or ”inactive”. For
the linear operators, we can deduce the following status propagation rules :

– If there is only one ”uncertain” variable in its input or output variables and
all the other variables are inactive, it can be set to ”inactive”.

– If there is only one variable ”active” and all the others are inactive, this is
an error. This is not possible if the truncated trail is correct.

– If there is only one ”active” variable and one ”uncertain” variable, they both
must be ”active”.

”active” and ”inactive” information are iteratively propagated in the graph
until reaching a fixpoint where no more propagations are possible.

After these statuses are propagated, we can reduce the graph by removing
all the ”inactive” variables and all the operators only linked to them. We can
also replace the XOR operators that have one inactive variable with equality
operators, and finally, we can remove the equality operators and merge their
input and output nodes. The simplified graph is then transformed into the CP
model.

If we give the complete graph to the CP solver, it would eventually reach the
same conclusion and set all the inactive variables to 0. However, this simplifica-
tion is easy to do in advance and removing useless variables and constraints in
a model is always a good idea.

7.2 Future work.

The idea of a simple tool to perform differential analysis is interesting, and other
recent works are also working in this direction [26,2]. Moreover, we think that a
unified cipher format would help the comparison and development of these tools.
Tagada could be improved by integrating previous solving methods dedicated

19

to ARX ciphers [19] and bit-based ciphers [14]. In these cases, more work is
needed to determine if the CP solver is still the best solving tool. In the end,
Tagada could be extended to search for the variants of differential analysis
(boomerangs, impossible differentials. . .).

Acknowledgements The authors would like to express their very great appre-
ciation to Charles Prud’homme, Ph.D. from IMT for his valuable and construc-
tive expertise of Choco during the development of this research work.

20

References

1. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
The SIMON and SPECK families of lightweight block ciphers. Cryptology ePrint
Archive, Report 2013/404 (2013), https://eprint.iacr.org/2013/404

2. Bellini, E., Gérault, D., Grados, J., Huang, Y.J., Rachidi, M., Tiwari, S.K.,
Makarim, R.H.: CLAASP: a cryptographic library for the automated analy-
sis of symmetric primitives. IACR Cryptol. ePrint Arch. p. 622 (2023), https:
//eprint.iacr.org/2023/622

3. Biham, E., Shamir, A.: Differential cryptanalysis of des-like cryptosystems. In:
Menezes, A., Vanstone, S.A. (eds.) Advances in Cryptology - CRYPTO ’90, 10th
Annual International Cryptology Conference, Santa Barbara, California, USA, Au-
gust 11-15, 1990, Proceedings. Lecture Notes in Computer Science, vol. 537, pp.
2–21. Springer (1990). https://doi.org/10.1007/3-540-38424-3 1

4. Biryukov, A., Nikolic, I.: Automatic search for related-key differential characteris-
tics in byte-oriented block ciphers: Application to aes, camellia, khazad and oth-
ers. In: Gilbert, H. (ed.) Advances in Cryptology - EUROCRYPT 2010, 29th
Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, Monaco / French Riviera, May 30 - June 3, 2010. Proceed-
ings. Lecture Notes in Computer Science, vol. 6110, pp. 322–344. Springer (2010).
https://doi.org/10.1007/978-3-642-13190-5 17

5. Delaune, S., Derbez, P., Huynh, P., Minier, M., Mollimard, V., Prud’homme, C.:
Efficient methods to search for best differential characteristics on SKINNY. In:
Sako, K., Tippenhauer, N.O. (eds.) ACNS 21: 19th International Conference on
Applied Cryptography and Network Security, Part II. Lecture Notes in Computer
Science, vol. 12727, pp. 184–207. Springer, Heidelberg, Germany, Kamakura, Japan
(Jun 21–24, 2021). https://doi.org/10.1007/978-3-030-78375-4 8

6. Fouque, P., Jean, J., Peyrin, T.: Structural evaluation of AES and chosen-key
distinguisher of 9-round AES-128. In: Canetti, R., Garay, J.A. (eds.) Advances in
Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa Barbara,
CA, USA, August 18-22, 2013. Proceedings, Part I. Lecture Notes in Computer
Science, vol. 8042, pp. 183–203. Springer (2013). https://doi.org/10.1007/978-3-
642-40041-4 11

7. Gent, I.P., Jefferson, C., Miguel, I., Nightingale, P.: Data structures for gener-
alised arc consistency for extensional constraints. In: Proceedings of the Twenty-
Second AAAI Conference on Artificial Intelligence, July 22-26, 2007, Vancouver,
British Columbia, Canada. pp. 191–197. AAAI Press (2007), http://www.aaai.
org/Library/AAAI/2007/aaai07-029.php

8. Gérault, D.: Security analysis of contactless communication protocols. (Analyse
de sécurité des protocoles de communication sans contact). Ph.D. thesis, Uni-
versity of Clermont Auvergne, Clermont-Ferrand, France (2018), https://tel.
archives-ouvertes.fr/tel-02536478

9. Gérault, D., Lafourcade, P.: Related-key cryptanalysis of midori. In: Dunkelman,
O., Sanadhya, S.K. (eds.) Progress in Cryptology - INDOCRYPT 2016 - 17th
International Conference on Cryptology in India, Kolkata, India, December 11-14,
2016, Proceedings. Lecture Notes in Computer Science, vol. 10095, pp. 287–304
(2016). https://doi.org/10.1007/978-3-319-49890-4 16

10. Gérault, D., Lafourcade, P., Minier, M., Solnon, C.: Computing AES related-key
differential characteristics with constraint programming. Artif. Intell. 278 (2020)

21

https://eprint.iacr.org/2013/404
https://eprint.iacr.org/2023/622
https://eprint.iacr.org/2023/622
https://doi.org/10.1007/3-540-38424-3_1
https://doi.org/10.1007/978-3-642-13190-5_17
https://doi.org/10.1007/978-3-030-78375-4_8
https://doi.org/10.1007/978-3-642-40041-4_11
https://doi.org/10.1007/978-3-642-40041-4_11
http://www.aaai.org/Library/AAAI/2007/aaai07-029.php
http://www.aaai.org/Library/AAAI/2007/aaai07-029.php
https://tel.archives-ouvertes.fr/tel-02536478
https://tel.archives-ouvertes.fr/tel-02536478
https://doi.org/10.1007/978-3-319-49890-4_16

11. Gérault, D., Minier, M., Solnon, C.: Constraint programming models for chosen
key differential cryptanalysis. In: Rueher, M. (ed.) Principles and Practice of Con-
straint Programming - 22nd International Conference, CP 2016, Toulouse, France,
September 5-9, 2016, Proceedings. Lecture Notes in Computer Science, vol. 9892,
pp. 584–601. Springer (2016). https://doi.org/10.1007/978-3-319-44953-1 37

12. Heys, H.M.: A tutorial on linear and differential cryptanalysis. Cryptologia 26(3),
189–221 (2002). https://doi.org/10.1080/0161-110291890885

13. Knudsen, L.R.: Truncated and higher order differentials. In: Preneel, B. (ed.) Fast
Software Encryption: Second International Workshop. Leuven, Belgium, 14-16 De-
cember 1994, Proceedings. Lecture Notes in Computer Science, vol. 1008, pp. 196–
211. Springer (1994). https://doi.org/10.1007/3-540-60590-8 16

14. Kölbl, S.: Cryptosmt: An easy to use tool for cryptanalysis of symmetric primitives
(2015). URL: https://github. com/kste/cryptosmt

15. Lai, X., Massey, J.L., Murphy, S.: Markov ciphers and differential cryptanalysis.
In: Davies, D.W. (ed.) Advances in Cryptology - EUROCRYPT ’91, Workshop on
the Theory and Application of of Cryptographic Techniques, Brighton, UK, April
8-11, 1991, Proceedings. Lecture Notes in Computer Science, vol. 547, pp. 17–38.
Springer (1991). https://doi.org/10.1007/3-540-46416-6 2

16. Lecoutre, C.: STR2: optimized simple tabular reduction for table constraints.
Constraints An Int. J. 16(4), 341–371 (2011). https://doi.org/10.1007/s10601-011-
9107-6

17. Lecoutre, C., Likitvivatanavong, C., Yap, R.H.C.: A path-optimal GAC algorithm
for table constraints. In: Raedt, L.D., Bessiere, C., Dubois, D., Doherty, P., Fras-
coni, P., Heintz, F., Lucas, P.J.F. (eds.) ECAI 2012 - 20th European Conference on
Artificial Intelligence. Including Prestigious Applications of Artificial Intelligence
(PAIS-2012) System Demonstrations Track, Montpellier, France, August 27-31 ,
2012. Frontiers in Artificial Intelligence and Applications, vol. 242, pp. 510–515.
IOS Press (2012). https://doi.org/10.3233/978-1-61499-098-7-510

18. Lecoutre, C., Szymanek, R.: Generalized arc consistency for positive table con-
straints. In: Benhamou, F. (ed.) Principles and Practice of Constraint Program-
ming - CP 2006, 12th International Conference, CP 2006, Nantes, France, Septem-
ber 25-29, 2006, Proceedings. Lecture Notes in Computer Science, vol. 4204, pp.
284–298. Springer (2006). https://doi.org/10.1007/11889205 22

19. Leurent, G.: Analysis of differential attacks in ARX constructions. In: Wang, X.,
Sako, K. (eds.) Advances in Cryptology - ASIACRYPT 2012 - 18th International
Conference on the Theory and Application of Cryptology and Information Secu-
rity, Beijing, China, December 2-6, 2012. Proceedings. Lecture Notes in Computer
Science, vol. 7658, pp. 226–243. Springer (2012). https://doi.org/10.1007/978-3-
642-34961-4 15

20. Libralesso, L., Delobel, F., Lafourcade, P., Solnon, C.: Automatic generation of
declarative models for differential cryptanalysis. In: Michel, L.D. (ed.) 27th In-
ternational Conference on Principles and Practice of Constraint Programming,
CP 2021, Montpellier, France (Virtual Conference), October 25-29, 2021. LIPIcs,
vol. 210, pp. 40:1–40:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021).
https://doi.org/10.4230/LIPIcs.CP.2021.40

21. Mairy, J., Hentenryck, P.V., Deville, Y.: Optimal and efficient filtering al-
gorithms for table constraints. Constraints An Int. J. 19(1), 77–120 (2014).
https://doi.org/10.1007/s10601-013-9156-0

22. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T.
(ed.) Advances in Cryptology - EUROCRYPT ’93, Workshop on the Theory

22

https://doi.org/10.1007/978-3-319-44953-1_37
https://doi.org/10.1080/0161-110291890885
https://doi.org/10.1007/3-540-60590-8_16
https://doi.org/10.1007/3-540-46416-6_2
https://doi.org/10.1007/s10601-011-9107-6
https://doi.org/10.1007/s10601-011-9107-6
https://doi.org/10.3233/978-1-61499-098-7-510
https://doi.org/10.1007/11889205_22
https://doi.org/10.1007/978-3-642-34961-4_15
https://doi.org/10.1007/978-3-642-34961-4_15
https://doi.org/10.4230/LIPIcs.CP.2021.40
https://doi.org/10.1007/s10601-013-9156-0

and Application of of Cryptographic Techniques, Lofthus, Norway, May 23-27,
1993, Proceedings. Lecture Notes in Computer Science, vol. 765, pp. 386–397.
Springer (1993). https://doi.org/10.1007/3-540-48285-7 33, https://doi.org/10.
1007/3-540-48285-7_33

23. Minier, M., Solnon, C., Reboul, J.: Solving a symmetric key cryptographic prob-
lem with constraint programming. In: ModRef 2014, Workshop of the CP 2014
Conference. p. 13 (2014)

24. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.:
Minizinc: Towards a standard CP modelling language. In: Bessiere, C. (ed.)
Principles and Practice of Constraint Programming - CP 2007, 13th In-
ternational Conference, CP 2007, Providence, RI, USA, September 23-27,
2007, Proceedings. Lecture Notes in Computer Science, vol. 4741, pp. 529–
543. Springer (2007). https://doi.org/10.1007/978-3-540-74970-7 38, https://

doi.org/10.1007/978-3-540-74970-7_38

25. Prud’homme, C., Fages, J.G.: Choco-solver: A java library for constraint
programming. Journal of Open Source Software 7(78), 4708 (2022).
https://doi.org/10.21105/joss.04708, https://doi.org/10.21105/joss.04708

26. Ranea, A., Rijmen, V.: Characteristic automated search of cryptographic algo-
rithms for distinguishing attacks (CASCADA). IET Inf. Secur. 16(6), 470–481
(2022). https://doi.org/10.1049/ise2.12077

27. Rouquette, L., Gérault, D., Minier, M., Solnon, C.: And rijndael?: Automatic
related-key differential analysis of rijndael. In: Batina, L., Daemen, J. (eds.)
Progress in Cryptology - AFRICACRYPT 2022: 13th International Conference
on Cryptology in Africa, AFRICACRYPT 2022, Fes, Morocco, July 18-20, 2022,
Proceedings. pp. 150–175. Lecture Notes in Computer Science, Springer Nature
Switzerland (2022). https://doi.org/10.1007/978-3-031-17433-9 7

28. Rouquette, L., Solnon, C.: abstractxor: A global constraint dedicated to differen-
tial cryptanalysis. In: Simonis, H. (ed.) Principles and Practice of Constraint Pro-
gramming - 26th International Conference, CP 2020, Louvain-la-Neuve, Belgium,
September 7-11, 2020, Proceedings. Lecture Notes in Computer Science, vol. 12333,
pp. 566–584. Springer (2020). https://doi.org/10.1007/978-3-030-58475-7 33

29. Sakamoto, K., Minematsu, K., Shibata, N., Shigeri, M., Kubo, H., Funabiki, Y.,
Isobe, T.: Security of related-key differential attacks on twine, revisited. IEICE
Trans. Fundam. Electron. Commun. Comput. Sci. 103-A(1), 212–214 (2020).
https://doi.org/10.1587/transfun.2019CIL0004, http://search.ieice.org/bin/

summary.php?id=e103-a_1_212

30. Sun, S., Gérault, D., Lafourcade, P., Yang, Q., Todo, Y., Qiao, K., Hu, L.: Anal-
ysis of AES, SKINNY, and Others with Constraint Programming. IACR Trans.
Symmetric Cryptol. 2017(1), 281–306 (2017)

31. Teh, J.S., Biryukov, A.: Differential cryptanalysis of WARP. J. Inf. Secur. Appl.
70, 103316 (2022). https://doi.org/10.1016/j.jisa.2022.103316

32. Udovenko, A.: MILP modeling of boolean functions by minimum number of in-
equalities. IACR Cryptol. ePrint Arch. p. 1099 (2021), https://eprint.iacr.

org/2021/1099

33. Ullmann, J.R.: Partition search for non-binary constraint satisfaction. Inf. Sci.
177(18), 3639–3678 (2007). https://doi.org/10.1016/j.ins.2007.03.030

23

https://doi.org/10.1007/3-540-48285-7_33
https://doi.org/10.1007/3-540-48285-7_33
https://doi.org/10.1007/3-540-48285-7_33
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.21105/joss.04708
https://doi.org/10.21105/joss.04708
https://doi.org/10.1049/ise2.12077
https://doi.org/10.1007/978-3-031-17433-9_7
https://doi.org/10.1007/978-3-030-58475-7_33
https://doi.org/10.1587/transfun.2019CIL0004
http://search.ieice.org/bin/summary.php?id=e103-a_1_212
http://search.ieice.org/bin/summary.php?id=e103-a_1_212
https://doi.org/10.1016/j.jisa.2022.103316
https://eprint.iacr.org/2021/1099
https://eprint.iacr.org/2021/1099
https://doi.org/10.1016/j.ins.2007.03.030

	 A CP-based Automatic Tool for Instantiating Truncated Differential Characteristics

