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Abstract

Many problems in bioelectric modeling can be approached through the formulation, and
numerical resolution, of integral equations of the boundary element method. There has
been a resurgence of interest in these surface integral methods due to the introduction
of fast algorithms such as fast multipole methods (FMMs) in the context of bioelectricity
problems.

This survey aims to give a self-contained, detailed and rigorous account of several of
the existing equations in the literature. With a particular focus on integral equations
given in terms of the surface charge density between interfaces of different conductivity.
These integral equations have received less attention in the literature, but recently it was
shown that they are more suitable to the application of FMM acceleration. This has led
in turn to impressive improvements in the quality of simulations of M/EEG and brain
stimulation.

We survey the major integral equations currently used, and showcase that the charge-
based formulations are dual to the surface potential formulations, which have been so far
more common in applications to bioelectricity. Some application examples are discussed,
and we provide a summary of available software for electromagnetic modeling of the brain.
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Introduction

Bioelectric modeling is concerned with determining the total electric field produced by
the human body, in interaction with different instruments producing electric or magnetic
fields. This problem has a wide range of applications, including electroencephalogra-
phy (EEG) [32], [48], [53], magnetoencephalography (MEG) [32], [61], electrocardiology
(ECG) [37], transcranial magnetic stimulation (TMS) [30], [51], transcranial electrical
stimulation (TES) [30], and deep brain stimulation (DBS) [8], [30], among many others.
Although the techniques of EEG/MEG and TMS/TES are quite different in their imple-
mentation, there is a common theoretical ground to all of them provided by the principle
of Helmholtz reciprocity, see [25]

When the boundary element method (BEM) is involved, the solution to these prob-
lems is typically obtained in terms of an integral equation. These integral equations
involve surface integrals over the interfaces between regions (also called compartments)
of different conductivity or permittivity (studies on the conductivity of living tissues can
be found for example in [12] or [36]). Two main types of integral equations can be found
in the literature:

i. Integral equations for the surface potential u(x), or its normal derivative (∂u/∂n) (x)
— the most common at present, and;

ii. Integral equations for the surface charge density ρ(x) between interfaces of regions
of different conductivity or permittivity.

From these quantities, one can obtain the full electric potential over the space R3. In
the case of surface charge density the electric potential is found as a single-layer potential
with density ρ; in the case of surface potential, or its normal derivative, the full electric
potential is obtained by means of Green’s formulas. For a single-compartment medium,
both formulations have long been known in the potential theory literature, cf. for ex-
ample Kress [33]. Both of them are applicable to conductive, dielectric, and magnetic
media, cf. [31].

As to a multi-compartment conductive medium, historically the surface charge den-
sity formulation was the first one to be found: it first appeared in a discretized form in
the paper by Gelernter and Swihart [14]. A subsequent continuous form, including time-
dependent and dielectric effects, appeared in the paper by Barnard, Duck, and Lynn [1].

The first formulation in a multi-compartment medium expressed in terms of the sur-
face potential can be found in the paper by Barr et. al. [2]. In this paper, the authors
obtain integral equations for both homogeneous and non-homogeneous conductive media
via a generalisation of Green’s formula due to Smythe (see §3.06. in [56]). Thereafter,
Geselowitz [16] used the same methods to find an additional integral equation in terms
of the normal derivative of the potential, or equivalently in terms of the normal com-
ponent of the electric field, see also Geselowitz’s derivation for the magnetic field [15].
These equations involve double- and single-layer potentials respectively, in [34] a sym-
metric formulation (i.e. jointly considering single- and double-layer potentials) for nested
domains is derived. The symmetric formulation has the advantage providing more ac-
curate numerical results, an implementation of this method can be found in [19]. There
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was an early attempt to employ the fast multipole method (FMM) (see [4], [6], [20], [22],
[23], [44], [55]) to accelerate the symmetric formulation [35], which unfortunately did not
generate convincing results. Two possible explanations are an insufficient performance of
the FMM implementation or sub-optimality of the BEM formulation. This is in contrast
to the application of FMM to the charge-based equations [9], [38]–[41], [46], [66] which
has produced impressive results in large-scale models.

The potential-based formulations have the advantage of yielding the values of the po-
tential at the surface directly, which is the relevant quantity in applications such as EEG.
Their main drawback, however, is that these formulations assume the total electric field
to be conservative, preventing its direct application to the non-conservative (solenoidal)
fields of TMS. Nevertheless, we point out that this issue could be overcome using the
methods of Nummenmaa et. al. in [47].

For many years, the charge-based equations seem to have received less attention than
the surface potential equations [34], in part due to the fact that the charge-based equa-
tions require an additional integration step to retrieve the value of the potential at the
boundaries. Recently, Makaroff et. al. [39]–[41] showed that the FMM, which provides
accelerated means to compute the field of many charges at many observation points, is
particularly well-suited for this formulation. FMM allows the computations to be carried
more efficiently and make competition to the finite element method (FEM), this is mainly
because FMM accelerated algorithms do not require the construction and storage of the
matrix of the system. This enables us to solve much larger problems involving millions
of facets in the segmentation of the conductivity interfaces.

The existing surface charge density descriptions do not impose any restrictions on the
nature of the sources. The fundamental idea behind the charge-based integral equations
seems to have first appeared, in the context of bioelectricity, in [14]. However, this idea
has been used previously in high-frequency applications [3], [28], and also has found
applications in acoustics [7]. We follow closely the exposition of Gelernter and Swihart:

1. When electric sources are activated, they produce an instantaneous impressed elec-
tric field Ei (not necessarily conservative), which is the field created by the sources
in an infinite conducting medium, with boundary conditions unsatisfied.

2. Electric charge begins to flow immediately, subject to the impressed electric field,
and accumulates at the interfaces between regions of different conductivity. In
other words, the free flowing charges induce a surface charge density ρ(x) at every
interface.

3. The surface charge density gives rise to a secondary electric field Es which is con-
servative, and is expressed explicitely in terms of ρ(x) using Coulomb’s law.

4. A steady-state condition is reached when the when the total electric field E(x),
given as E(x) = Ei(x) + Es(x), satifies all the boundary conditions.

The time required to achieve the steady-state condition in the human body is at least
one order of magnitude smaller than 10−4 seconds, c.f. [14]. Thus, in practice we may
model the problem using the quasi-static formulation of Maxwell’s equations, by a se-
quence of “snapshots” of steady-state conditions. A detailed and rigorous analysis of the
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quasi-static assumption in bioelectric problems can be found in the paper by Plonsey
and Heppner [50]. We mention that the method of separating the electric field into an
impressed/primary and secondary components has

In this paper we aim to survey the derivation of the majority of the aforementioned
integral equations, providing the reader with the necessary mathematical preliminaries
in a self-contained way. We have attempted to present the theory and derivations in
a detailed and rigorous manner, so as to facilitate the reader to carry his or her own
investigations and computer models. We pay special attention to the charge-based for-
mulation, which has received less attention in the literature, despite the fact that it has
a wider range of applicability. We present this charge-based formulation for a general
non-nested geometry, see Figure 1. These geometries are necessary in several realistic
modeling scenarios, such as those involving holes in the skull, fontanels in infants, or in
cardiological applications.

We remark that for applications such to MEG or EEG one is typically interested in
the inverse problem of locating the source of electrical activity within the brain. We will
not discuss inverse problems here. We mention however that, due to the ill-posed nature
of this problem, it is necessary to solve many forward problems (where the sources are
assumed to be known) efficiently in order to obtain a solution to the inverse problem.
The integral equations that we present here are used to solve the forward step in M/EEG.

First, we will present the main mathematical prerequisites. Then, we will give a full
derivation of the surface charge density integral equations. Once this is done we will
present the classic integral equations for surface potentials in the single and multiple
compartment case. Whenever is appropriate, we establish the connections of these equa-
tions to the charge density equations. Finally, we discuss available software, where these
methods are implemented, and their applications. The paper is organized into sections
as follows:

I-A Mathematical Preliminaries: The Laplacian and its Green function;

I-B Mathematical Preliminaries: Jump relations of the potential theory;

II Derivation of a surface charge based integral equation via the jump relations of the
potential theory;

III-A Integral equations for interior Poisson problems over a single-compartment medium
in terms of the surface electric potential or its normal derivative;

III-B Integral equations for exterior Laplace problems over a single-compartment medium
in terms of the surface electric potential or its normal derivative;

III-C III-C. Summary of surface-potential integral equations for single-compartment me-
dia, and their relation to the Representation Theorem in [34];

IV-A Derivation of surface-potential equations for multicompartment media.

IV-B A double-layer multicompartment integral equation;

IV-C A dual integral equation based on single-layer potentials, and its relationship to
surface charge based equations;
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IV-D A symmetric formulation;

V Software and Applications.

I-A. Mathematical Preliminaries:

The Laplacian and its Green function

There are three main mathematical facts that we will require throughout our analyses:

i. The Laplacian operator ∆ has a Green function, G(x, y) which is a solution to the
equation ∆G(x, y) = δ(x− y), where δ(x) is the Dirac delta:

δ(x) =

{
+∞ if x = 0

0 if x ̸= 0
.

ii. Green’s representation formula allows us to obtain the values of a harmonic function
u(x) away from the boundary ∂D of a bounded domain D in terms of its boundary
values — the values of u(x) and of its normal derivative on ∂D.

iii. The jump relations of the potential theory provide us with a way to compute limits
and normal derivatives of a particular family of harmonic functions as we approach
the boundary ∂D.

In this section, we will present results concerning the Laplacian and its green function.
To be completely rigorous, one should work with the Dirac delta using the theory of dis-
tributions. The Dirac delta will only make an act of presence in a handful of situations,
in particular in the proof of the jump relations of the potential theory — which is the
deepest mathematical result we use. However, once we have these results at our disposal,
the remaining arguments are rather elementary and easy-to-follow. For the sake of clarity
in the exposition, we will use the deeper results as a “black-box” and refer to reference
texts such as [5], or [45] for the harder technical results.

Recall that the Laplacian operator is defined for a function u : Rn → R as

∆u(x) =
n∑

i=1

∂2u(x)

∂x2i
. (1)

For a function u(x, y) depending on two variables x, y ∈ Rn, we denote by ∇xu and
∇yu the gradient of u with respect to the variables x and y respectively. Similarly ∇x · u
and ∇y · u denote the divergence of u with respect to the variables x and y. With this,
we denote the Laplacian operators with respect to x and y as ∆xu = ∇x · ∇xu and
∆yu = ∇y · ∇yu. Whenever u depends only on one variable, or when the variable of
differentiation is understood from context, we simply write ∇u and ∆u. Unless stated
otherwise, all integrals we consider will be on the variable y. In the context of integration,
we denote a surface element by ds(y) and a volume element by dv(y).

We will say that D is a bounded domain, whenever D is a bounded set with a bound-
ary ∂D which is piece-wise of class C2. This boundary may have corners or edges, and it
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is not necessarily connected. Let n(x) be the outward unit normal vector to the surface
∂D at a point x ∈ ∂D. Each connected component of D is assumed to have positive
measure (volume).

Associated to the Laplacian, there is a Green function G(x, y) satisfying the equation

∆yG(x, y) = δ(x− y), for any given x ∈ Rn, (2)

where δ is the Dirac delta distribution. This distribution is defined by the following (see
Equation (1.3) in §1.1. of [5]),

�
D

δ(x− y)u(y)dv(y) = u(x)δD(x), where δD(x) =

{
1 if x ∈ D

0 if x ̸∈ D
. (3)

The Green function of the Laplacian depends on the dimension n that we consider.
We have the following result,

Theorem 1 (cf. Annexe 2.2., [5]). The Green function for the Laplacian on R3 is given
by

G(x, y) = − 1

4π

1

|x− y|
. (4)

We will only consider equations on 3D-space, so we fix once and for all G(x, y) :=
−1/(4π|x − y|). We remark that in [5] the definition of the Green function is given by
∆yG(x, y) + δ(x− y) = 0 instead. In this case the solution is

Φ(x, y) := −G(x, y) = 1

4π

1

|x− y|
, for all x ̸= y in R3 . (5)

The function Φ(x, y), also known as the fundamental solution to the Laplace equation, is
more common in the potential theory and electromagnetism literature (e.g. in [33],[43],[56]).
So, in what follows we will completely forget about G(x, y) and work with Φ(x, y) instead.

From the definition of Green’s function (Equation (2)), we have the following

Corollary 1. Let D be an open domain of R3, and let u : D → R. If x ∈ D, then

−u(x) =
�
D

u(y)∆yΦ(x, y)dv(y) =

�
D

u(y)∆y
1

4π|x− y|
dv(y). (6)

The Green function for the Laplacian will play a fundamental role in the study of
boundary value problems. It is worth noting that, more generally, whenever we have a
general linear differential operator L admitting a Green function much of the following
theory holds verbatim, for more see §1.1. in [5].
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I-B. Mathematical Preliminaries:

Jump relations of the potential theory

Now we introduce several types of potentials given by integral operators. The use of
the term potential is motivated by the fact that such functions arise naturally as scalar
potentials for vector fields in several situations, such as electromagnetism. The single- and
double-layer potentials play a particularly important role, since they appear in Green’s
representation formulas for C2 functions on bounded and unbounded domains. Using the
jump relations of the potential theory, we will be able to understand their behaviour over
the entirety of R3, and this knowledge can then be used to extract integral equations for
more general functions.

Definition 1 (cf. Chapter 3 of [45]). Let D be a bounded domain, and let φ : ∂D → R
be a continuous function on ∂D. The single-layer potential with continuous density φ is
defined as

(S(φ)) (x) =
�
∂D

φ(y)Φ(x, y)ds(y), for all x ∈ R3 \∂D. (7)

The double-layer potential with continuous density φ is defined as

(D(φ)) (x) =

�
∂D

φ(y)
∂Φ(x, y)

∂n(y)
ds(y), for all x ∈ R3 \∂D. (8)

Given a continuous function f : D → R, we define the Newtonian potential with density
f as

(V(f)) (x) :=
�
D

f(y)Φ(x, y)dv(y). (9)

There is a dual to the double-layer potential, in the sense of the standard dot product
in L2, and it is given by

(D∗(φ)) (x) =

�
∂D

φ(y)
∂Φ(x, y)

∂n(x)
ds(y), for all x ∈ R3 \∂D. (10)

We also define the following operator:

(N (φ)) (x) =

�
∂D

φ(y)
∂2Φ(x, y)

∂n(x)∂n(y)
ds(y), for all x ∈ R3 \∂D. (11)

Remark 1. Our notation for the Newtonian potential is not standard, we have chosen
the symbol V , because this is the only operator we introduce which is given by a volume
integral.

By definition, the single- and double-layer potential are harmonic functions at every
point x ∈ R3 \∂D. This is because we can take derivatives at x under the integral sign,
whenever x ̸∈ ∂D. The jump relations of the potential theory govern the behaviour of
the single- and double-layer potential at the boundary ∂D.

Theorem 2 (Jump relations, cf. Theorems 6.14, 6.17, 6.18, and 6.19 in [33]). Let D be
a bounded domain. For a point x ∈ ∂D and a function f defined on R3 \∂D, let

f±(x) = lim
h→0

f(x± hn(x)), (12)
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be the limiting values of f at the point x along the direction of the outward unit normal
n(x) to ∂D at x. Then,

(i) The single-layer potential v(x) with continuous density φ is continuous throughout
R3, and its values at a boundary point x ∈ ∂D are given by the following convergent
improper integral:

v(x) =

�
∂D

φ(y)Φ(x, y)ds(y), x ∈ ∂D, (13)

The normal derivative of the single-layer potential v has a jump at every point x of the
boundary ∂D — its limiting values from the interior and exterior of D are given by the
following formula:

∂u±
∂n

(x) =

�
∂D

φ(y)
∂Φ(x, y)

∂n(x)
ds(y)∓ 1

2
φ(x), x ∈ ∂D. (14)

(ii) The double-layer potential v(x) with continuous density ψ has a jump at every
point of the boundary ∂D — its limiting values from the interior and exterior of D are
given by the following formula:

v±(x) =

�
∂D

ψ(y)
∂Φ(x, y)

∂n(y)
ds(y)± 1

2
ψ(x), x ∈ ∂D. (15)

The normal derivative of the double-layer potential v is continuous across ∂D.
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II. Derivation of a surface charge based integral

equation via the jump relations of the potential

theory

We derive a continuous version of the Gelernter–Swihart equations [14], which recently
appeared in [39] and is equivalent to the charge-based equations in [1], after ignoring the
time-dependent effects. We will only require the jump relations of the potential theory,
and a few physical arguments. However, to be absolutely precise, it is necessary to de-
scribe very carefully our domains of integrations and notational conventions:

Let D ⊆ R3 be an inhomogeneous conductive volume. By this, we mean a bounded
region of space which can be partitioned into several regions of constant electric conduc-
tivity:

D = D1 ∪D2 ∪ · · · ∪DN . (16)

Let D0 = R3 \D be the exterior of D. We denote by Sj = ∂Dj, the boundary (or surface)
of the region Dj; for j = 0, 1 . . . , N — notice that S0 = ∂D. The electrical conductivity
of the region Dj is denoted by σj; for j = 0, 1 . . . , N . The exterior region is assumed
to have the conductivity of vacuum σ0 = 0 — although in our applications the exterior
medium will be air, σ0 = 0 is a sufficient approximation. The surfaces Sj are called
surfaces of discontinuity, or interfaces. We denote the union of these interfaces by

S = S0 ∪ S1 ∪ · · · ∪ SN . (17)

We assume that each interface Sj is piece-wise C
2 (so that there may be corners). There is

a unit normal vector nj(x), pointing toward the exterior of Dj, defined almost everywhere
on x ∈ Sj. It is important to note that the regions Dj may be non-nested, i.e. there may
be two regions Di and Dj none of them completely surrounding the other.

Remark 2. For now, we will consider general topologies and adhere to the notation
set above. Later, when we consider nested compartments, it will be more convenient to
enumerate the compartments from the innermost to the outermost as D1, D2, . . . , DN ,
and to let DN+1 = R3 \D instead of D0, (see Figure 1(a)). This ensures that nj always
points to the exterior of Dj in the nested topologies.

For notational convenience, we would like to define a normal vector n(x) on every
point of S. Suppose that x ∈ S belongs only to one surface of discontinuity Sj, then we
simply denote n(x) := nj(x). Whenever x belongs to the interesection of two surfaces of
discontinuity, say Si and Sj, we may choose n(x) to be either the normal vector ni(x) or
nj(x). In a non-nested geometry we may have ni(x) = −nj(x), so our choice of n(x) is
not always unique. Our results will hold true for an arbitrary choice of normal vectors.
Hence, in what follows, fix a choice of n(x) once and for all.

Remark 3. Whenever x belongs to a corner of Sj, there is no well-defined normal vector
nj to the surface Sj. For now, we will restrict our analysis to those points where nj is
well defined. Later, we will explain how to complete the analysis at the corner points.

We will make use of the following notation: For a point x belonging to an interface
Sj and a function f , we denote
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(a) Nested topology (b) Non-nested topology

Figure 1: Nested and non-nested topologies

f±(x) = lim
h→0

f(x± h · n(x)). (18)

Finally, we set our notation for surface integrals: Let X be a finite union of (not
necessarily closed) surfaces. Whenever we write a surface integral

�
X
f(y)ds(y) over X,

we will count overlapping regions of different surfaces in X only once. In particular, this
will hold true for surface integrals over S = S0 ∪ · · · ∪SN , and surface integrals involving
the normal components of the surfaces Sj will be taken according our choice of n(x).

We consider the following forward problem: given the knowledge of electrical sources
within the volume D (or on its exterior D0) at a given time t, find the total electric field
E(x; t) at every point x of the space R3 at time t. Consider the instant t to be fixed, we
will drop the dependence of all functions on the time variable. Our physical assumptions
are listed below:

i. The behaviour of the total electric field is governed by the quasi-static Maxwell
equations, see [56].

ii. The normal component of the total current through the volume D is continuous
across each interface Sj, i.e. for x ∈ Sj, we have that J+(x) · nj(x) = J−(x) · nj(x).
In terms of the total electric field:

σ+(x)E(x) · n(x) = σ−(x)E(x) · n(x),

where σ±(x) denotes the conductivity on each side of S at the point x.

As in [14] and [39], we carry our derivation by splitting the total electric field into two
components:
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i. An impressed (or primary) electric field Ei — continuous everywhere in R3 and
which exists independently of the domain D;

ii. A steady-state secondary electric field Es, which is a response to the primary electric
field. It is generated by surface charges ρ(x) on S induced by the primary electric
field, and characterized by the fact that the total electric field

E(x) = Es(x) + Ei(x),

satisfies all boundary conditions.

The existence of surface charges at the interfaces is a straightforward physical fact:
the free charges within the volume D are displaced when subject to the electric field Ei,
and accumulate at the interfaces of regions of different conductivity.

The primary electric field can be of several different types. For example, in the for-
ward problem of electroenchephalography (EEG) the field Ei is given by the current dipole
model of neuron activation, see [27]. Namely, Ei is a conservative field obtained from
an impressed current density Ji via the formula σEi(x) = Ji(x) for x ∈ R3, where (ev-
erywhere on R3) σ is the conductivity of gray matter. In the problem of transcranial
magnetic stimulation (TMS) we consider a solenoidal vector field Ei given by Faraday’s
law of induction.

Recall that for S = S0 ∪ S1 ∪ · · · ∪ SN , we define a surface integral on S as the sum
of surface integrals on each Sj, counting each intersection between interfaces Si and Sj

exactly once. By Coulomb’s law, we have that the secondary field is given by,

Es(x) =

�
S

ρ(y)

4πε0

x− y

|x− y|3
ds(y), for every x ∈ R3, (19)

where the constant ε0 is the vacuum permittivity. Define

u(x) =

�
S

ρ(y)

ε0
Φ(x, y)ds(y), (20)

where Φ(x, y) = 1
4π

1
|x−y| is the fundamental solution of the Laplace equation. We can take

the gradient with respect to the variable x inside of the integral to find

∇xu(x) = ∇x

�
S

ρ(y)

ε0
Φ(x, y)ds(y) =

�
S

ρ(y)

ε0
∇xΦ(x, y)ds(y)

=

�
S

ρ(y)

ε0
∇x

[
1

4π|x− y|

]
ds(y)

=

�
S

ρ(y)

ε0

[
− 1

4π

x− y

|x− y|3

]
ds(y).

(21)

Hence, Es(x) = −∇u(x), and the field Es is conservative with scalar potential u(x)
given by Equation (20). The normal component of Es is then given by the negative of
the normal derivative ∂u/∂n of the potential u, i.e.

−∂u
∂n

(x) = −∇u(x) · n(x) = Es(x) · n(x). (22)
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We will derive a Fredholm integral equation of the second kind for the surface charge
density ρ on S. We will do so by studying the values of the normal derivative of the
potential u(x) defined in Equation (20), and applying the jump relations. These relations
cannot be applied to u directly, so we will require the following auxiliary potentials: We
define the j-th auxiliary potential uj(x) to be the single-layer potential with density
ρ(x)/ε0 on the interface Sj, i.e.

uj(x) =

�
Sj

ρ(y)

ε0
Φ(x, y)ds(y), for x ∈ Dj. (23)

Now, let x ∈ S be a given surface point for which n(x) is well-defined. Then x
belongs to at least one interface, let Sj be one such interface for which n(x) = nj(x).
By definition, a surface integral on S consists of the sum of surface integrals on each
interface Si, counting each intersection between multiple interfaces exactly once. Let
S ′ =

⋃N
i=0 (Si \ Sj) be the union of all interfaces, excluding their common portion with

Sj. Then,

u(x) :=

�
S

ρ(y)

ε0
Φ(x, y)ds(y) = uj(x) +

�
S′

ρ(y)

ε0
Φ(x, y)ds(y). (24)

The jump relations of applied to the single-layer potential uj imply that

∂(uj)±
∂nj

(x) =

�
Sj

ρ(y)

ε0

∂Φ(x, y)

∂nj(x)
ds(y)∓ ρ(x)

2ε0

= nj(x) ·
�
Sj

ρ(y)

4πε0

x− y

|x− y|3
ds(y)∓ ρ(x)

2ε0
.

(25)

Given that x ̸∈ S ′, the integral
�
S′ ρ(y)Φ(x, y)/ε0ds(y) has no singularities. Therefore,

we can take normal derivatives with respect to x under the integral sign. We obtain:

∂

∂n(x)

�
S′

ρ(y)

ε0
Φ(x, y)ds(y) =

�
S′

ρ(y)

ε0
Φ(x, y)ds(y), (26)

approaching from either the positive or negative direction of n(x). Notice that these
equations are independent of the surface of discontinuity Sj chosen — they only depend
on our initial choice of orientation for the normal vectors. Hence, combining Equations
(24), (25), and (26), we find:

∂u±
∂n

(x) =

�
S

ρ(y)

ε0

∂Φ(x, y)

∂n(x)
ds(y)∓ ρ(x)

2ε0

= n(x) ·
�
S

ρ(y)

4πε0

x− y

|x− y|3
ds(y)∓ ρ(x)

2ε0
, for x ∈ S.

(27)

Now, use the fact that the normal component of the total current is continuous through
the interfaces together with the fact that E(x) = Es(x) + Ei(x), and Es(x) = −∇u(x):

σ+(x)E
i(x) · n(x)− σ+(x)n(x) ·

�
S

ρ(y)

4πε0

x− y

|x− y|3
ds(y) + σ+(x)

ρ(x)

2ε0

= σ−(x)E
i(x) · n(x)− σ−(x)n(x) ·

�
S

ρ(y)

4πε0

x− y

|x− y|3
ds(y)− σ−(x)

ρ(x)

2ε0
.

(28)
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From here, we conclude that

ρ(x)

2ε0
−K(x) · n(x)

�
S

ρ(y)

4πε0

x− y

|x− y|3
ds(y) = K(x)Ei(x) · n(x), for all x ∈ S, (29)

where

K(x) =
σ−(x)− σ+(x)

σ−(x) + σ+(x)
, (30)

is the electric conductivity contrast at the point x ∈ S. A mathematically identical
equation can be derived for dielectric interface problems in bioelectromagnetic modeling,
see [21].

Remark 4. Observe that if we reverse the orientation of the normal vector n(x), then
σ−(x) and σ+(x) are interchanged, causing a change in sign of the electric conductivity
constant K(x). Therefore, Equation (29) is independent of our choice of orientation for
n(x).

Remark 5. In the paper by Barnard, Duck, and Lynn [1], the authors describe a more
general equation which takes into account time-dependent and dielectric effects. Their
derivation shows that if time-dependent effects (Maxwell displacement currents) can be
ignored, i.e. if the surface charge distribution is constant in time, then the dielectric effects
only appear in the source term, see Equation (35) in [1]. Our source term (impressed
electric field) is more general, in the sense that it is given in terms of the electric field
instead of an electric potential using the dipole source model. Since we consider our
impressed electric field as given, the argument in [1] justifies the omission of dielectric
effects in our derivation.

Remark 6. We have ignored those points where n(x) may not be well-defined. For such
points, there is a generalization of the jump relations that addresses this issue, see §6.5. of
[33]. This generalization introduces a correction term which is given by the angle between
the normal vector at the junction of two regular pieces of a surface. We note however
that, from the point of view of numerical computations, there is typically no need to
consider the junction points. Assuming that ρ(x) is constant on each of the pieces of a
triangulation of the surface S, the numerical approximation takes only the contribution
of the centroid of each piece.
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III-A. Integral equations for interior Poisson

problems over a single-compartment medium in

terms of the surface electric potential or its normal

derivative

Before giving a formulation of integral equations based on surface potentials for mul-
ticompartment media, we will consider the simpler single-compartment case. This will
achieve two additional goals: to relate the surface charge density integral equations to the
classical theory of boundary value problems (BVPs), and to introduce Green’s formulas,
which are the basis for the subsequent integral equations we will present. So for now,
we exclude the presence of surfaces of discontinuity aside from ∂D. We will now discuss
Poisson problems, see Chapter 2 of [5] and Chapter 6 of [33]. Large part of this material
is of course well-known, but we include it here for the convenience of the reader.

We first consider problems with a source term in the interior of a bounded domain
D. For given functions f(x) ∈ C2(D) and g(x) ∈ C(∂D), we pose the following problems:

Interior Dirichlet Problem: Find a function u(x) ∈ C2(D) satisfying{
∆u(x) = f(x) for all x ∈ D

u(x) = g(x) for all x ∈ ∂D
. (31)

Interior Neumann Problem: Find a function u(x) ∈ C2(D) satisfying{
∆u(x) = f(x) for all x ∈ D
∂u(x)
∂n

= g(x) for all x ∈ ∂D
. (32)

The quantity q(x) := ∂u(x)/∂n = n(x) · ∇xu(x) is known as the flux of u through the
surface ∂D.

The so-called exterior Dirichlet and Neumann problems are analogous to the interior
ones, but we consider instead an unbounded domain R3 \D in place of D everywhere.
Additionally, the exterior problems typically require assumptions on the asymptotic be-
haviour of u and f . We will consider the exterior problems separately in the following
section.

Theorem 3 (Uniqueness of solutions for interior Poisson problems). There is at most
one solution to the interior Dirichlet problem. Any two solutions to the interior Neumann
problem differ by an additive constant.

Proof. The claim holds true for solutions to the Laplace equation ∆u = 0 by Theorems
6.11 and 6.12 in [33]. If u1 and u2 are two solutions to the Dirichlet problem ∆u = f on
D with u = g on ∂D, then ∆(u1 − u2) = 0, and u1 − u2 = 0 on ∂D. By the maximum-
minimum principle (Theorem 6.8 [33]) any function satisfying ∆u = 0 on a domain D
attains its minimum and maximum on the boundary ∂D, hence u1(x)−u2(x) = 0 for every
x ∈ D. Similarly, if (∂ui/∂n)(x) = g(x) on ∂D for i = 1, 2, then (∂(u1 − u2)/∂n)(x) = 0
on ∂D, so u1 − u2 is a constant.

14



There is a reciprocity formula associated to the Poisson problems, also known as
Green’s second formula:

Theorem 4 (Green’s second formula, cf. §2.1. Identité de Réciprocité [5]). Let D be a
bounded domain with boundary ∂D. Let u1 and u2 be two C2 functions, then

�
∂D

[
u1
∂u2
∂n

− u2
∂u1
∂n

]
ds =

�
D

[u1∆u2 − u2∆u1] dv. (33)

Proof. Recall that Gauss’ divergence theorem states that for a function ϕ,�
D

∇ · ϕ dv =

�
∂D

ϕ · n ds. (34)

Now, apply Equation (34) to the function ϕ = u2∇u1, to obtain Green’s first formula:�
D

∇u1∇u2 dv +
�
D

u2∆u1 dv =

�
∂D

u2
∂u1
∂n

ds. (35)

Exchange the roles of u1 and u2 to obtain�
D

∇u1∇u2 dv +
�
D

u1∆u2 dv =

�
∂D

u1
∂u2
∂n

ds. (36)

Finally, subtract Equation (35) from Equation (36) to obtain Equation (33).

The reciprocity formula in Equation (33) can be used to obtain the following repre-
sentation theorem for solutions to the Poisson equation:

Theorem 5 (Green’s representation formula, cf. Ch. 11, §4, Eq. (5) in [43]). Let D be
a bounded domain and u a C2 function in D, continuous on ∂D, then for every x in the
interior of D,

u(x) =

�
∂D

[
∂u

∂n
(y)Φ(x, y)− u(y)

∂Φ(x, y)

∂n(y)

]
ds(y)−

�
D

∆u(y)Φ(x, y)dv(y), (37)

where the rightmost integral exists as an improper integral.

Proof. Apply Equation (33) to the functions u1(y) := Φ(x, y) and u2(y) := u(x) to obtain
�
∂D

[
∂u(y)

∂n
Φ(x, y)− u(y)

∂Φ(x, y)

∂n(y)

]
ds(y)

=

�
D

[Φ(x, y)∆u(y)− u(y)∆yΦ(x, y)] dv(y).

(38)

Use the fact that ∆yΦ(x, y) = −∆yG(x, y) = −δ(x − y) to conclude that u(x) =�
D
−u(y)∆yΦ(x, y)dv(y). From here, Equation (37) follows.

Recall that a C2 function u defined over an open subset D of R3 is called harmonic
whenever ∆u(x) = 0 for every x ∈ D.

Corollary 2 (Green’s representation for harmonic functions, cf. Theorem 6.5 in [33]).
Let D be a bounded domain and u a harmonic function on D, continuous on ∂D, then
for every x in the interior of D:

u(x) =

�
∂D

[
∂u

∂n
(y)Φ(x, y)− u(y)

∂Φ(x, y)

∂n(y)

]
ds(y). (39)
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Now that we have a representation formula for the values of u in the interior of D,
we turn to find a formula for its values at its boundary. Assume that u is continuous
along the boundary ∂D, and that its normal derivative ∂u/∂n is defined and continuous
everywhere on ∂D. We can easily extend Green’s representation formula for u(x) to the
boundary ∂D using the jump relations of the potential theory.

Since u and ∂u/∂n are continuous in the boundary, we may identify the first two
integrals in Green’s representation formula (Equation (37)) as single- and double-layer
potentials, namely:

�
∂D

∂u

∂n
(y)Φ(x, y)ds(y) = (S(∂u/∂n)) (x), and

�
∂D

u(y)
∂Φ(x, y)

∂n(y)
ds(y) = (D(u)) (x).

(40)

Thus, Equation (37) can be rewritten as:

u(x) = (S(∂u/∂n)) (x)− (D(u)) (x)− (V(∆u)) (x), for every x ∈ D. (41)

Now, let x ∈ ∂D be a point of the boundary. We consider the limit of the function u in
Equation (41) as we approach x from the interior, term by term. From the jump relations
(Theorem 2), we have that the single-layer potential S(∂u/∂n) is continuous at x, so

lim
h→0

(S(∂u/∂n)) (x− hn(x)) =

�
∂D

∂u

∂n
(y)Φ(x, y)ds(y), (42)

where the integral in the right-hand-side is a convergent improper integral. On the other
hand, the double-layer potential D(u) has a jump at x, and the limiting value from the
interior is given by Equation (15):

lim
h→0

(D(u)) (x− hn(x)) =

�
∂D

u(y)
∂Φ(x, y)

∂n(y)
ds(y) +

1

2
u(x). (43)

Finally, the limit of the Newtonian potential exists as an improper integral,

lim
h→0

(V(∆u)) (x− hn(x)) =

�
D

∆u(y)Φ(x, y)dv(y). (44)

See Section 2.2. in [5] for more details. Combining these limit equations, we find that

u−(x) =
1

2
u(x)−

�
∂D

u(y)
∂Φ(x, y)

∂n(y)
+

�
∂

∂u

∂n(y)
Φ(x, y)ds(y)

−
�
D

∆u(y)Φ(x, y)ds(y).

(45)

If we assume that u can be extended continuously fromD toD, then u−(x) = limh→0 u(x−
hn(x)) = u(x), so we may rearrange the above equation to obtain:

u(x) + 2

�
∂D

u(y)
∂Φ(x, y)

∂n(y)
ds(y)

= 2

�
∂D

∂u(y)

∂n
Φ(x, y)ds(y)− 2

�
D

∆u(y)Φ(x, y)dv(y).

(46)
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We can use this equation to obtain integral equations to solve the interior Poisson
problems.

Theorem 6 (Interior Neumann integral equation). Suppose that u(x) is a solution to the
interior Neumann Poisson problem: ∆u(x) = f(x) on D and (∂u/∂n)(x) = g(x) on ∂D.
Then, for all x ∈ ∂D, the values of u satisfy the following (Fredholm type II) integral
equation:

u(x) + 2

�
∂D

u(y)
∂Φ(x, y)

∂n(y)
ds(y) = 2

�
∂D

g(y)Φ(x, y)ds(y)− 2

�
D

f(y)Φ(x, y)dv(y). (47)

Proof. Suppose that u(x) is a solution to the interior Poisson problem, and apply Equa-
tion (46) to the solution u(x). Substituting ∂u/∂n = g on ∂D, and ∆u = f on D, the
result follows.

Remark 7. Notice that by Gauss’s divergence theorem applied to ∇u, we have that�
D
∆udv =

�
∂D

∇u · nds =
�
∂D

(∂u/∂n)ds. Therefore, a necessary condition to the
solvability of the interior Neumann problem is:

�
D

f(y)dv(y) =

�
∂D

g(y)ds(y). (48)

By Theorem 3, any two solutions of the interior Neumann problem differ by an additive
constant. Therefore, up to a constant, a solution u(x) to the interior Neumann problem
can be found by solving for the boundary values of u with Equation (47) (which is a
Fredholm equation of the second kind) and then retrieving the interior values of u using
Equation (37). This lack of uniqueness is not important in bioelectric applications, since
in that case u will represent an electric potential, and the electric field E = −∇u is
unaffected by the addition of a constant to u.

To obtain an integral equation for the interior Dirichlet problem we will need to
compute the normal derivative of Equation (46). This normal derivative can be computed
using the jump relations.

Theorem 7 (Interior Dirichlet integral equation). Suppose that u(x) is a solution to
the interior Dirichlet problem ∆u(x) = f(x) on D, and u(x) = g(x) on ∂D. Then,
the normal derivative q(x) := (∂u/∂n)(x) of u satisfies the following (Fredholm type I)
integral equation for every x on the boundary ∂D:

�
∂D

q(y)
∂Φ(x, y)

∂n(x)
ds(y) =

�
∂D

g(y)
∂2Φ(x, y)

∂n(x)∂n(y)
ds(y)−

�
D

f(y)
∂Φ(x, y)

∂n(x)
dv(y). (49)

Proof. Take normal derivatives with respect to the variable x in Equation (46) and use
the fact that ∆u(x) = f(x) on D, and u(x) = g(x) on ∂D. Writing q(x) := (∂u/∂n)(x),
we arrive at the following equation:

q(x) + 2
∂

∂n(x)

�
∂D

g(y)
∂Φ(x, y)

∂n(y)
ds(y)

= 2
∂

∂n(x)

�
∂D

q(y)Φ(x, y)ds(y)− 2
∂

∂n(x)

�
D

∆f(y)Φ(x, y)dv(y).

(50)
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By the jump relations, Theorem 2, the second layer potential with continuous density
g(y) has a continuous normal derivative, hence we can introduce the normal derivative
under the integral sign to obtain

∂

∂n(x)

�
∂D

g(y)
∂Φ(x, y)

∂n(y)
ds(y) =

�
∂D

g(y)
∂2Φ(x, y)

∂n(x)∂n(y)
ds(y). (51)

On the other hand, the single-layer potential with density q(y) has a discontinuous normal
derivative and the limiting value from the interior of D is given by Equation (14). So we
have,

∂

∂n(x)

�
∂D

q(y)Φ(x, y)ds(y) =

�
∂D

q(y)
∂Φ(x, y)

∂n(x)
ds(y) +

1

2
q(x). (52)

Combining Equations (50), (51), and (52), we find the sought Equation (49).

We conclude this section with the observation that we can retrieve Equation (29) in
the single-compartment case by the resolution of an interior Neumann boundary value
problem. We will require the following,

Theorem 8 (cf. Theorem 6.25 in [33]). The single-layer potential u(x) = (S(ψ)) on
D with continuous density ψ is a solution to the interior Neumann Laplace problem
(∆u(x) = 0 on D, and (∂u/∂n)(x) = g(x) on ∂D), provided that ψ is a solution to the
(Fredhilm type II) integral equation:

ψ(x) + 2

�
∂D

ψ(y)
∂Φ(x, y)

n(x)
ds(y) = 2g(x), for all x ∈ ∂D. (53)

Recall that the steady-state secondary field Es(x) is conservative, with potential given
by u(x) = (S(ρ/ε0)) (x). We can extract a Neumann-type boundary condition from the
assumption on continuity of the normal component of the total electric current. On a
single-compartment conducting medium of electric conductivity σ ̸= 0 and exterior of
electric conductivity σ0 = 0, this translates to

σ(Es(x) + Ei(x)) · n(x) = 0, for all x ∈ ∂D. (54)

Thus, the boundary condition for the potential u(x) is g(x) = Ei(x) · n(x), since E · n =
−∂u/∂n. Now, applying Theorem 8 to u(x) we find the integral equation

ρ(x)

2ε0
− n(x) ·

�
∂D

ρ(y)

4πε0

x− y

|x− y|3
ds(y) = Ei(x) · n(x), for all x ∈ ∂D. (55)

Note that since the electric conductivity contrast is K(x) = σ−0
σ+0

= 1 everywhere, the
equation above agrees with Equation (29).
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III-B. Integral equations for exterior Laplace

problems over a single-compartment medium in

terms of the surface electric potential or its normal

derivative

The exterior Poisson problems are considered over R3 \D, where D is a bounded do-
main. For simplicity, we only consider the Laplace equation, i.e. the Poisson equation
with no sources, so that f = 0. The added complication for exterior problems resides in
the fact that we must impose restrictions on the asymptotic behaviour of our sources and
solutions. The Laplace equation suffices for many applications, and we will later develop
a general multicompartment formulation, so we refer the reader to §2.3 in [5] for a general
treatment.

Exterior Dirichlet Problem Given a bounded domain D and a continuous function
g : ∂D → R, find a C2 function u such that{

∆u = 0 on R3 \D
u = g on ∂D

, (56)

furthermore, we require that u(x) = o(1) as |x| → ∞.

Exterior Neumann Problem Given a bounded domain D and a continuous function
g : ∂D → R, find a C2 function u such that{

∆u = 0 on R3 \D
∂u
∂n

= g on ∂D
, (57)

furthermore, we require that u(x) = o(1) as |x| → ∞.

Theorem 9 (cf. Theorems 6.11 and 6.12 in [33]). The exterior Dirichlet and Neumann
Laplace problems have a unique solution.

Theorem 10 (Exterior Green representation theorem, cf. Theorem 6.10 [33]). Let D be
a bounded domain, and let n(x) be the outward unit normal to x ∈ ∂D directed toward
the exterior of D. Suppose that u is a C2 function in Dc := R3 \D, with ∆u(x) = 0
everywhere in R3 \D, and that u(x) = o(1) as |x| → ∞. Then, for every x in the interior
of Dc

u(x) =

�
∂D

[
u(y)

∂Φ(x, y)

∂n(y)
− ∂u

∂n
(y)Φ(x, y)

]
ds(y). (58)

Remark 8. Notice that Equation (58) is identical to Equation (39). The change of sign
is accounted by the fact that an outward normal to D is an inward normal to R3 \D.

Using the jump relations we can also obtain integral equations to solve the exterior
problems. Let u(x) be harmonic on R3 \D, and suppose that u(x) is continuous on ∂D
and has a continuous normal derivative (∂u/∂n)(x) on ∂D. Then, we can identify the
integrals in Equation (58) as single- and double-layer potentials, and write

u(x) = D(u)(x)− S(∂u/∂n)(x), for all x ∈ R3 \D. (59)
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Now, let x ∈ ∂D be given — we will compute the limit of u in the above expression at
x approaching from the exterior. From the jump relations (Theorem 2), we have that the
double-layer potential with continuous density u(x) can be extended continuously from
R3 \D to ∂D, with limiting values given by Equation (15). This implies that approaching
from the exterior,

lim
h→0

D(u)(x+ hn(x)) =

�
∂D

u(y)
∂Φ(x, y)

∂n(y)
ds(y) +

1

2
u(x) (60)

On the other hand, the jump relations imply that the single-layer potential with
continuous density φ(x) = (∂u/∂n)(x) is continuous throughout R3. Hence,

lim
h→0

S(∂u/∂n)(x+ hn(x)) =

�
∂D

∂u

∂n
(y)Φ(x, y)ds(y). (61)

Combining these limit equations, we find

u+(x) =
1

2
u(x) +

�
∂D

u(y)
∂Φ(x, y)

∂n(y)
ds(y)−

�
∂D

∂u

∂n
(y)Φ(x, y)ds(y). (62)

If u can be extended continuously from R3 \D to R3 \D, then u+(x) = limh→0 u(x +
hn(x)) = u(x), in which case we find

u(x) + 2

�
∂D

[
∂u

∂n
(y)Φ(x, y)− u(y)

∂Φ(x, y)

∂n(y)

]
ds(y) = 0. (63)

Theorem 11 (Exterior Dirichlet integral equation). Let u(x) be a solution to the exterior
Dirichlet problem with boundary condition u = g on ∂D. Then, its normal derivative
q(x) := (∂u/∂n)(x) at the boundary ∂D satisfies the (Fredholm type I) integral equation:�

∂D

q(y)
∂Φ(x, y)

n(x)
ds(y) =

�
∂D

g(y)
∂2Φ(x, y)

∂n(x)∂n(y)
ds(y), for all x ∈ ∂D. (64)

Proof. Take the normal derivatives (with respect to x) in Equation (63), and substitute
u(x) = g(x) on ∂D to find

∂u

∂n
(x) + 2

∂

∂n(x)

�
∂D

∂u

∂n
(y)Φ(x, y)ds(y)− 2

∂

∂n(x)

�
∂D

g(y)
∂Φ(x, y)

∂n(y)
ds(y) = 0. (65)

By the jump relations (Theorem 2), the normal derivative of the single-layer potential with
continuous density q(x) := (∂u/∂n)(x) can be extended continuously to the boundary
from either the inside or outside of D, with limiting values given by Equation (14). This
implies that the normal derivative from the exterior is:

∂

∂n(x)

�
∂D

∂u

∂n
(y)Φ(x, y)ds(y) =

�
∂D

∂u

∂n
(y)

∂Φ(x, y)

∂n(x)
ds(y)− 1

2

∂u

∂n
(x). (66)

Combining Equation (65) and (66), we find�
∂D

∂u

∂n
(y)

∂Φ(x, y)

∂n(x)
ds(y) =

∂

∂n(x)

�
∂D

g(y)
∂Φ(x, y)

∂n(y)
ds(y)

=

�
∂D

g(y)
∂2Φ(x, y)

∂n(x)∂n(y)
.

(67)

The last equality follows from the continuity of the normal derivative of the double-layer
potential. Substituting q(x) = (∂u/∂n)(x) yields Equation (64).
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Theorem 12 (Exterior Neumann integral equation). Let u(x) be a solution to the exterior
Neumann problem with boundary condition (∂u/∂n)(x) = g(x) on ∂D. Then, its value
u(x) at the boundary ∂D satisfies the (Fredholm type II) integral equation:

u(x)− 2

�
∂D

u(y)
∂Φ(x, y)

∂n(y)
ds(y) = −2

�
∂D

g(y)Φ(x, y)ds(y), for all x ∈ ∂D. (68)

Proof. This follows directly from Equation (63) by noticing that (∂u/∂n)(x) = g(x) on
the boundary ∂D.
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III-C. Summary of surface-potential integral

equations for single-compartment media, and their

relation to the Representation Theorem in [34]

We give a summary of the integral equations obtained in Section III-A and Section
III-B. We will express these using the operator notation S,D,D∗,N , and V . Recall that,
following Bonnet [5], we denote the normal derivative of u(x) by q(x) = (∂u/∂n) (x). The
equations in the table below assume that u is C2 on D or R3 \D for interior or exterior
problems respectively. Furthermore, we assume that u can be extended continuously to
∂D, and that q(x) = (∂u/∂n) exists and is continuous on ∂D.

Type PDE Boundary
condition

Integral Equation Type Equation number

Interior ∆u = f u = g D∗(q) = N (g)− V(f) I Eq. (49)
Interior ∆u = f q = g u+ 2D(u) = 2S(g)− 2V(f) II Eq. (47)
Exterior ∆u = 0 u = g D∗(q) = N (g) I Eq. (64)
Exterior ∆u = 0 q = g u− 2D(u) = −2S(g) II Eq. (68)

Table 1: Integral equations in terms of the potential or its normal derivative

The following theorem, which we reproduce from [34], is a variation of the equations
above. It expresses a harmonic function u, or its normal derivative, in terms of their
jumps at the boundary ∂D.

Theorem 13 (Representation Theorem, cf. Theorem 1 [34]). Let D ⊆ R3 be a bounded
domain with regular boundary ∂D. Let u : R3 \∂D → R be a harmonic function. Then,
letting q := ∂u/∂n we have

−q =+N ([u])−D∗([q]),

u =−D([u]) + S([q]), away from ∂D.

−q± =+N ([u]) +

(
±I
2
−D∗

)
([q]),

u± =

(
∓I
2
−D

)
([u]) + S([q]), on ∂D,

(69)

where I denotes the identity operator, and [f ] denotes the jump of f at the boundary ∂D.

To prove Theorem 13, one can use an extension of Green’s identities to the boundary
and Gauss’s integral, see Equation (2.20) in [5] and Chapter 18, §4 of [43] for the details.
Using the limiting values from the interior, we find

�
∂D

[
∂u−
∂n

(y)Φ(x, y)− u−(y)
∂Φ(x, y)

∂n(y)

]
ds(y) =


u(x) if x ∈ D
1
2
u−(x) if x ∈ ∂D

0 if x ∈ R3 \D
. (70)

Likewise, using the exterior limiting values

22



−
�
∂D

[
∂u+
∂n

(y)Φ(x, y)− u+(y)
∂Φ(x, y)

∂n(y)

]
ds(y) =


u(x) if x ∈ R3 \D
1
2
u+(x) if x ∈ ∂D

0 if x ∈ D

. (71)

We combine the last two equations to obtain

u(x) =

�
∂D

[(
∂u−
∂n

(y)− ∂u+
∂n

(y)

)
Φ(x, y)− (u−(y)− u+(y))

∂Φ(x, y)

∂n(y)

]
ds(y), (72)

for every x ∈ R3 \∂D. This equation is expressed in operator notation as,

u = −D([u]) + S([q]), away from ∂D. (73)

Taking normal derivatives in the expression above, we find

q = −N ([u]) +D∗([q]), away from ∂D. (74)

For a point x ∈ ∂D, we may compute the limiting values u± of u at x by using the
jump relations of the potential theory. On the one hand, we have that

lim
h→0

S([q])(x± hn(x)) = S([q])(x), (75)

by the continuity of single-layer potentials. And on the other hand, Equation (15) implies,

lim
h→0

D([u])(x± hn(x)) = ±1

2
[u](x) +D([u])(x). (76)

This in turn implies

u± =

(
∓I
2
−D

)
([u]) + S([q]). (77)

The identity

−q± = N ([u]) +

(
±I
2
−D∗

)
([q]), (78)

can be shown analogously from Equation 74.
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IV-A. Derivation of surface-potential equations for

multicompartment media

We now turn to integral equations for the surface potential or its normal derivative in
a multicompartment medium. Similar to the single-compartment case, we have formu-
lations using single- and double-layer potentials respectively. The double-layer potential
formulation follows naturally from the direct application of Smythe’s generalisation of
Green’s representation formula due to Smythe [56], and it was first derived by Barr et.
al. in [2]. The single-layer formulation, due to Geselowitz [16], follows also directly from
Smythe’s formula, but we apply it instead to the electric potential modified by the resis-
tivity of the compartments. Both these formulations were obtained during the 1960s. In
2005, Kybic et. al. [34], motivated by the use of a common theoretical framework for the
past integral equations, found a symmetric formulation that combines both single- and
double-layer potentials. This symmetric formulation produces more accurate numerical
results.

Smythe’s formula as it was proven in [56] is only valid for nested domains, so all these
formulations only apply to nested multicompartment media. It was claimed in [34] that
said equations hold also true for non-nested geometries, but details were omitted. The
non-nested generalization was subsequently developed in detail by Stenroos in [57]. In
what follows, we will present the single- and double-layer formulations mentioned above,
and sketch the proof of the symmetric formulation in [34]. We also show that from the
single-layer equation of Geselowitz one can retrieve a particular case of the charge-based
formulation in Equation (29).

Consider a volume D containing biolectric sources in its interior, and which is par-
titioned into disjoint nested regions (or compartments) D1, D2, . . . , DN of uniform con-
ductivity (see Figure 1(a)). Let DN+1 = R3 \D, and let Si = ∂Di \ ∂Di−1 be the
interface between the compartment Di−1 and the compartment Di. Finally, let nj(x)
be the unit normal vector to the surface Sj directed towards Di at the point x ∈ Sj.
Denote n(x) := nj(x), whenever x ∈ S1∪S2∪· · ·∪SN ∪SN+1 belongs to the interface Sj.
Recall that f±(x) = limh→0 f(x±hn(x)) for x in a surface S, where n is the outward unit
normal to S. Following Geselowitz [16] and Sarvas [52], we make the following physical
assumptions:

(i) There is a uniform bulk conductivity σ, which is constant on each compartment Dj.
Bioelectric sources are given by a distribution of impressed current density Ji — the total
current is then given by the formula:

J(x) = σ(x)E(x) + Ji(x), for all x ∈ R3 (79)

The exterior compartment is assumed to have zero conductivity, i.e. σ(x) = 0 for all
x ∈ DN+1.

(ii) Electromagnetic waves can be neglected, so

E(x) = −∇u(x), for all x ∈ R3, (80)

for some scalar potential u : R3 → R.
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(iii) We may assume that there is no tissue capacitance, hence

∇ · J(x) = 0, for all x ∈ R3 . (81)

(iv) The normal component of the total current is continuous across each boundary :
J−(x) · nj(x) = J+(x) · nj(x) for all x ∈ Sj. Using (i) and (ii) we can rewrite this
as,

σ−(x)
∂u−
∂nj

(x) = σ+(x)
∂u+
∂nj

(x), for all x ∈ Sj. (82)

(v) The potential is continuous on each boundary Sj:

u−(x) = u+(x), for all x ∈ Sj. (83)

The assumptions (i), (ii), and (iii) combined give

0 = ∇ · J(x) = −σ(x)∆u(x) +∇ · Ji(x), for all x ∈ R3 . (84)

Denoting [f ]j(x) = f−(x)−f+(x) for x ∈ Sj, for the jump of the function f at the surface
Sj, we see that all the assumptions above are equivalent to the following problem, cf.
Kybic et. al. [34]

Connected Poisson Problems. Find a C2 function u defined on R3 and satisfying
u(x) = o(1) as |x| → ∞, such that

σ∆u = ∇ · Ji in Dj, for all j = 1, . . . , N

∆u = 0 in DN+1 = R3 \D
[u]j = [σ ∂u

∂nj
]j = 0 on Sj, for all j = 0, . . . , N − 1

. (85)

We now present Smythe’s generalization of Green’s formula to nested multicompart-
ment media, which will be the main theoretical tool in this section.

Theorem 14 (Green’s Multicompartment Formula, see Chapter III §3.06 in [56]). Let
D be a multicompartment bounded volume as above, and let S1, . . . , SN , SN+1 = ∂D be
the interfaces between the nested regions of D. Let ψ, φ : D → R be C2 functions, which
are continuous on SN+1 = ∂D, and let σ : D → R be a function which is C1 on D except
for possible discontinuities on the surfaces Sj. Then,

N+1∑
j=1

�
Sj

[
σ−

(
ψ−

∂φ−

∂nj

− φ−
∂ψ−

∂nj

)
− σ+

(
ψ+

∂φ+

∂nj

− φ+
∂ψ+

∂nj

)]
dSj

=

�
D

[ψ∇ · (σ∇φ)− φ∇ · (σ∇ψ)]dv.

(86)
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IV-B. A double-layer multicompartment integral

equation

The multi-compartment integral equation in [2] gives an integral equation for the
multicompartment problem which is of the Dirichlet type, i.e. where we have knowledge
of the boundary values of the potential u at the discontinuity surfaces.

Fix a point x of D away from the interfaces, and substitute ψ(y) = Φ(x, y) =
1/(4π|x − y|), and φ(y) = u(y) (the electric potential) in Green’s multicompartment
formula, (Equation (86)). Using the fact that the potential u, and the fundamental
solution Φ are continuous along the interfaces (so that u+(y) = u−(y) = u(y) and
Φ+(x, y) = Φ−(x, y) = Φ(x, y) for y ̸= x), we find the following equation:

N+1∑
j=1

�
Sj

[
σ−(y)

∂u−
∂nj

(y)− σ+(y)
∂u+
∂nj

(y)

]
Φ(x, y)ds(y)

−
N+1∑
j=1

�
Sj

(σ−(y)− σ+(y))u(y)
∂Φ(x, y)

∂nj(y)
ds(y)

=

�
D

[Φ(x, y)∇y · (σ(y)∇yu(y))− u(y)∇y · (σ(y)∇yΦ(x, y))] dv(y).

(87)

We can further simplify this equation: Using the continuity of current (Equation (82)),
the term (σ−(y)∂u−/∂nj(y)− σ+(y)∂u+/∂nj(y)) vanishes. The term on the right-hand-
side of the equal sign is simplified as follows: Consider a sufficiently small neighbourhood
B of x so that σ(x) is constant on B. Then, by Corollary 1 we have

−
�
D

u(y)∇y · (σ(y)∇yΦ(x, y))dv(y) = −
�
B

σ(x)u(y)∆y
1

4π|x− y|
= σ(x)u(x). (88)

On the other hand, from Equation (79), Equation (80), and Equation (81) we have that
∇ · σ∇u = ∇Ji. Combining all of the above remarks, we find the following integral
equation:

σ(x)u(x) = −
N+1∑
j=1

�
Sj

u(y)(σ−(y)− σ+(y))
∂Φ(x, y)

∂nj(y)
ds(y)−

�
D

∇y · Ji(y)

4π|x− y|
dv(y), (89)

which can also be written in operator notation as:

σu+
N+1∑
j=1

D([σ]ju) = −V(∇ · Ji). (90)

Notice that the great advantage of the equation above is that it provides the electric
potential at each surface directly, assuming that we have knowledge of all the conductivity
values and sources in the volume.

26



IV-C. A dual integral equation based on single-layer

potentials, and its relationship to surface charge

based integral equations

This time, we let ψ(y) = Φ(x, y) = 1/(4π|x − y|) and σ(x)ϕ(x) = u(x), in Green’s
multicompartment formula (Equation (86)). This yields,

N+1∑
j=1

�
Sj

[(
∂u−
∂nj

(y)− ∂u+
∂nj

(y)

)
Φ(x, y)− (u− − u+)

∂Φ(x, y)

∂nj(y)

]
ds(y)

=

�
D

[
Φ(x, y)∇ · ∇u(y)− u(y)

σ(y)
∇y · σ(y)∇yΦ(x, y)

]
dv(y).

(91)

We simplify the equation above: By the continuity of the potential u, we have u−(y) −
u+(y) = 0. On the other hand, Equations (79), (80), and (81) imply that ∇ · ∇u =
(1/σ)∇ · Ji, which gives,

N+1∑
j=1

�
Sj

[(
∂u−
∂nj

(y)− ∂u+
∂nj

(y)

)
Φ(x, y)

]
ds(y)

=

�
D

[
Φ(x, y)

∇Ji(y)

σ(y)
− u(y)

σ(y)
∇y · σ(y)∇yΦ(x, y)

]
dv(y).

(92)

Using Equation Corollary 1 again, we find

�
D

u(y)

σ(y)
∇ · σ∇yΦ(x, y)dv(y) = −u(x). (93)

Therefore, we obtain the equation:

N+1∑
j=1

�
Sj

(
∂u−
∂nj

(y)− ∂u+
∂nj

(y)

)
Φ(x, y)ds(y) = u(x) +

�
D

Φ(x, y)
∇ · Ji(y)

σ(y)
dv(y). (94)

Recall that for a function f , we denote the jump of f across the boundary Sj as [f ]j =
f− − f+. In operator notation, the above equation can be rewritten as:

u(x)−
N+1∑
j=1

S([∂u/∂n]j) = V(−(∇ · Ji)/σ). (95)

In [16], once he obtains the equation above Geselowitz proceeds to rewrite it with
a term involving the electric conductivity contrast. However, we note that Geselowitz’s
equation involving single-layer potentials does not constitute a true dual to Equation (89),
since it involves two unknowns: u and its jump [∂u/∂n]j at each interface. To obtain
a dual, we proceed in a similar fashion as in the derivation of our Equation (29), and
Equation (15) in the paper [34]. First, note that the jump relations for the single-layer
potential (Equation (14)) take the following form in operator notation:

∂S[φ]±
∂n

(x) = D∗[φ](x)∓ 1

2
φ(x). (96)
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Apply the jump relations to find the normal derivative of Equation (95) from either
side of Sj, and multiply the equation by σ− and σ+ respectively to find,

σ±(x)
∂u±
∂ni

(x)± σ±
2
[∂u/∂n]i(x)−

N+1∑
j=1

σ±(x)D∗([∂u/∂n]j)(x)

= σ±
∂

∂ni

V [−(∇ · Ji)/σ](x),

(97)

whenever x ∈ Si. Subtracting the version of the equation above with a positive sign from
the one with a negative sign, and using the continuity of the normal component of the
current (Equation (82)), we obtain:

σ− + σ+
2

[∂u/∂n]i − (σ− − σ+)
N+1∑
j=1

D∗([∂u/∂n]j) = (σ− − σ+)
∂

∂ni

V [−(∇ · Ji)/σ]. (98)

Dividing by the value (σ−+σ+), we can express this in terms of the electric conductivity
contrast K (cf. Equation (30)) as follows:

1

2
[∂u/∂n]i −K

N+1∑
j=1

D∗([∂u/∂n]j) = K
∂

∂ni

V [−(∇ · Ji)/σ] (99)

Denoting ξ(x) := [∂u/∂n]i(x) for x ∈ Si, we obtain

1

2
ξ(x)−K(x)

N+1∑
j=1

ni(x) ·
�
Sj

ξ(y)

4π

x− y

|x− y|3
ds(y) = K(x)

∂

∂ni

�
D

−∇ · Ji(y)

σ(y)
dv(y), (100)

Which is dual to Equation (89). The resemblance between Equation (100) and Equa-
tion (29) is not just a coincidence, in fact Equation (100) is only a particular case of
Equation (29). This becomes apparent after considering units of measurement: the
jump ξ(x) = [∂u/∂n]i(x) of the normal derivative of the potential is measured in volts
per meter (V · m−1), whereas the surface charge density is measured in Coulombs per
meter-square (C · m−2). The vacuum permittivity ε0 is measured in farads per meter
(F·m−1 = C·V−1 ·m−1), therefore ρ(x)/ε0 and ξ(x) have the same units of measurement.
In fact using Gauss’s law it can be shown that both quantities coincide, see §2.3.5. in
Griffiths’s Electrodynamics [24].
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IV-D. A symmetric formulation

We conclude this section with a sketch of the derivation of the symmetric integral
equations of Kybic et. al. [34], which involve a combination of single- and double-layer
potentials in two unknown variables.

Again, consider a sequence of nested compartmentsD1, D2, . . . , DN , withD =
⋃N

i=1Di

and DN+1 = R3 \D (see Figure 1(a)). Recall that Si = ∂Di \ ∂Di−1 is the interface
between the compartment Di−1 and the compartment Di, with ni the unit normal vector
at Si directed towards Di.

Figure 2: The compartment Di and its adjacent compartments

To carry this derivation, the authors in [34] use three sets of potentials

� A potential u solving the connected Poisson problems of Equation (85);

� A sequence of Newtonian potentials vi, which solve the Poisson problem restricted
to the domain Di, and which take value 0 everywhere else; and

� A sequence of harmonic functions wi, whose jumps at the interfaces are given by
the values of the potential u and its normal derivative.

The Newtonian potentials vi are defined as:

vi(x) := V [−f · 1Di
](x) =

�
D

[−f · 1Di
](y)Φ(x, y)dv(y), (101)

where 1Di
(x) = 1 if x ∈ Di and 1Di

(x) = 0 otherwise. Since ∆xΦ(x, y) = ∆yΦ(x, y) =
−δ(x, y); Corollary 1 implies that

∆vi(x) =

�
D

−f(y) · 1Di
(y)∆xΦ(x, y)dv(y) = f(x) · 1Di

(x). (102)

So, as we claimed above, the vi solve the Poisson problem on Di and vanish everywhere
else. If u is a potential solving the connected Poisson problems of Equation (85), then
we define

wi(x) :=

{
u− vi

σi
if x ∈ Di

− vi
σi

if x ̸∈ R3 \Di

. (103)
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Recall that we denote the jump of f across the surface Sj as [f ]j(x) = f−(x)− f+(x)
for x ∈ Sj. Using the fact that u and vi are continuous throughout R3, we have that

[wi]i =

(
u− − (vi)−

σi

)
+

(vi)+
σi

= u− = u, (104)

and,

[wi]i−1 = −(vi)−
σi

−
(
u+ − (vi)+

σi

)
= u+ = u. (105)

Likewise, using the fact that vi has a continuous normal derivative throughout R3, we
find:

[∂wi/∂n]i =
∂u−
∂n

, and

[∂wi/∂n]i−1 =
∂u+
∂n

.

(106)

Notice that each wi is harmonic on the domain R3 \∂Di, since on the one hand,

∆wi(x) = ∆u(x)− ∆vi(x)

σi
=
f(x)

σi
− f(x) · 1Di

(x)

σi
= 0, for all x ∈ Di, (107)

and on the other hand, ∆vi(x) = f(x) · 1Di
(x) = 0 for x ∈ R3 \Di. Hence, we can apply

Theorem 13 to express the limiting values of wi at the surface Si from both sides in terms
of its jumps, which we saw were given by u and its normal derivative. Using also the
boundary equation [σ∂u/∂n]i = 0, one arrives at the symmetric integral equation (cf.
Equation (21) in [34]),

(∂vi+1/∂n)− (∂vi/∂n)

= σiNSi−1
(u)− (σi + σi+1)NSi

(u) + σi+1NSi+1
(u)

−D∗
Si−1

(p) + 2D∗
Si
(p)−D∗

Si+1
(p), on the surface Si,

(108)

where p(x) = σi[∂wi/∂n]i(x) for every x ∈ Si, and whereNS and D∗
S denote the potentials

of Definition 1, where we specify that the domain of integration is taken over the surface
S.

Remark 9. The values (∂vi+1/∂n)(x) and (∂vi/∂n)(x) for x ∈ Si can be obtained by
integrating the source term f according to Equation (101). Therefore, Equation 108
involves exactly two unknowns: the values of the potential u, and of the auxiliary func-
tion p(x) = σi[∂wi/∂n]i(x) at the interface Si. So, as in the case of the double-layer
formulation (Equation (90)), we retrieve the values of u at the interfaces directly.
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V. Software and Applications

We conclude this paper with a brief summary of available software and current appli-
cations. We distinguish two types of software which rely on boundary element method
(BEM) solvers: those which incorporate fast multipole method (FMM) acceleration, and
those which do not.

The traditional BEM without FMM acceleration is widely used for exploring, vi-
sualizing, and analyzing human neurophysiological data stemming from MEG, EEG,
stereoelectroencephalography (sEEG) [54], and electrocorticography (ECoG) [63], among
other techniques. Figure 3 shows some low-resultion BEM models with three head com-
partments (skin, skull, and brain) which are presently used in BEM computations for
M/EEG.

Figure 3: a) BEM for three nested compartments, routinely used in EEG source recon-
struction packages [17], [49], [62] (image taken from FieldTrip documentation [13]). b)
After the source reconstruction with temporal EEG data from a butterfly plot is done,
the result may be projected back onto a detailed white matter surface as shown in c).

Below we list major open-source BEM software packages which are widely used:

� MNE [18] is an academic software package providing a complete data analysis
pipeline for M/EEG. It consists of three core subpackages, MNE-C, MNE-MATLAB,
and MNE-Python [17]. It computes forward solutions over a spherical head model,
or with a nested BEM model of one or three compartments. It provides several func-
tionalities including reading and processing data from different recording systems,
forward and inverse modeling, statistical analysis, and machine learning models of
neural activity. The package can be used alongside FreeSurfer [11] which creates
3D image segmentations of the head from MRI data.

� Brainstorm [42], [62] is a user-friendly software, with a graphical user interface
(GUI) which does not require programming knowledge. It is mainly built on MAT-
LAB scripts, and it implements tools that provide a complete pipeline for analysis

31



of bioelectric recordings. It incorporates automatic 3D image segmentation of the
head via MRI images, and it can integrate information originating from several dif-
ferent sources including cardiac activity, and eye movement. It also includes several
data processing tools for M/EEG time series, such as automatic artifact detection.
It does not currently incorporate FMM acceleration in its forward solvers, but this
is projected to be included in the future.

� FieldTrip [49] is a MATLAB toolbox for M/EEG analysis. It does not incorporate
a GUI. It provides functionality to perform source reconstruction from combined
MEG and EEG data, as well as analysis of ECoG and sEEG recordings.

� EEGLAB [10] is an interactive MATLAB toolbox for processing E/MEG data.
It can incorporate independent component analysis (ICA) [29] into the source-
localization problem. ICA is a statistical method in signal processing, designed to
recover the components of a linear superposition of signals, given its projection on
several sensors. In the EEG problem these sensors are the scalp electrodes. The
ICA step can be useful in detecting different types of EEG signals, such as those
originating from seizure-related activity.

� OpenMEEG [19] implements a high-accuracy solver using the symmetric boundary
element method of Kybic et. al. [34]. It can be called using MATLAB from
Brainstorm or Fieldtrip, and can also be used as a Python module.

� The Helisnki BEM Framework (HBF) [58], [59] is a MATLAB library implementing
a BEM solver using the isolated source approach (ISA) [26], [60]. This approach was
introduced to handle numerical difficulties arising from the low relative conductivity
of the skull, and it is obtained by splitting the potential into two components, one
of which assumes that the skull is a perfect insulator.

To the date of writing, the packages above do not incorporate FMM acceleration.
The traditional BEM cannot handle models with more than approximately 50,000 facets
on the surfaces, and because of this the brain shell structures need to be simplified and
downsampled.

On the other hand, the FMM-accelerated algorithms can process human head models
of up to 60–70 million facets, including fine details such as the three brain meninges [66].
Currently, the FMM-accelerated software is mainly used for fast TMS and DBS computa-
tions [9], [40], and for the neuronal arbor modeling at microscale [46]. Typical simulation
results can be found in [38]. An open-source implementation of FMM-accelerated BEM
software, in the form of MATLAB-based scripts, can be found in the TMSCoreLab Github
site [64], which includes applications to M/EEG, TMS, and TES. Figure 4 shows simula-
tion results of a TMS application on different interfaces of a detailed brain model taken
from the Human Connectome Project (HPC) [65]. Note that skin, skull and cerebrospinal
fluid shells are in fact present in the model, but removed from visualization for clarity.
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Figure 4: Different images of an FMM-accelerated simulation output for HPC subject
120111 [65] (image taken from [38]). The model has a total of 1 million facets. a) Total
electric field just inside of the gray matter interface; b) Total electric field just outside the
white matter interface; c) Total electric field at the cortical midsurface; d) Total electric
field in a transverse plane beneath the coil. The entire computational sequence runs in
approximately 4.7 s including graphical rendering in MATLAB.
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Conclusions

We surveyed the main examples of integral equations used in bioelectric modeling, and
illustrated how the surface charge density equations and the surface potential equations
are dual to each other via a modification of Geselowitz’s formula. The jump relations of
the potential theory, together with Green’s formula and its generalization due to Smythe,
constitute the main theoretical tools that have been used in the subject. We clarified
many of the details that typically are glanced over on most expositions. We reviewed the
major software packages for bioelectric modeling that are currently available, and noted
how FMM acceleration of the algorithms enables us to deploy more realistic models, and
carry faster computations.
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